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Abstract

The majority of the world’s coral reefs are in various stages of decline. While a suite of disturbances (overfishing,
eutrophication, and global climate change) have been identified, the mechanism(s) of reef system decline remain elusive.
Increased microbial and viral loading with higher percentages of opportunistic and specific microbial pathogens have been
identified as potentially unifying features of coral reefs in decline. Due to their relative size and high per cell activity, a small
change in microbial biomass may signal a large reallocation of available energy in an ecosystem; that is the microbialization
of the coral reef. Our hypothesis was that human activities alter the energy budget of the reef system, specifically by altering
the allocation of metabolic energy between microbes and macrobes. To determine if this is occurring on a regional scale, we
calculated the basal metabolic rates for the fish and microbial communities at 99 sites on twenty-nine coral islands
throughout the Pacific Ocean using previously established scaling relationships. From these metabolic rate predictions, we
derived a new metric for assessing and comparing reef health called the microbialization score. The microbialization score
represents the percentage of the combined fish and microbial predicted metabolic rate that is microbial. Our results
demonstrate a strong positive correlation between reef microbialization scores and human impact. In contrast,
microbialization scores did not significantly correlate with ocean net primary production, local chla concentrations, or
the combined metabolic rate of the fish and microbial communities. These findings support the hypothesis that human
activities are shifting energy to the microbes, at the expense of the macrobes. Regardless of oceanographic context, the
microbialization score is a powerful metric for assessing the level of human impact a reef system is experiencing.
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Introduction

The relationship between increasing human activity and

decreasing fish biomass is well-established in coral reef systems

[1–3]. Although herbivore reduction due to overfishing probably

facilitates coral to algal transitions, the mechanistic link between

overfishing and coral mortality is not clear [4]. Much uncertainty

about the mechanisms of reef decline linked to eutrophication and

climate change also still exists [5–6]. In addition to increasing algal

cover relative to hard coral cover, other effects of anthropogeni-

cally-driven disturbances include disease outbreaks, fewer links in

trophic webs, and loss of physical structure and habitat complexity

[7–9]. Reef-associated microbial communities have been shown to

respond to all of the above disturbances (overfishing, nutrient

enrichment, thermal stress) by becoming less beneficial and more

pathogenic, i.e. the proportion of sequences related to known

pathogens typically increases [10–17].

Despite the epidemiological evidence linking the microbial

ecology of coral reef systems to human activity, the largest study of

coral reef microbial communities included only four coral atolls in

the Line Islands, all clustered within one oceanographic region

[14]. In this island chain a 10-fold increase in microbial and viral

abundances in the overlying reef-water correlated with increasing

human disturbance and was accompanied by decreased fish

biomass [1,14]. Further, a large proportion of the microbial 16S

rDNA sequence similarities on the most disturbed reefs were most

closely related to known pathogens [14]. These reefs also had the

highest incidences of coral disease and the lowest percent coral

cover. Other studies have also suggested that the total carbon flow

through microbial pathways via detritus is inversely related to

coral cover [18–19].

Ecosystems exhibit higher-level properties resulting from lower-

level phenomena [20]. The energy available to a higher trophic

level, for example, is reduced by the amount required to support

the individual organisms in the lower level. The Metabolic Theory
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of Ecology (MTE) predicts the metabolic rate of individual

organisms based on the observation that most variation in an

individual’s metabolic rate can be explained by body size and

temperature [21,22]. Whole organism metabolic rate (I), defined

as the amount of energy per unit time that an individual organism

requires, is calculated using Equation 1:

I~i0Mae{E=kT ð1Þ

Where i0 is the mass-independent normalization constant, M is

the wet weight of the organism in grams, and a is the scaling

exponent. The effects of temperature on metabolic rate are

accounted for by e{E=kT [21,23] where E is the activation energy,

k is Boltzmann’s constant (8.6261025 eV K21), and T is the water

temperature at the site at the time of collection (in Kelvin). Distinct

scaling exponents have been derived for different physiological

states and evolutionary groups [21,24–25].

