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Abstract. Multibeam bathymetry, backscatter, and optical data collected by the NOAA Coral Reef Ecosystem 
Division (CRED) were used to create maps of seafloor habitats on the bank top at French Frigate Shoals (FFS) 
in water depths ranging from <10-100 m. Supervised classification of backscatter and optical data with user-
defined classes results in seafloor maps such as hard (rock, rubble, etc.) and soft (sandy) bottom. However, they 
suffer from a dependence on the generally limited optical data. Uncertainties in camera sled positioning, limited 
availability of optical data, and user bias in the supervised class definitions suggest an alternate approach may 
be necessary. Unsupervised classification of different combinations of bathymetry and backscatter derivatives 
uses the statistical separability of the data to define unique seafloor types. The optical data are then used to 
define and evaluate the accuracy of the classes. A variety of methods are being evaluated to characterize benthic 
habitats and the resulting maps are being used to improve sampling techniques for long-term ecosystem 
monitoring and to guide groundtruthing operations. Future plans include using these methods to identify coral-
rich and species specific environments in the Northwestern Hawaiian Islands (NWHI). 
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Introduction 
Since 2002 the NOAA Coral Reef Ecosystem 
Division (CRED) has collected multibeam 
bathymetry, backscatter, and optical data as part of an 
effort to delineate benthic habitats of coral reef 
ecosystems throughout the U.S. Pacific Islands. The 
data provide resource managers with high-resolution 
maps of the seafloor and ground-truth information in 
water depths greater than 20 m.  

Much of the mapping has focused on the islands, 
banks, and atolls that form the Northwestern 
Hawaiian Islands (NWHI) (Fig. 1), a long chain of 
inactive volcanoes produced by a deep seated mantle 
hotspot currently located beneath Kilauea Volcano 
(Rooney et al. 2008). Pacific tectonic plate motion 
slowly carries the volcanoes to the northwest away 
from the hotspot and they subside and become low-
lying islands, atolls, flat-topped banks, and eventually 
guyots (Grigg 1982). Due to their remote nature, the 
NWHI are home to some of the healthiest coral reefs 
in the world and are often referred to as near-pristine 
coral-reef ecosystems (Page-Albins et al. 2009). It is 
critical that they are studied to provide baseline 
information for comparative analyses with degraded 
reef ecosystems. 

Here we present results from recent efforts to create 
maps of seafloor substrates by applying basic image 
processing techniques to a combination of multibeam 
bathymetry, backscatter, bathymetric derivatives, and 

optical data collected at French Frigate Shoals (FFS) 
in the NWHI. These efforts have resulted in hard and 
soft seafloor substrate maps covering the surveyed 
portion of the FFS bank top. The maps are being used 
to determine long-term monitoring sites in the 
framework of a habitat-based, stratified random 
sampling design (Ault et al. 1999) and for continued 
coral reef ecosystem research in the NWHI.  
 
Data 
Figure 1 shows the bank top bathymetry data 
collected at FFS in 2005 using hull-mounted 
multibeam sonars: a 240-kHz Reson 8101 on the 8-m-
long survey launch R/V AHI (Acoustic Habitat 
Investigator) and a 300-kHz Kongsberg EM3002d on 
the NOAA Ship Hi‘ialakai. Both sonars provide 
bathymetry and backscatter data logged in the 
Generic Sensor Format (GSF). Vessel position, 
velocity, attitude, heading, predicted tides, and sound-
velocity corrections are applied to the data in real-
time.  

The bathymetric data were edited on a swath-by-
swath basis and in an area-based editor using SAIC’s 
SABER software. Generic Mapping Tools software 
(Wessel and Smith 1998) was used to create ASCII 
grids for import and analysis in ArcGIS. The 
backscatter data were processed using Hawaii 
Mapping Research Group (HMRG) software. 
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Figure 1: (Top) Seafloor topography of the Hawaiian archipelago 
derived from satellite altimetry and ship soundings (Smith and 
Sandwell 1997). The subaerial extents of the MHI and the 
prominent islands, atolls, banks in the NWHI and the shelves 
around them are outlined. (Bottom) Multibeam bathymetric data 
collected by NOAA over of a portion of the bank top at FFS. 
TOAD tracks are shown in black. The data are overlain on a 
NOAA NOS nautical chart where shoal depths are colored.  
 

