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Closure Studies in Arctic Mixed-phase Stratocumulus:
How Do Aerosols Control Cloud Ice Formation?

Ann Fridlind and Andrew Ackerman, NASA GISS

Science Question

Arctic clouds contain ice crystals that form on unique
aerosol referred to as ice nuclei (IN).
Does the IN aerosol account for observed ice?

Findings from Three ARM Field Campaigns

* M-PACE (autumn, cold-air outbreak with drizzle and
riming): No. IN concentration more than 10 times
higher than observed required to reproduce observed
ice, a finding subsequently reproduced by other
groups. Novel formation mechanisms or surface IN
source needed to explain observations. Publications:
Fridlind et al. (JGR, 2007), van Diedenhoven et al. (JGR,
2009), Klein et al. (QJRMS, 2009).

* SHEBA (springtime over ice pack, with few
microphysical processes active): No. Again more than
10 times observed IN concentration required to
account for observed ice. Simple mixed-layer model
explains why IN concentrations above cloud layer
exceed ice number concentrations by factor of ~100.
Publications: Fridlind et al. (under review, JAS, 2011),
Morrison et al. (JAMES, 2011), van Diedenhoven et al.
(JAMC, in press).
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Figure: MMCR reflectivity and Doppler velocities and X-band reflectivities
below cloud for ISDAC case: observed (shaded), model results (solid), and

using in-situ size distributions (dotted) for simulations with high-density

(top panels) and low-density (bottom) ice

* ISDAC (springtime over open ocean, aggregation of

dendrites active): Maybe! With slow-falling crystal habit, IN

concentration measured above cloud layer exceeds ice

concentration. If there is an IN reservoir below or more IN
under liquid supersaturated conditions (as may happen),

agreement with measurements indicates that closure could

be possible in some circumstances. Publications: Avramov et

al. (under review, JGR, 2011), Botta et al. (JGR, in press).



ASR Raman Lidar and HSRL Measurements of Aerosol and
ﬁ*’; Atmospheric Water Vapor Variability
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Science Questions [ ———————
* How do aerosol optical and physical properties vary near i W

=3

clouds? E'-w—
* How are these variations related to changes in relative g 2
humidity? R
* How well can we use lidar to measure or infer these & | optcn) ickness
variations? 0| — extinctonbackscatier rato Airborne HSRL
o devendence G088 0|
Approach PN ance rom Cloud (m)
20 . . . .
SGP Raman lidar aerosol and water vapor - [ Relative humidity
measurements and NASA Langley Research Center & or
airborne High Spectral Resolution Lidar (HSRL) %
measurements acquired during the CHAPS and RACORO 2 _2of Aerosol backscatter
campaigns are used to investigate aerosol ;
hygroscopicity and variations in aerosol properties near % _sof
clouds in the daytime boundary layer. [
—s0l : . . . ,
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distance from cloud (km)

Key Accomplishments

* SGP Raman measured increased relative humidity (5-10%) near clouds

e Raman lidar and HSRL measured increased aerosol backscatter (20-40%) and aerosol optical depth (5-10%) near clouds

* HSRL measured decreased aerosol depolarization near clouds (10-20%) indicating that aerosols become more spherical
with higher RH near clouds

* Variations in aerosol properties and RH are largest at or within about 200 m below cloud base



ASR An Investigation Into the Aerosol Semi-direct Effect at Barrow, AK
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Science Question

How does the aerosol semi-direct effect influence

atmospheric stability and cloud cover at Barrow, AK
during an episode of Arctic haze? How sensitive is the

atmosphere to variations in black carbon?

Approach

* WRF/Chem simulations of polluted conditions at
Barrow during the ISDAC field experiment.

* Compare polluted case with identical baseline
WRF/Chem run which does not include aerosol
direct or semi-direct effects (BASE).

* Sensitivity studies with WRF/Chem simulations
containing twice the black carbon concentration
(BC) and no black carbon (no BC).

Black carbon 850 mb potential
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Time series at Barrow, AK (April 19-21, 2008)
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Findings and Conclusions

The aerosol semi-direct effect increases stability and
dries the lower troposphere at Barrow, AK. The
atmosphere is particularly sensitive to the black carbon
concentration, which enhances tropospheric warming
substantially.