The process of replacing macroorganisms with microbes has

been termed microbialization [26]. In this study, Equation 1 was

used to predict metabolic rates for all individual fish and microbes

present in a 10 m3 volume of reef water. Microbialization refers to

an increase in the percentage of the combined fish and microbial

predicted metabolic rate that is microbial. Island-level micro-

bialization scores were derived for 29 islands (99 sites) within four

oceanographic regions of the Pacific Ocean. Our data show a

strong significant positive correlation between microbialization

scores and the NCEAS cumulative human impact scores at each

island. In comparison, microbialization scores did not correlate

with the net primary production values. These findings support the

hypothesis that human activities rather than variation in ocean-

ographic conditions are causing microbialization of coral reefs and

that the microbialization score is a powerful metric for assessing

and comparing reef health.

Materials and Methods

Site descriptions
The twenty-nine islands included in this study were surveyed

following the National Oceanic and Atmospheric Association

(NOAA) ’s Rapid Ecological Assessment (REA) protocol as part of

the Coral Reef Ecosystem Division (CRED) and Pacific Reef

Assessment and Monitoring Program (Pacific RAMP) [27].

Multiple coral reef sites (average depth: 10 m) were sampled at

each island in four broad regional groups: the Main Hawaiian

Islands (MHI), Guam and the Mariana Islands (MARIANA), the

American Samoa region (SAMOA), and the Pacific Remote Island

Areas (PRIA) (Fig. 1, Table 1). Microbial samples were collected

during the 2008–2010 Pacific RAMP monitoring cruises: MHI

(2008), MARIANAS (2009), SAMOA (2010), PRIA (2010). For

fish, belt survey data from 2001–2009 was used for all islands.

Because the REA survey protocol switched to the Stationary Point

Count (SPC) method in 2009, 2010 fish data was not included.

Microbial and fish data collection sites at each island are not

necessarily co-located. Due to the variability inherent with

observational fish data, the standard approach for estimating

island means for fish abundance requires a large sample size. To

have an adequate sample size, this fish data was pooled from all

sites and years. Island-level averages and standard errors for fish

and microbial biomass are provided in Table S2 and Fig. S2.

Microbial metabolic rates were calculated per site then averaged

by island. Island-level averages for fish and microbial predicted

metabolic rates were used to calculate one microbialization score

for each island.

Collection of microbial data
At each site, 4 replicate 2 l seawater samples were collected

,1 m above the benthos using polycarbonate Niskin bottles.

Microscopy grade glutaraldehyde was added to a final concentra-

tion of 0.3% v/v. Microbial cells were collected from each sample

by filtration using a 0.2 mm Anodisc filter (Whatman) and then

stained with 5 mg ml21 DAPI (Molecular Probes, Invitrogen)

within 2 hours of collection [28–30]. Filters were mounted on

microscope slides and stored at 220uC. For each site, 10 fields of

view (5 fields for each of 2 replicate filters, ,200 cells per field)

were examined by epifluorescence microscopy (excitation/emis-

sion: 358/461 nm) at 6006 magnification. Cell counts and

dimensions were collected using ImagePro Software (Media

Cybernetics) set for a size range of 0.00001–10 mm for both

length and width. Cell volume (V) was calculated by considering all

cells to be cylinders with hemispherical caps using Equation 2:

V~p
�

4|w2 l{w=3ð Þ ð2Þ

where l is length and w is width [31]. No correction was made for

possible cell shrinkage as a result of fixation. Individual microbial

cell volumes V (mm3) were converted to mass in wet weight (g)

using previously established size-dependent relationships for

marine microbial communities [32]. Each cell volume V was next

converted to dry weight using the linear relationship derived from

data reported in Simon and Azam (1989) and shown in Equation

3:

log yð Þ~1:72 log xð Þ{12:63 ð3Þ

where x is cell dry weight and y is cell volume (r2 = 0.99). Then cell

wet weight (z) was calculated using the linear relation shown in

Equation 4 [32] (r2 = 0.99):

log zð Þ~1:63 log xð Þ{2:0 ð4Þ

Collection of fish data
This study includes fish data from all surveys performed at REA

sites during the years 2001–2009. The number of REA sites

surveyed over this time period is provided for each island in Table

S2. Visual surveys provided a census of the reef fish community

[33]. Surveys were restricted to shallow-to-moderate depths along

the forereef between 10–15 m with a majority of surveys

completed along the 10 m isobaths. At each site, a total of three

25 m long belt transect surveys were conducted by two different

divers. For each survey, the diver made two passes: during the first

pass, all fish .20 cm in length were recorded in adjacent 4 m wide

belts; during the second pass all fish #20 cm were recorded in 2 m

wide belts. Lengths were recorded to the nearest cm for fish

,5 cm and in 5 cm bins for all others [34]. Species-specific mass

values for individual fish were calculated from length-weight

relationships using FishBase [35–36]. The fish data was provided

for each family as mean biomass (g m22) and mean abundance (#
individuals m22), from which the mean mass per individual (g) was

calculated. Because surveys were carried out at an average water

depth of 10 m and surveyors counted all fish in the water column

up to the surface, the mean abundances (individuals per m2)

represented the total number present in a 10 m3 water column.