Optical data were collected at FFS from 2001-2005 
using the Towed Optical Assessment Device (TOAD) 
and were analyzed according to the CRED 
classification scheme (www.soest.hawaii.edu/pibhmc) 
that includes factors such as substrate type, living 
growth on the seafloor, geomorphic zone, and the size 
and abundance of holes in the substrate.  
 
Methods 
Initially we took a qualitative approach to seafloor 
characterization by visually comparing the data. For 
example, we related backscatter intensity and seafloor 
slope to the substrate type, as determined by the 
optical data, by observing that hard (rock, rubble) and 
coral-rich substrate correspond to high backscatter 
intensity and slope, while soft (sandy) substrate 
correspond to lower backscatter intensity and slope.  

However, coral-reef and fisheries managers 
generally have little experience in interpreting optical 
and acoustic datasets to form management and 
monitoring plans. They stated the need for integrated 
map products and in particular the NWHI 
Papaha‘naumokua‘kea Marine National Monument 
(NWHIMNM) managers requested maps showing 
areas of hard and soft seafloor substrate that could be 
used in the framework of a habitat-based, stratified 
random sampling design (Ault et al. 1999). To 
accomplish this goal we took an image processing 
approach using the ENVI software package 
commonly used to analyze satellite imagery by the 
remote sensing and planetary science communities. 

Acoustic backscatter data are the most useful 
dataset available for FFS for identifying hard and soft 
seafloor. Initially a supervised classification technique, 
which clusters pixels into pre-defined classes, was 
applied to the data. Region of interest (ROI) classes 
were chosen by querying TOAD data based on photos 
that were classified as either ≥80% hard bottom or 
≥80% soft bottom (Fig. 2).  

A 2-class maximum likelihood supervised 
classification algorithm was run on ENVI software 
using the 2 ROI classes and a 3-band image 
containing backscatter and small- and large-scale 
bathymetric variance. Variance, derived from the 
bathymetric data, is the square of the standard 
deviation of a pre-defined number of neighboring 
pixel cells. Variance calculations were performed 
using ArcGIS Spatial Analyst tools. Small-scale 
variance, calculated for a 3x3 pixel cell neighborhood, 
is useful for defining topographic features such as 
sediment ripples or possible coral-rich regions, 
whereas the large-scale variance, calculated for a 5x5 
neighborhood, is useful for defining seafloor ridges, 
pinnacles, and significant changes in slope. Variance 
proved to be a useful bathymetric derivative in 
previous efforts to map seafloor habitats by Dartnell 
and Gardner (2004) and including both the small- and 
large-scale variance in our analyses generally gave 
better results despite their visual similarity (Fig. 3). 
The acoustic data were resampled to a 5 m grid cell 
size prior to running the ENVI analyses. Additionally, 
the Reson 8101 and Kongsberg EM3002D datasets 
were processed separately due to their different 
frequency contents and the resulting classified images 
were combined during post-processing.  

Initial results from the supervised classification 
were unsatisfactory because obvious artifacts around 
data gaps were apparent. There was also concern that 
the technique relied too heavily on the optical data. 
Uncertainties in camera sled positioning, absence or 
limited availability of optical data for many areas, and 
bias in the supervised class definitions made it 
necessary to investigate an alternative approach. 
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Figure 2: (Top) Backscatter imagery and TOAD tracks colored 
yellow for ≥80% sand/soft bottom and brown for ≥80% hard/rock 
bottom. (Bottom) Backscatter magnitude vs. number of samples for 
hard (brown) and soft (yellow) seafloor ROI’s. Lower backscatter 
values are harder bottom due to the reversed polarity dataset used 
to extract the backscatter magnitude values for the plot. Vertical 
arrows and horizontal bars indicate the mean and standard 
deviation for each ROI respectively. 
 

Consequently an unsupervised classification 
technique was chosen, which relies only on the data 
statistics. Using this technique, no user defined 
training classes or inputs other than the acoustic data 
are required for creating the classified image. After 
testing different combinations of input data and 
various classification algorithms a 2-class K-Means 
unsupervised classification algorithm was run on 
ENVI software using a 4-band image containing 
backscatter, bathymetric rugosity, and small- and 
large-scale bathymetric variance (Fig. 3) to derive 
regions of hard and soft substrate for the mapped 
portion of the bank top. Rugosity is calculated using 
the Benthic Terrain Modeler in ArcGIS (Jenness 
2003). The unsupervised classification algorithm 
calculates class means evenly distributed in the data 
space and then iteratively clusters the pixels into the 
nearest class using a minimum distance technique. In 

general, the unsupervised classification dealt better 
with data gaps and delineation of isolated hard bottom 
areas surrounded by sand, such as pinnacles, than did 
the supervised technique. The hard and soft classes 
were assigned to the resulting unsupervised image by 
visually comparing the optical data with the classified 
image. 