Publication

Lindeman, J. & Z. Boybeyi., 2011: An examination of
the aerosol semi-direct effect for a polluted case of
the ISDAC field campaign, J. Geo. Res., under review.
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Xiaohong Liu / Pacific Northwest National Laboratory

Science Question

Do simplified relations exist between aerosol

physical and chemical properties and the number

concentrations of ice nuclei (IN) for improving
global modeling of mixed phase clouds and
precipitation?

Approach

* Use large data base of IN measurements with
co-sampled aerosol data to parameterize IN
number concentration as a power law function
of aerosol concentration at sizes >0.5 mm and
temperature

* Use DOE ISDAC (Arctic) study data to test
robustness of parameterization

* Implement in global model simulations

Results

* Parameterization agrees with ISDAC IN data.
Need to incorporate chemical speciation of IN.

* Inclusion of aerosol size and T sensitivities
strongly impacts mixed phase cloud properties
and forcing in global simulations.

Publication

DeMott, P.J., A. J. Prenni, X. Liu, et al.,, 2010: Predicting
global atmospheric ice nuclei distributions and their
impacts on climate, Proc. Natnl. Acad. Sci., 107 (25),
11217-11222.

Predicted IN Conc. (L?)

New Understanding of IN Variability in the Atmosphere
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Strong Sensitivity to IN in Global model simulations

o
[=]

— CAM3(Meyers) b
— CAM3(this study)

oy
o o

[+1]
=]
T
'
(5]
o

b &
==
- .

& &
o

ha
o
'
-
o

Shortwave Cloud Forcing (W m™®)
& \
o

— CAM3(Meyers)
— CAM3(this study)

'
=2}
(=}

Total Cloud liquid Water Path (g m?)
-
S

[y =]

w
(=}
'
[i=]
Lo

-60 -30 0 30 60 90 -30 0 30 60 90
Latitude Latitude

w
o
o
o

Net globally-averaged cloud forcing decreases compared to a previous
aerosol-independent IN scheme. Reduced [IN] in regions with low
concentrations of large particles inhibits cloud liquid conversion to ice,
increasing high latitude cloud cover and reducing annual zonal mean
downwelling shortwave radiation at the surface.



o ASR Aerosol Microphysical Effects on Deep Convective Clouds
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) ) Results Solid line: weak wind shear
Science Question Dashed line: strong wind shear
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e Combined with the observations (in situ and Key Accomplishment

ground-based remote sensing data) e \ertical wind shear qualitatively determines whether

aerosols suppress or enhance convection. Increasing

Publication aerosols always suppresses convection under strong
Fan, J., T. Yuan, J. M. Comstock, S. Ghan, et al.(2009), Dominant role wind shear and invigorates convection under weak

by vertical wind shear in regulating aerosol effects on deep wind shear until this effect saturates at an optimal

convective clouds, J. Geophys. Res., 114, D22206, aerosol loading.

doi:10.1029/2009JD012352. e Dominant effect of CCN on anvil size and lifetime
Fan, J., J. M. Comstock, M. Ovchinnikov (2010), The cloud relative to IN; significant role of PBL CCN in anvil size

condensation nuclei and ice nuclei effects on tropical anvil and lifetime; anvil size is increased by CCN

characteristics and water vapor of the tropical tropopause layer,

Environ. Res. Lett., 5, 044005




ASR Aerosol Impacts on Clouds and Precipitation from a
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Atmospheric Research

Impact of aerosols on convection and radiative

Science Question heating from TWP-ICE simulations

What are the indirect effects of aerosols on deep e
convection and precipitation in a system of many saol
interacting clouds over multiday timescales, as : PRISTINE
opposed to the effects on a single cloud considered = i
in most previous studies? E 400}
L _ HIGHLY
Approach h o 600) POLLUTED
o
* Use a new microphysics scheme in a cloud BOO |
system-resolving model to investigate aerosol i [
impacts on clouds and precipitation in radiative- 1oaol J__ﬁ_f_ﬁf-"”'l”f - A
convective quasi-equilibrium. 0. c.‘:' 05 10 15 20 _4 20 o 4 : E. o
* Extend this work to a case based on observations Fraction of domain w/ Domain-mean radiative
from the TWP-ICE field experiment. convective updrafts (%) heating rate (K/day)
Publications
] Grabowski, W. W., and H. Morrison, 2011: Indirect impacts of
Key Accomplishment atmospheric aerosols in idealized simulations of radiative-
Feedback between convection and its convective quasi-equilibrium. Part 2: Double-moment

thermodynamic environment is critical and results microphysics. J. Climate, 24, 1897-1912.
in aerosol effects that differ dramatically when a
system of interacting clouds is considered, as
opposed to the process-level effects on a single
cloud.