Microbialization of Pacific Coral Reefs
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Metabolic rate calculations
At each REA site, community-level metabolic rates were

calculated by summing the individual metabolic rates (I) for all

fish or microbes present in a standard volume of water (10 m3).

Individual metabolic rates (I) in watts were calculated using

Equation 1.

The mass independent normalization constant for fish, i0,

(ln[i0] = 18.47) was extracted from the plots in Brown et al. [21],

while those for basal and active microbial states (4.6161016 and

1.0861021, respectively) were calculated from previously reported

individual prokaryote metabolic rate values [25]. The predicted

scaling exponents (a) used for microbes were 1.72 (basal) and 1.96

(active) [25], while 0.71 was used for fish [21]. The activation

energies (E) used were 0.61 eV for microbes [25] and 0.69 eV for

fish [21].

Quantification of human impact
The level of human impact was assessed from the cumulative

global human impact map generated by the National Center for

Ecological Analysis and Synthesis (NCEAS; http://www.nceas.

ucsb.edu/globalmarine/impacts). Using ArcGIS 9.3, ‘‘NoData’’

pixels corresponding to the land mass of each island were

identified and converted into polygon format. A 10 km zone was

then calculated for each of these polygons, representing the

immediate 10 km of sea surface around the border of each island

in the study. Using these zones, statistics were then performed on

the NCEAS human impact raster in order to calculate the mean

impact score. These scores incorporate data related to: artisanal

fishing; demersal destructive fishing; demersal non-destructive,

high-bycatch fishing; demersal non-destructive low-bycatch fish-

ing; inorganic pollution; invasive species; nutrient input; ocean

acidification; benthic structures (e.g., oil rigs); organic pollution;

pelagic high-bycatch fishing; pelagic low-bycatch fishing; popula-

tion pressure; commercial activity (e.g., shipping); and anomalies

in sea surface temperature and ultraviolet insolation.

Other indicators of reef system health were also considered in

this study using benthic survey data collected at the same time as

the microbial data. Benthic surveys were performed using the

survey methodology described in Vargas-Angel [37–38]. A

principal components analysis was carried out using R on the

following initial variables: coral disease prevalence, prevalence of

coral colonies with compromised health (unidentified sub-lethal

lesions including algal and cyanophyte interactions, and barnacle

and tubeworm infestations), percent crustose corraline algae cover,

percent coral cover, and the microbialization score [39,40]. Raw

data sets were rescaled to give mean 0 and standard deviation of 1.

As a supplement to PCA analysis, k-means clustering was also

Figure 1. Location of the 29 islands surveyed. Color scale indicates oceanic net primary production derived from satellite data using the
Vertically Generalized Production Model (VGPM). Circles indicate the relative NCEAS cumulative human impact score for each island. For island
abbreviations see Table 1.
doi:10.1371/journal.pone.0043233.g001
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performed on the same data matrix for k = 2–8 (100 iterations); the

dissimilarity matrix was calculated using Gower’s standardization

[41].

Estimation of net primary production
Productivity estimations for net primary productivity (NPP)

(mg C m22 day21) were derived from Moderate Resolution

Imaging Spectroradiometer (MODIS) satellite data using the

Vertically Generalized Production Model (VGPM; http://www.

science.oregonstate.edu/ocean.productivity/standard.product.

php). This model, based on an algorithm by Behrenfeld and

Falkowski (1997) calculates net primary production from satellite-

based measurements of surface chla concentrations, while also

taking into account sea surface temperature, daily photosynthet-

ically active radiation, and a temperature-dependent photosyn-

thetic efficiency factor [42]. Because these satellite data sets are less

accurate for near-shore measurements, the satellite-based NPP

values used here were estimated from the data for a 50 km radius

ring surrounding each island, with the first 10 km around each

island removed. The nearshore chla concentrations (mg l21) used

in this study were obtained using fluorometric analysis [43]. The

chla samples were collected in conjunction with the microbial

samples at each site.