 

 
Figure 3: (A) Backscatter, (B) bathymetric rugosity, (C) small-scale 
bathymetric variance, and (D) large-scale bathymetric variance for 
a small subset of the FFS bank top. Note the 1-km-long scale bar in 
(B). Higher backscatter is indicated by darker colors in (A), higher 
rugosity is indicated by darker colors in (B), and higher variance is 
indicated by lighter colors in (C, D). 
 
Results and Conclusions 

Figure 4 shows the hard and soft seafloor substrate 
map created using the unsupervised classification 
technique for a portion of the bank top at FFS. A 
confusion matrix was calculated to compare the 
classification results with the ground truth (TOAD) 
data. The overall accuracy of the classification results 
when compared to the user-defined ROI classes is 
~80% but the accuracy is much less (~30%) when the 
results are compared with the entire TOAD dataset. 
This difference is most likely associated with the 
positional uncertainties of the TOAD data and errors 
in the unsupervised classification and suggests that 
visual comparison of the classification results with the 
optical data is imperative for assigning substrate types 
to classes. Subsequent optical and SCUBA-based 
ground truth operations at FFS suggest the ~80% 
accuracy is a realistic overall assessment of the 
unsupervised classification results. 

Substrate maps, produced as describe above, are 
currently being used by NWHIMNM scientists and 
managers to determine long term monitoring sites. It 
appears that this is an appropriate approach for 
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integrating high-resolution multibeam survey datasets 
covering large areas with limited coverage optical 
datasets. This method can easily be expanded if high 
quality acoustic and optical data are available, it has 
been applied to a number of other areas, and the 
resulting maps and data are available for download at 
www.soest.hawaii.edu/pibhmc. The processing 
approach described above and error assessment 
techniques continue to be refined to create accurate 
seafloor substrate maps. 

CRED study sites span the tropical Pacific Ocean 
basin and data acquisition is often limited by the 
amount of time available to survey in remote 
locations. This can result in maps covering a wide 
area with sparse coverage and some data gaps. The 
NOAA Biogeography Branch is applying similar 
image processing techniques to create spatially 
limited seafloor substrate maps with dense coverage 
and few data gaps around islands in the Caribbean, 
such as Puerto Rico (Costa et al. 2008). However, the 
specific method described here has been developed to 
meet needs of resource managers in coral reef 
ecosystems with somewhat sparse multibeam and 
minimal optical data.  

Although logistical constraints may limit the 
coverage of acoustic datasets (multibeam and 
backscatter), experience has demonstrated the 
importance of designing surveys to collect high 
quality backscatter data. Greater coverage can be 
attained by concentrating only on maximizing data 
collection. However, the slower survey speeds and 
other constraints that may be required to collect high 
quality backscatter data have been found to be 
justified because it is undoubtedly the best 
discriminator of hard and soft seafloor. Additionally, 
dense grids of optical ground truth data aid 
tremendously in class determination, derived layer 
validation, and error assessment. 

The coral reef community has only begun to apply 
image processing techniques (e.g. Dartnell and 
Gardner 2004; Blondel and Sichi 2008; Marsh and 
Brown 2008) to acoustic and optical datasets for 
habitat classification and characterization. These 
methods represent emerging techniques with much 
broader characterization and predictive possibilities. 
For example, predictive habitat mapping (Pittman et 
al. 2007) expands the utility of acoustic and biologic 
datasets to predict biomass and fish species 
abundances based on marine organism seafloor 
habitat preferences. 
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Figure 4: (Top) Hard and soft seafloor map created using the ENVI 
K-Means unsupervised classification algorithm on a 4-band input 
image. Black box corresponds to the area shown in the images 
beneath. (Middle) A portion of the hard and soft (left) and 
backscatter (right) data. Stars indicate the TOAD frame grab 
locations shown beneath. (Bottom) TOAD frame grabs that, from 
left to right, correspond to the star locations from top to bottom 
(northwest to southeast). Coral-rich (left), sandy (middle), and 
pavement (right) seafloor substrates match the hard and soft classes.  
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