Morrison, H., and W. W. Grabowski, 2011: Cloud system-
resolving model simulations of aerosol indirect effects on
tropical deep convection and its thermodynamic
environment. Atmos. Phys. Chem. Disc., 11, 15573-15629.



Polar Clouds Microphysics and Aerosols During ISDAC:

Aerosol Indirect Effects

There were 3 important results obtained using observations from ISDAC project

1) parameterizations:
i) extinction versus f(IWC;Ni);

ii) Ni versus f(Na*T) using aircraft observations

2 Extinction versus f(IWC;Ni)

10° 10 10
IWC.Ni[gm=>L")]

Color coded with
temperature {C)

0
— =10

=20
— =30

-40

LN

& 95" percantile per 20 km segrent
L d 5'I percentile per 20 km segment
. 85" & 5" percertilefits

= meanfor 3l 1 secdata

3. Aerosol properties during
polluted conditions
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Aerosol effects on cloud microphysics
can be due to aerosol composition
effects, variability, and extinction of
radiation. These effects include
multicomponents that are
summarized briefly here.

2.Aerosol composition and
vertical variability

50 25 0 Altitude (m-MSL)

r T T T T T T T
RH () 0 4 80 ‘ | —a—max5726
6000 /
min 5420
(a)
5000+ max 5094
- 707_7_*_’ —min4716
=
» 4000
E. max 4503
£
g 30007 e
£
=
< 2000 = - | =e=2000
— N,
i; N::zn = gusl_ée = gu:;a!es1
- ust_Ca ulf_org
1000 s |— RH, Pb M Sulf_org2
RH; | M Sea_Salt M Sulf_org3
T W Aged_SootM Org_sulf1
BB M Org_sulf2

Dj - — Gp
N, (cm'a} 0

BB_sulf M Organics

T T T T
200 400 600 800
g T T T T 1
o (Mm) g 20 40 60 80



Evaluating Forecasts of Central US Mesoscale Convectlve
i ASR :
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Systems in a GCM with Explicit Embedded Convection
System Research  gape Kooperman, Mike Pritchard, Richard Somerville / SIO, UCSD

Science Question

Pritchard et al. (2011) demonstrated that the Central US
organized nocturnal eastward propagating mode of
convection can be captured in a prototype GCM which
uses embedded cloud resolving models (CRM) instead of
statistical parameterizations to handle sub-grid
convection (superparameterization — SPCAM). But how
important is CRM orientation and therefore the direction
of shear organization for simulating these mesoscale
convective systems (MCS)? And how well do simulated
MCSs compare to observations?

Approach

* Develop a new technique to initialize both resolved
scales for forecast simulations (GCM and 2D CRM).

* Run SPCAM in forecast mode initialized just prior to an
MCS observed to pass over the ARM SGP site.

 Test sensitivity to zonal/meridional CRM orientation.

* Compare SPCAM to high value observations (ARM).

00 UTC 02 UTC 04UTC  06UTC

SPCAM
Zonal

SPCAM [
Meridional

CAM

June 13,2002 kg/m? 0 0.5 1 1.5

Key Accomplishments

The challenge of initializing the CRM domain for SPCAM
forecasts has been overcome. SPCAM is able to forecast a
mode of convection that CAM cannot in both CRM
orientations. SPCAM mis-positions the storm center
location and over simulates IWP.

Publication

Pritchard, M., et al., 2011: Orogenic propagating
precipitation systems over the US in a global climate model
with embedded explicit convection, Journal of Atmospheric
Science, in press.




Strongest Long-term Net Impact of Aerosols on Cloud & Precipitation is Revealed

by the ARM Data
Rainfall Frequency Cloud Thickness
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Rainfall frequency is reduced by aerosols for | | Cloud thickness/top increases with aerosol
low liquid water parth (LWP), but increased concentration for low cloud height (CBH),

for large LWP. but nil for high.

The Twomey Effect and Invigoration Effect are both at work !