Results and Discussion

Predicted metabolic rates for the fish and microbes
Field surveys carried out at 99 coral reef sites at 29 Pacific

islands (Fig. 1) were used to calculate the biomass (g per 10 m3)

and basal metabolic rate (W per 10 m3) for both the water

column-associated microbial and fish communities (Table 1). The

high and low values for microbial biomass occurred on the islands

of Oahu (1.53 g per 10 m3) and Wake Atoll (0.12 g per 10 m3),

respectively. This difference in microbial biomass equates to a 76-

fold increase in the rate of energy flux (W per 10 m3 or J sec21

10 m23) on Oahu (0.076 W per 10 m3) relative to Wake Atoll

(0.001 W per 10 m3). The highest fish biomass was found on

Kingman (514.84 g per 10 m3) and the lowest on Guam (17.98 g

per 10 m3). The metabolic requirements predicted for the fish

communities on Kingman and Guam were 0.015 and 0.002 W

per 10 m3, respectively. This difference equates to a 7.5-fold

reduction in the metabolic requirements of the fish community.

The largest differences in the predicted metabolic rates between

each island represent a 100-fold change for the microbes, as

compared to a 14-fold change for the fish (Table 1).

Microbialization scores versus the NCEAS human impact
score

Based on the predicted metabolic rates for fish and microbes

(Table 1), we are proposing a separate metric called the

microbialization score, which represents the microbial share of the

total predicted metabolic rate. The microbialization score is the

percentage of the combined fish and microbial predicted

metabolic rate that is microbial:

W 10 m3
microbes

� ��
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� �
|100 ð5Þ

Although both increased microbial biomass and decreased fish

biomass affect microbialization scores, microbial biomass has a

proportionately greater impact on the combined predicted
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for 94% of the total biomass. Even on Kingman where we

observed the highest fish biomass and microbial biomass

represented less than 0.03% of the total biomass, the microbes

still account for 13% of the combined predicted metabolic rate.

Recently, the NCEAS human impact score has been proposed

as a cumulative metric of different anthropogenic stressors ranging

from overfishing to predicted climate change events [44]. As

shown in Fig. 2, the microbialization score is positively correlated

with the NCEAS score (linear regression, r2 = 0.68; Fig. 2). The

microbialization scores ranged from 8% at remote and relatively

pristine Wake Island to 75–98% in the heavily-impacted main

Hawaiian Islands (MHI). Oahu, with the highest microbialization

score (98%) also had the highest NCEAS score (15.59).

Johnston Atoll in the PRIA group appears to be an exception to

the overall trend in that it has a high microbialization score (82%)

but a relatively low NCEAS score (8.48). In actuality, Johnston is

heavily impacted by factors not reflected in the NCEAS scores

including the addition of two artificial islands with paved runways

formed by coral dredging, usage for both above-ground and

underground nuclear tests in the 1950s and 1960s, and service as a

chemical weapons depot until 2000. The microbialization score

appears to be a better indicator of these stressors than the NCEAS

index of human impact.

A principal components analysis was carried out with the goal of

visualizing how the microbialization score related to other

indicators of reef health, including coral disease prevalence,

prevalence of coral colonies with other signs of compromised

health, percent crustose corraline algae cover, and percent coral

cover (Fig. S1). The first two components accounted for 66% of

the variation. The first component (PC1) accounted for 46% of the

variation and was driven in the positive direction (relative to 0) by

coral disease incidence, other visible signs of compromised coral

health, and microbialization score (Fig. S1). A complete table of

PCA loadings is provided in Table S3. By comparison, variables

which typically correlate positively with reef system health (%

crustose coralline algal cover and % coral cover) were represented

as vectors moving in the negative direction (relative to 0). The

separation by vector sign along PC1 supports the hypothesis that

the microbialization score is a useful measure of reef system

decline. Because the PCA analysis indicated that there was

separation in the data, we used k-means clustering as a

supplementary analysis to determine how many groups there

were. K-means is a classical variance-based clustering method that

defines n data points in d dimensions, into k clusters, so that the

within clusters sun-of-squares is minimized [41]. The within group

sum of squares plotted against the number of clusters (k) indicated

k = 3 to be the optimal number (for k = 2–8). The 11 islands

contained in cluster two (within-cluster sum of squares = 1.47)

were negative for PC1 (Fig. S1), while the 16 islands contained in

cluster 3 were all positive on PC1 (within-cluster sum of

squares = 2.06). The two islands in the first k-means cluster were

Lanai (LAN) and Guam (GUA) (within cluster sum-of-

squares = 0.32).

