14.32 Methods of Computation14.34 Software

§14.33 Tables

  • Abramowitz and Stegun (1964, Chapter 8) tabulates \mathop{\mathsf{P}_{{n}}\/}\nolimits\!\left(x\right) for n=0(1)3,9,10, x=0(.01)1, 5–8D; {\mathop{\mathsf{P}_{{n}}\/}\nolimits^{{\prime}}}\!\left(x\right) for n=1(1)4,9,10, x=0(.01)1, 5–7D; \mathop{\mathsf{Q}_{{n}}\/}\nolimits\!\left(x\right) and {\mathop{\mathsf{Q}_{{n}}\/}\nolimits^{{\prime}}}\!\left(x\right) for n=0(1)3,9,10, x=0(.01)1, 6–8D; \mathop{P_{{n}}\/}\nolimits\!\left(x\right) and {\mathop{P_{{n}}\/}\nolimits^{{\prime}}}\!\left(x\right) for n=0(1)5,9,10, x=1(.2)10, 6S; \mathop{Q_{{n}}\/}\nolimits\!\left(x\right) and {\mathop{Q_{{n}}\/}\nolimits^{{\prime}}}\!\left(x\right) for n=0(1)3,9,10, x=1(.2)10, 6S. (Here primes denote derivatives with respect to x.)

  • Zhang and Jin (1996, Chapter 4) tabulates \mathop{\mathsf{P}_{{n}}\/}\nolimits\!\left(x\right) for n=2(1)5,10, x=0(.1)1, 7D; \mathop{\mathsf{P}_{{n}}\/}\nolimits\!\left(\mathop{\cos\/}\nolimits\theta\right) for n=1(1)4,10, \theta=0(5^{{\circ}})90^{{\circ}}, 8D; \mathop{\mathsf{Q}_{{n}}\/}\nolimits\!\left(x\right) for n=0(1)2,10, x=0(.1)0.9, 8S; \mathop{\mathsf{Q}_{{n}}\/}\nolimits\!\left(\mathop{\cos\/}\nolimits\theta\right) for n=0(1)3,10, \theta=0(5^{{\circ}})90^{{\circ}}, 8D; \mathop{\mathsf{P}^{{m}}_{{n}}\/}\nolimits\!\left(x\right) for m=1(1)4, n-m=0(1)2, n=10, x=0,0.5, 8S; \mathop{\mathsf{Q}^{{m}}_{{n}}\/}\nolimits\!\left(x\right) for m=1(1)4, n=0(1)2,10, 8S; \mathop{\mathsf{P}^{{m}}_{{\nu}}\/}\nolimits\!\left(\mathop{\cos\/}\nolimits\theta\right) for m=0(1)3, \nu=0(.25)5, \theta=0(15^{{\circ}})90^{{\circ}}, 5D; \mathop{P_{{n}}\/}\nolimits\!\left(x\right) for n=2(1)5,10, x=1(1)10, 7S; \mathop{Q_{{n}}\/}\nolimits\!\left(x\right) for n=0(1)2,10, x=2(1)10, 8S. Corresponding values of the derivative of each function are also included, as are 6D values of the first 5 \nu-zeros of \mathop{\mathsf{P}^{{m}}_{{\nu}}\/}\nolimits\!\left(\mathop{\cos\/}\nolimits\theta\right) and of its derivative for m=0(1)4, \theta=10^{{\circ}},30^{{\circ}},150^{{\circ}}.

  • Belousov (1962) tabulates \mathop{\mathsf{P}^{{m}}_{{n}}\/}\nolimits\!\left(\mathop{\cos\/}\nolimits\theta\right) (normalized) for m=0(1)36, n-m=0(1)56, \theta=0(2.5^{{\circ}})90^{{\circ}}, 6D.

  • Žurina and Karmazina (1964, 1965) tabulate the conical functions \mathop{\mathsf{P}_{{-\frac{1}{2}+i\tau}}\/}\nolimits\!\left(x\right) for \tau=0(.01)50, x=-0.9(.1)0.9, 7S; \mathop{P_{{-\frac{1}{2}+i\tau}}\/}\nolimits\!\left(x\right) for \tau=0(.01)50, x=1.1(.1)2(.2)5(.5)10(10)60, 7D. Auxiliary tables are included to facilitate computation for larger values of \tau when -1<x<1.

  • Žurina and Karmazina (1963) tabulates the conical functions \mathop{\mathsf{P}^{{1}}_{{-\frac{1}{2}+i\tau}}\/}\nolimits\!\left(x\right) for \tau=0(.01)25, x=-0.9(.1)0.9, 7S; \mathop{P^{{1}}_{{-\frac{1}{2}+i\tau}}\/}\nolimits\!\left(x\right) for \tau=0(.01)25, x=1.1(.1)2(.2)5(.5)10(10)60, 7S. Auxiliary tables are included to assist computation for larger values of \tau when -1<x<1.

For tables prior to 1961 see Fletcher et al. (1962) and Lebedev and Fedorova (1960).