Z. Li (University of Maryland)



The Deployment of the AMF in China Provides the
First-Ever Information on Cloud Vertical Structure
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Some Major Findings from the AMF Are Reported in the Following Articles

Li, Z., K.-H. Lee, J. Xin, Y. Wang, 2009, First observation-based estimates of aerosol radiative forcing at the top, bottom and inside of the atmosphere, J. Geophy. Res., revised.
Li, C., N. A. Krotkov, R. R. Dickerson, Z. Li, K. Yang, and M. Chin (2009), Transport and evolution of a pollution plume from northern China: A satellite-based case study, J. Geophys. Res.,
doi:10.1029/2009JD012245, in press.

Guo, Z., Z. Li, J. Farquhar, A. J. Kaufman, N. Wu, C. Li, R. R. Dickerson, and P. Wang (2009), Identification of Sources and Formation Processes of Atmospheric Sulfate by Sulfur Isotope and SEM

Measurements,
J. Geophys. Res., d0i:10.1029/2009JD012893, in press.

Lee, K. H., Z. Li, M.C. Cribb, J. Liu, L. Wang, Y. Zheng, X. Xia, H. Chen, and B. Li (2009), Aerosol optical depth measurements in Eastern China and a new calibration method, J. Geophys. Res., d
0i:10.1029/2009JD012812, 2009, in press.

Zhang, J. H. Chen, Z. Li, X. Fan, L. Peng, Y. Yu, M. Cribb, Analysis of cloud layer structure in Shouxian, China using RS92 radiosonde data, J. Geophys. Res. Submitted.

Z. Li (UMD)
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Observing Properties of Single-layer Arctic Stratocumulus
Leads to Largest International Cloud Model Intercomparison

Greg McFarquhar, Hans Verlinde, Ann Fridlind and Steve Klein

Science Question

What controls cloud microphysical properties in
persistent mixed-phase Arctic stratocumulus, and
how can these processes be represented in
models?

Approach

* Derive vertical profiles of cloud properties
observed by instrumented aircraft that flew > 100
ramped ascents/descents through clouds over
North Slope of Alaska

* Compare observed properties against those
modeled using varying ice formation mechanisms
to identify processes responsible for formation of
ice

e Simulate cloud properties with 26 different
models to determine which models & processes
give optimum representation of observed
microphysics

Observed Cloud Properties

:_water
1= T, TR
) Observed water
0.50 droplet and ice
) concentration Ni
NSO i as function of
normalized cloud
0.5 altitude used to
assess models
-1
10" 10" 10’

liquid water path (g m™®)

Modeled Cloud Properties

SCM CRM
O Single mom., T-dep. ]
O Single mom., non-T-dep. @ Single_column
300 ') < Double mom -
A Bin 4 model (SCM) and
e cloud-resolving
200 model (CRM) Ni
* » & predictions vary by
150 - i
” A over five orders of
100 O magnitude under
50 - & P these common
m A S Arctic conditions.

Observed values

0.001 0.01 04 1 10 100 1000 indicated by A.

ice crystal number concentration (L)
Comparison suggests models with more sophisticated microphysics (bin-
resolved) better match aircraft observed properties. Because of scatter,
limitations of using 1 case study, and uncertainties in data, similar

comparisons now being conducted using more comprehensive aircraft
observations obtained in ASR 2008 Arctic cloud experiment.

Key Accomplishment

Synergy of ASR field observations and models shows advances in cloud
microphysics schemes are necessary for modeling observed cloud
properties; understanding of mechanisms responsible for ice in Arctic
clouds will benefit representation of such processes in climate models.

Publications

Verlinde et al. (BAMS, 2007), McFarquhar et al. (JGR, 2007), Fridlind et al.
(JGR, 2007), Klein et al. (QJRMS, 2009)
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ASR Effect of Marine Organic Aerosol on Regional and Global Climate
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Science Question Effect of marine organic aerosol on CAM5 predictions
How do uncertainties in the emission rate and Annual average percentage Change in shortwave cloud
chemical composition of marine aerosol affect g&hange in surface CCN (5= 0.2%)  forcing (W m)