Microbialization scores versus combined metabolic rate
The metabolic rates predicted for the combined microbial and

fish communities at the 29 islands ranged by approximately one

order of magnitude, from a low of 0.007 W per 10 m3 on Rota

Island (MARIANA) to a high of 0.077 W per 10 m3 on Oahu

(MHI) (Fig. 3, x-axis). The combined predicted metabolic rate was

not correlated with the microbialization score, which also varied

widely among the islands, ranging from a low of 8% at Wake to a

high of 97% at Oahu (Fig. 3, y-axis). At the low end of this scale,

increased microbalization scores were explained by reduced

metabolic contribution from the fish. However, higher micro-

bialization scores were associated with a sharp rise in combined

predicted metabolic rate driven primarily by increasing microbial

metabolic rates. This break-point may reflect the release of the

microbes from some resource limitation.

Predicted metabolic rates of fish and microbes versus
primary production

Net primary production (NPP) might be expected to be a

significant factor driving variation in community metabolic rates.

Previous small-scale inter-island studies that correlated differences

in microbial communities with varying local human impacts could

not conclusively rule out inter-island variations in oceanographic

conditions as a possible driving factor [14]. To address this issue,

we surveyed net primary production (NPP) at islands in four

oceanographic regions throughout the Pacific Basin (Table 1).

Estimated net primary production (NPP; mg C m22 day21)

derived from satellite data is shown in Fig. 1. NPP ranged from

125 mg C m22 day21 at Aguijan to 445 mg C m22 day21 at Jarvis

(Table 1). This predicted NPP was not a strong predictor of the

combined fish + microbial metabolic rate at the island-level (non-

linear regression, R2 = 0.21; Fig. 4A). Likewise, when the predicted

NPP values were compared against the metabolic rates of the fish

and microbial communities separately, R2 values were 0.20 for fish

and 0.054 for microbes (Table 1). Large differences in NPP were

observed between the geographic regions surveyed, but relatively

little variation within each one (Fig. 4A, C). Since the satellite data

used for the above predictions omitted a 10 km ring around each

island, nearshore chla concentrations were also measured as an

alternative proxy for NPP. These samples were collected with the

microbial samples at each site. The nearshore chla concentrations

(mg l21) explained even less of the inter-island variation in

combined predicted metabolic rate (non-linear regression,

R2 = 0.08; Fig. 4B). For the individual communities, R2 values

were 0.13 and 0.15 for fish and microbes, respectively (Table 1).

Figure 2. Linear regression analysis of microbialization scores
versus NCEAS cumulative human impact values (y = 8.19 x –
26.10; r2 = 0.68). The microbialization score is the percentage of the
combined fish and microbial predicted metabolic rate that is microbial.
Color denotes oceanographic region: Guam and the Mariana Islands
(orange circles), the Main Hawaiian Islands (blue circles), Pacific Remote
Islands and Atolls (pink circles), and the Samoa region (green circles).
For island abbreviations see Table 1.
doi:10.1371/journal.pone.0043233.g002
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Microbialization scores and primary production
The island microbialization scores did not correlate with

predicted oceanic NPP values (Fig. 4C, R2 = 0.004) or nearshore

chla concentrations (Fig. 4D; R2 = 0.22). However, higher near-

shore chla concentrations associated with microbialization scores

above a certain threshold (,70%) are suggestive of eutrophication

processes linked to human impact (Fig. 4D) [45]. These analyses

demonstrate that estimated reef primary production is not a

significant driver of variation in either community metabolic rates

or microbialization scores.