20 Global 3 9 Ocean

model-predicted extent of human-induced

. 60N /‘) Average = -0.1 W m2 Average = -0.3 W m2
climate change? 1
30N
Approach 0
* Develop wind speed dependent size-resolved 308
parameterization for the organic mass fraction of 60S

sea spray aerosol 908

0 60E 120E 180 120W 60W 0
Key Accomplishments

* Develop parameterization for marine secondary
organic aerosol production

« Implement marine organic aerosol source Marine organic aerosol provide globally significant source of

functions into CAM5 model and evaluate using in organics in the atmosphere with considerable cloud radiative
situ and remotely sensed data forcing and climatic effects.
* Conduct model simulations using present day and A special Issue was published on Marine Aerosol-Cloud-Climate
preindustrial emissions Interaction (http://www.hindawi.com/journals/amet/2010/si.1/)
Annual average submicron marine Selected publications
prima ry organic aerosol emission rate Meskhidze, N., et al. (2011), Global distribution and climate forcing of marine organic

aerosol — Part 1: Model improvements and evaluation, Atmos. Chem. Phys. Discuss., 11,
18853-18899.

Gantt, B. et al. (2011), Wind speed dependent size-resolved parameterization for the
organic enrichment of sea spray, Atmos. Chem. Phys. Discuss., 11, 10525-10555.

Meskhidze N. and A. Nenes (2010), Effects of ocean ecosystem on marine aerosol-cloud
interactions, Advances in Meteorology, Article ID 239808.

Gantt, B., et al. (2010), The impact of marine organics on the air quality of the western
United States, Atmos. Chem. Phys., 10, 1-9.

Gantt, B., et al. (2010), The effect of marine isoprene emissions on secondary organic
aerosol and ozone formation in the coastal United States, Atmos. Environ,. 44, 115-121.
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Ice Nucleation Processes and the Life Cycle of Cirrus Clouds
David L. Mitchell and Subhashree Mishra / Desert Research Institute

Science Question

Results (continued)
Onset of homogeneous freezing is ~ - 38°C. The mean size
distribution area ratio is a measure of ice particle shape.

Does homogeneous freezing nucleation dominate
ice production in mid-latitude synoptic cirrus Lo
clouds? so09f
Approach gost
Process and analyze in situ measurements g o
obtained during the SPARTICUS field campaign, £ o :
where the problem of ice particle shattering was os b
greatly reduced. Use new probes and methods o _

—70

to reveal changes in nucleation rate and ice
particle morphology.
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Key Accomplishment

Homogeneous nucleation appears to strongly affect
the size distribution shape, number concentration,
ice particle shape and life cycle (i.e. fall speed) of
synoptic cirrus clouds.

Publication

Mitchell, D. L., S. Mishra and R. P. Lawson, 2011: Cirrus
clouds and climate engineering: New findings on ice
nucleation and theoretical basis. In: Global Warming,
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Modeling Aerosol Growth By Aqueous Chemistry

Mikhail Ovchinnikov and Richard Easter / Pacific Northwest National Laboratory

Science Question

How does chemistry inside cloud droplets
affect aerosol size distributions?

Approach

* Develop a novel model that tracks aerosol
particles inside cloud droplets.

* Simulate aerosol processing by stratiform
clouds

e Evaluate assumptions used in global models to
relate aerosol size to cloud droplet size.

Key Accomplishment

Explicit simulations of aerosol
transformations inside cloud droplets
suggest corrections are needed to the
aqueous chemistry treatment in global
models.

Publications

Schematic of aerosol and droplet spectrum evolution

in a rising cloud parcel
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Ovchinnikov, M. and R. C. Easter, 2010: Modeling aerosol growth by aqueous chemistry in a non-precipitating
stratiform cloud. J. Geophys. Res., 115,D14210, d0i:10.1029/2009]D012816.

Ovtchinnikov, M. and R. C. Easter, 2009: Nonlinear advection algorithms applied to interrelated tracers: Errors and
implications for modeling aerosol-cloud interactions. Mon. Wea. Rev., 137, 632-644, d0i:10.1175/2008MWR2626.1



Quantifying the Contribution of Organic Aerosol to
Cloud Condensation Nucleus Activity
Paul Ziemann, Sonia Kreidenweis, Markus Petters

Science questions Approach

* How efficiently does secondary organic aerosol
promote cloud droplet activation?

* How do molecular size and functional group
composition influence CCN properties?

* Generate model organic aerosol inside an
environmental chamber.

* Measure the CCN activity of the combined (online) or
separated products (offline) using high performance

liquid chromatography.

Key Accomplishment

Quantified links between the chemical mechanism
forming the SOA and the measured effect on CCN

activity activity.

Changes in the hygroscopicity distribution as result of
modifying the chemical reaction leading to its formation

1-decene + O, n—decane + Cl

If the reaction
proceeds at high RH,
smaller more oxidized
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over less oxidized | |
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* Find relationships between organic aerosol
physicochemical properties and the hygroscopicity
parameter K, which describes the chemical
contribution of a particle towards modeling its CCN

Publications

Suda et al., 2011: Hygroscopicity distribution of
secondary organic aerosol, in preparation for
Atmos Chem Phys.

Petters et al., 2009: Role of molecular size in cloud
droplet formation, Geophys Res Lett, 36, L22801,
doi:10.1029/2009GL040131.

Prenni et al. 2007, Cloud droplet activation of
secondary organic aerosol, J Geophys Res, 112,
D10223, doi:10.1029/2006JD007963.

Petters et al., 2006: Chemical aging and the
hydrophobic-to-hydrophilic conversion of
carbonaceous aerosol, Geophys Res Lett, 33,
L24806, doi:10.1029/2006GL027249.
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Seoung Soo Lee and Graham Feingold/ Earth System Research

Laboratory

Precipitating Cloud-System Response to Aerosol Perturbations

Cumulative precipitation (a) and (b) for convective and stratiform clouds

Goals

Explore precipitation and its interactions with
aerosol in a mesoscale cloud ensemble (MCE)
driven by deep convection

Approach

* Simulate an observed MCE of deep convection

during TWP-ICE campaign over a tropical
region

* The GCE model coupled with a two-moment
microphysics is used on 256 km x 20 km
domain

* Low-aerosol run (clean case) and high-aerosol
run (polluted case) are performed to examine
aerosol effects on clouds.
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Keyv Accomplishment

A 10-fold difference in aerosol concentration results in
very small 9% difference in precipitation between the
two runs due to compensation or buffering among
cloud types and microphysics processes.

Publication

Lee, S. S., and Feingold, G.: Precipitating cloud-system

response to aerosol perturbations, Geophys. Res. Lett., 37,

L23806, d0i:10.1029/2010GL045596, 2010.
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ASR Multi-scale Modeling of Aerosol Impacts on Clouds and Precipitation

miﬁ? Atmospheric Minghuai Wang, Richard Easter, Mikhail Ovchinnikov, Steven Ghan

System Research

Science Question

How do interactions between aerosols and clouds
across scales from km to global influence
precipitation and the global energy balance?

Approach

* Couple a cloud model with a global aerosol
model

* Evaluate using in situ and remote sensing data

e Compare simulations using present day and
preindustrial emissions
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Key Accomplishment

The first multi-scale estimate of cloud-aerosol
interactions suggests weaker aerosol effects on clouds
and precipitation than previous estimates with global
models.

Publication

Wang, M., et al., 2011: Aerosol indirect effects in a multi-scale
aerosol-climate model PNNL-MMF, Atmos. Chem. & Phys.,
11, 5431-5455, doi:10.5194/acp-11-5431-2011.



Quantifying the Indirect Effect of Ice Nuclei on Radiative Forcing in the
Tropics and Mid-latitudes

Xiping Zeng, Wei-Kuo Tao / NASA Goddard Space Flight Center

Science Question

Is there a class of aerosols that can contribute
positively to global warming? If yes, can its effect be
quantified using ARM observations?

Approach
Ice nuclei (IN), which compose a small part of the 108

aerosol particles (at a temperature of -15°C), can
impact clouds via super-cooled droplets that, in turn,
affect radiation and climate. Under the constraint of
the ARM observations as well as others (see Fig. 1 for
campaign locations), the Goddard cloud-resolving
model was used to quantify the indirect effect of ice
nuclei on radiative forcing in the Tropics and middle
latitudes, heading to an IN effect versus latitude (Fig.
2).

FIELD CAMPAIGNS

Fig. 1 Location of the field campaigns that provided data to drive and
evaluate cloud-resolving model simulations.
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Fig. 2 The increase in the radiative forcing when IN concentrations are doubled
varies with latitude. All the results obtained over the field campaigns are marked
by symbols. Thick and thin solid lines are introduced to fit the results in spring and
summer, respectively, based on ten-year TRMM observations. The dash line
represents an increase in the radiative forcing when CO, concentration increases
from zero to the current value.