To further examine whether or not accounting for oceano-

graphic context would improve our ability to predict reef

microbialization, multiple linear regression analysis was per-

formed. In addition to the NCEAS score, satellite-based estimates

of net primary production (NPP) and nearshore [chla] were

included as variables. This resulted in 4 models of interest:

microbialization score =b0+b1(NCEAS), y = b0+b1(NCEAS)+b2(-

chla), y = b0+b1(NCEAS)+b2(NPP), y = b0+b1(NCEAS)+b2(-

chla)+b3(NPP). Given that the NCEAS score was in the model,

the p-values for chla and NPP were not significant by the t-test in

the second and third models (p-value.0.1). The only variable that

was significant was the NCEAS score, having a highly significant

p-value in all of the models (p-value,0.0001). The model which

included both chla and NPP as variables (y = b0+b1(NCEAS)+b2(-

chla)+b3(NPP)) gave a multiple R2 value of 0.706, which was not a

significant improvement over the simplest model

(y = b0+b1(NCEAS)) which explained 68.4% of the variability of

the microbialization score.

Next, Akaike’s Information Criterion (AIC) was used for model

selection between the 4 different statistical models. AIC is the most

widely known and used model selection criterion which consists of

a ‘‘goodness-of-fit’’ term and a ‘‘penalty’’ term for increased

number of model parameters [46]. The model with the lowest AIC

value is selected as the best model. The model having the smallest

AIC was the model which did not include additional variables

(y = b0+b1(NCEAS)). Although the exact mechanism(s) underlying

the process of microbialization remain unclear, these analyses

support the hypothesis that human activities alter the energy

budget of the reef system, specifically by altering the allocation of

metabolic energy between microbes and macrobes.

The finding that microbialization scores did not significantly

correlate with ocean net primary production, local chla concen-

trations, or the combined metabolic rate of the fish and microbial

communities suggests that the microbialization score may be a

powerful metric for comparing and assessing reef degredation,

particularly at large spatial scales. Other measures of reef

degredation which are more heavily influenced by oceanographic

context (i.e. percent coral cover, percent algal cover) may be more

easily confounded by non-human factors and are subsequently

harder to interpret across large spatial scales.

Other considerations
In this study, surveys of microbial and fish sizes were used to

predict whole organism metabolic rates. Ideally, the energetic

requirements per unit time for fish and microbial communities

would be measured empirically. However, this is not practical over

this large region. To evaluate whether or not the MTE-based

approach is a reasonable alternative to quantifying energy flux, the

mean predicted metabolic rates for microbial communities were

compared against experimental values reported from other studies

(Table S1). The means for both the predicted basal metabolic rates

used in our analyses and the corresponding predicted active

metabolic rates fall within the same range as the empirically-based

measurements.

Similarly, differences in temperature at the time of sampling

explained a small proportion of the variation in metabolic rate

between islands. Water temperature at the time of sampling

ranged from 25–30uC. For the microbial community-level

metabolic rates, the standard deviation in the 29 island data set

was 0.16 at the actual temperatures and 0.01 when all locations

were corrected to the same temperature (20uC); for the fish

community-level metabolic rates, the standard deviations were

Figure 3. Microbialization scores plotted against the combined fish + microbes predicted metabolic rates for each of the 29 islands
surveyed. Colors are as in Fig. 2. For island abbreviations see Table 1.
doi:10.1371/journal.pone.0043233.g003
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0.006 and 0.003, respectively. Temperature correction increased

the r2 value for the regression analysis of community-level

metabolic rate as a function of biomass by only 0.01% and

0.05% for fish and microbes, respectively. Therefore, inter-island

variation in temperature does not account for our observed trends.

Conclusions

Overfishing, eutrophication, and global climate change are

important drivers of the global loss of coral reefs. However, the

precise mechanism(s) by which these perturbations lead to coral

decline have remained elusive. We and others have previously

argued that human activities are favoring the coral reef-associated

microbes at the expense of the macrobes, a process called

microbialization. The data presented here supports this hypothesis

over a wide swath of Pacific coral reefs and suggests that

microbialization is a general process of reef decline. Although

the exact mechanism(s) driving the process of microbialization

remain unclear, the microbialization score provides a way to

diagnose the degree of microbialization that has occurred on reefs.