Key Accomplishment

The indirect effect of doubling IN, as shown in Fig. 2,
becomes stronger at higher latitude and is larger than that
from doubling CO,, which offers a new candidate for global
warming.

Publication

Zeng, X., W.-K. Tao, M. Zhang, A. Y. Hou, S. Xie, S. Lang, X.
Li, D. Starr, and X. Li, 2009: A contribution by ice nuclei to
global warming. Quart. J. Roy. Meteor. Soc., 135, 1614-1629.

Award
Best Paper awarded by the Laboratory for Atmospheres at
NASA Goddard Space Flight Center in 2010.
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Science Question Simulated and observed clouds during M-PACE

Observed Clouds CAM3 Clouds
How do ice nucleation and ice crystal growth

influence mixed-phase cloud properties,
and radiative balance?
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Approach

* Implement an ice nucleation
parameterization (Liu et al. 2007) in CAM3

* Implement a new treatment of deposition
growth of ice crystals in clouds

Pressure (hpa)
Pressure (hpa)
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CAMB3LIU Clouds

e Evaluate CAM simulations under the single
column mode and CAPT testbed with ARM M-
PACE observations
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Key Accomplishment
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Publications

Liu, X., S. Xie, and S. J. Ghan (2007) Evaluation of a new mixed-Phase cloud microphysics parameterization with the NCAR single column
climate model (SCAM) and ARM M-PACE observations. Geophysical Research Letter, 34, L23712, doi:10.1029/2007GL031446.

Xie, S., J. Boyle, S. A. Klein, X. Liu and S. Ghan (2008) Simulations of Arctic Mixed-Phase Clouds in Forecasts with CAM3 and AM2 for M-PACE.
Journal of Geophysical Research, 113, D04211, doi:10.1029/2007JD009225.
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Changes of Aerosol Properties in Cumulus Humilis

Xiao-Ying Yu/ Pacific Northwest National Laboratory

Science Questions

What is the difference between interstitial aerosol and
activated CCNs? What mechanisms may contribute to

the observations?
Approach

* Analyzed AMS data downstream of the isokinetic

inlet (interstitial particles) and the counter-flow
virtual impactor (activated CCN residues)

* |dentified differences in size-resolved compositions
between background particles and CCNs at different
altitudes and pollutant transport scenarios

Left: Three parallel flight tracks in the
vicinity of Oklahoma City; Right:
Temporal profiles of activated CCN
residues.
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Key Accomplishment

The first in situ observations of size-resolved interstitial and
activated CCN residues in cumulus humilis reveal that clouds
play an important role in processing aerosols and changing
aerosol properties (composition, size distribution, and the
ability to act as CCNs).

Publication

Yu, X.-Y. et al., 2011: Enriched nitrate, ammonium, and
organics in cloud condensation nuclei residues in
continental cumulus humilis, Geophys. Res. Lett., to be
submitted, 2011
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Zhien Wang/ University of Wyoming

Ice Generation and Growth in Arctic Mixed-phase Clouds

Science Question

What controls ice generation and growth in arctic
mixed-phase clouds and how do mixed-phase
cloud properties impact the surface radiation
budget ?

Approach

* Advanced multi-sensor retrieval algorithm
development

* Long-term ARM data analyses

* Synergy model sensitivity studies with
observational results

1.0
--
- . !"L.l"."
— U.S B ;.' ‘-- w T N
s . ==
& - -
5 06 - Winter
% “ Spring
— 0.4} e .
a~ Fall
.ulu
U-2 1 1 1 1 1
=25 20 -15 -10 -5 O

Cloud top temperature ["C]

Long-term data show that the spring season has distinct ice-
liqguid mass partition in arctic mixed-phase clouds.
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Key Accomplishment

Identified a strong seasonal dust impact on ice
generation in arctic mixed-phase clouds, provided
strong observational evidence for significant aerosol
glaciation effects on arctic mixed-phase clouds.

Publication

Zhao, M., et al., 2011: The arctic clouds from model

100

simulations and long-term observations at Barrow Alaska,

PhD Dissertation, University of Wyoming .
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