Fish were the primary movers of energy in the most pristine

locations (i.e. fish were responsible for 97 and 87% of the total

predicted metabolic rate on Wake (PRIA) and Kingman (PRIA),

respectively) but made up only 3% of the total predicted metabolic

rate on Oahu (MHI). Microbialization scores reflect both

increased microbial biomass and decreased fish biomass; however

microbial biomass has a proportionately greater impact on

metabolic rate. This means that even a minor increase in the

microbial load results in a substantial shift in community energy

use; up to a 100-fold increase in the metabolic requirements of the

microbes in the most heavily impacted reef systems. This study has

significant implications for the protection of coral reefs. The

degree of microbialization a reef is experiencing may be important

for predicting its response to perturbation. On Pacific coral reefs,

microbialization may be set in motion by an increase in the percent

cover of turf algae resulting from the loss of herbivorous fish. Turf

algae release large amounts of dissolved organic carbon (DOC)

into the water column, a source of energy almost exclusively

available to the microbes [47]. Consequently, the process of

microbialization is likely to have stabilization effects in the system

once a castastophic regime shift to an algal-dominated state has

occurred.

Figure 4. Measures of energy use versus metrics of primary production. (a) Non-linear regression analysis of the combined fish + microbes
predicted metabolic rate versus net primary production (NPP) for the 29 surveyed islands. NPP was derived from satellite data using the Vertically
Generalized Production Model (VGPM). (y = 0.00008x+0.0012; R2 = 0.21) (b) Non-linear regression analysis of the combined fish + microbes predicted
metabolic rate versus nearshore chla concentrations at the 29 surveyed islands (y = 0.54x+0.01; R2 = 0.08) (c) Microbialization scores versus NPP
derived from satellite data using the VGPM for the 29 surveyed islands. (d) Microbialization scores versus nearshore chla concentrations at the 29
surveyed islands (y = 171.5x+29.7; R2 = 0.22). Colors are as in Fig. 2. For island abbreviations see Table 1.
doi:10.1371/journal.pone.0043233.g004
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Supporting Information

Figure S1 Principal components analysis of reef system
properties related to reef health. The first two principal

components account for 66% of the variability in the dataset

(PC1 = 46%, PC2 = 20%). Arrow length reflects the relative

contribution of a variable to a PC axis. MS = microbialization

score; CCA = % crustose coralline algae cover; DZ = % coral

disease prevalence; CO = % coral cover; CH = % coral with other

indications of compromised health. Symbol denotes oceanograph-

ic region: Guam and the Mariana Islands (*), the Main Hawaiian

Islands (‘), Pacific Remote Islands and Atolls (#), and the Samoa

region (+). Two groups of islands identified from k-means cluster

analysis are divided along PC1 by the dotted line; the third group

is circled (Lanai and Guam). For island abbreviations, see Table 1.

(TIF)

Figure S2 Mean microbial and fish biomass. (a) Mean

microbial biomass with standard error. Total number of sites

where microbial data was collected = 99. (b) Mean fish biomass

with standard error. Total number of sites where fish data was

collected = 791. The number of REA sites included is given in

parentheses next to three-letter island code.

(TIF)

Table S1 Comparison of mean MTE-based microbial
metabolic rate predictions from this study with exper-
imental measurements from marine systems1–5. Rates of

photosynthesis were converted from units of gross carbon

production (Pg) to units of power (W) using 39,444 J g21 C, the

standard free energy change from the synthesis of glucose from

CO2 and H2O during photosynthesis at STP6. For conversion

between rates of oxygen consumption or production in volume or

mass units, we assumed that 1 ml O2 per second = 1.43 mg O2 per

second24. To convert between units of power (W) and rates of

respiration we assumed that 1W = 0.05 ml O2 per second24.

Metabolic rates in W per 10 m3 were derived after calculating

total daily energy use: Pg (from sunrise to sunset) + Respiration

(over a 24 hour period). In studies where only dark incubation

experiments were performed, total daily energy use was calculated

assuming Pg/R24 hrs = 1. When two measurements are listed for

the same sample and conditions, they indicate high and low values.

B = predicted basal metabolic rate; A = predicted active metabolic

rate.

(XLSX)

Table S2 Summary table showing the number of REA
sites where microbial or fish data (belt transect method
only) was collected, time period of sampling, and
standard error for biomass and abundance of the fish
and microbial communities at each island.

(XLS)

Table S3 Summary table for Figure S1. The importance of

each component and the contribution (loadings) of each variable is

shown. MS = microbialization score; CCA = % crustose coralline

algae cover; DZ = % coral disease prevalence; CO = % coral

cover; CH = % coral with other indications of compromised

health.

(XLS)
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