Untangling
 the Direct and Indirect Effects of Body Mass Dynamics on Earnings

Donna B. Gilleskie, Univ of North Carolina
Euna Han, Univ of Illinois at Chicago
Edward C. Norton, Univ of Michigan

October 20, 2010
Veteran's Administration Cyber Seminar

Body Mass of Females as we Age

(same individuals followed over time)

Flow of presentation

1. A closer look at body mass
2. Our model of behaviors over time that relate to body mass evolution and observed wages
3. A description of the data we use to understand the relationship between body mass and wages
4. Unobserved individual heterogeneity
5. Conditional Density Estimation
6. Preliminary results and discussion

Description of Average Body Mass by Age

(using repeated cross sections from NHIS data)

Mean BMI by age: black females

BMI categories by age: white female

BMI categories by age: black female

Source: DiNardo, Garlick, Stange (2010 working paper)

Empirical Distribution of the Body Mass Index

[^0]-The distribution of BMI
(among the US adult female population) is changing over time.
-The mean and median have increased significantly.
-The right tail has thickened (larger percent obese).

Trends in Body Mass over time

Overweight and obesity

Obesity Trends* Among U.S. Adults BRFSS, 1990, 1999, 2008

(*BMI ≥ 30, or about 30 lbs. overweight for 5'4" person)

\square No Data	$\square<10 \%$	$\square 10 \%-14 \%$	$\square 15 \%-19 \%$	$\square 20 \%-24 \%$	$\square 25 \%-29 \%$	$\square \geq 30 \%$

Body Mass Index

$$
\mathrm{BMI}=\frac{\text { weight }(\mathrm{kg})}{\text { height }^{2}\left(\mathrm{~m}^{2}\right)} \quad \mathrm{BMI}=\frac{\text { weight }(\mathrm{lb}) \times 703}{\text { height }^{2}\left(\mathrm{in}^{2}\right)}
$$

Calories in < Calories out

Calories in > Calories out

Caloric Intake: Caloric Expenditure:
food and drink requirement to sustain life and exercise

Advantages of the Body Mass Index

- A function of weight \& height; independent of age \& gender (among adults)
- A commonly used diagnostic tool to identify weight problems
(original proponents stressed its use in population studies and considered it inappropriate for individual diagnosis)
- A simple means for classifying (sedentary) individuals
- BMI < 18.5: underweight
- 18.5 to 25: ideal weight
- 25 to 30: overweight
- BMI 30+: obese
- Available in nationally representative data sets

Concerns with using the Body Mass Index

- A function of self-reported weight and height
- subjective measure, rounding issues, but can apply correction
- Does not fully capture, or capture correctly, adiposity
- may overestimate on those with more lean body mass (e.g. athletes)
- and underestimate on those with less lean body mass (e.g. the elderly)
- Other measures of "fatness"?
- percentage of body fat (skinfold, underwater weighing, fat-free mass index)
- measures that account for mass and volume location (body volume index)
- Does the functional relationship restrict measurement of the effect of body mass on wages?
- Should weight and height be included separately/flexibly?

Body Mass and Wages

- Evidence in the economic literature that wages of white women are negatively correlated with BMI.
- Evidence that wages of white men, white women, and black women are negatively correlated with body fat (and positively correlated with fat-free mass).
- Evidence of a height-related wage premium.

Potential Problems...

- Cross sectional data: we don't want a snapshot of what's going on, but rather we want to follow the same individuals over time.
- Endogenous body mass: to the extent that individual permanent unobserved characteristics as well as time-varying ones influence both BMI and wages, we want to measure unbiased effects.
- Confounders: BMI might affect other variables that also impact wages; hence we want to model all avenues through which BMI might explain differences in wages.

An analogous situation...

- We may want to understand the effect of body mass on medical care expenditures.
- Body mass and medical care expenditures both tend to rise with age...and perhaps both decrease at oldest ages.
- Medical care expenditures are observed only if an individual consumes medical care.
- Other endogenous factors affect medical care expenditures that may also be influenced by body mass.

Body Mass Index Distribution of same individuals in 1984 and 1999

Body Mass Index Distribution of same females in 1984 and 1999

$\stackrel{t-1}{\leftrightarrows}$
t
$t+1$

Model of behavior of individuals as they age

Data: National Longitudinal Survey of Youth (NLSY)

Year	Sample Size	Number of Attriters	Attrition Rate
1983	8,526	-	-
1984	8,526	241	2.82
1985	8,285	277	3.34
1986	8,008	320	3.99
1987	7,688	286	3.72
1988	7,402	169	2.28
1989	7,233	182	2.51
1990	7,051	145	2.05
1991	6,906	152	2.20
1992	6,754	107	1.58
1993	6,647	142	2.13
1994	6,505	267	4.10
1995	6,238	214	3.43
1996	6,024	212	3.51
1997	5,812	236	4.06
1998	5,576	122	2.18
1999	5,454	321	5.88
2000	5,133	86	1.67
2001	5,047	281	5.56
2002	4,766	-	-

Number of person-year observations: 125,055

Information entering period t (endogenous state variables)

\[

\]

Education history S_{t}

Enrolled in $t-1$	0.179	0.383	0.171	0.376
Years enrolled in school missing	0.017	0.129	0.012	0.108
Years enrolled in school entering t	13.679	2.293	13.834	2.413
No HS degree: yrs enrolled <12 entering t	0.039	0.194	0.029	0.164
HS degree: yrs enrolled ≥ 12 entering t	0.961	0.194	0.971	0.164
College degree: yrs enrolled ≥ 16 entering t	0.238	0.426	0.248	0.432
Freshmen year of college in t	0.014	0.117	0.014	0.117

Employment history E_{t}

Employed in $t-1$	0.906	0.291	0.816	0.388
Employed full time in $t-1$	0.761	0.426	0.572	0.495
Employed part time in $t-1$	0.145	0.352	0.244	0.430
Years employed entering t	10.567	5.795	9.648	5.649
Years full time employed entering t	7.869	5.812	5.948	5.251
Years part time employed entering t	2.699	2.305	3.700	2.868

Inform $\operatorname{\text {Intionenteringperiodt(endogenousstatevariables)}}$

$$
\begin{array}{ccc}
\Omega_{t}=\left(B_{t}, S_{t}, E_{t}, M_{t}, K_{t}, X_{t}, P_{t}\right) & \text { Male } & \text { Female } \\
\text { Variable name } & \text { Mean Std Dev } & \text { Mean Std Dev }
\end{array}
$$

Marital history M_{t}				
\quad Married in $t-1$	0.469	0.499	0.511	0.500
Years married entering t if married in $t-1$	3.392	4.965	3.930	5.334
Years newly single entering t if single in $t-1$	0.227	1.028	0.434	1.551
Child history K_{t}				
Number of children entering t				
Acquire any children in $t-1$	0.784	1.136	1.278	1.235
Lose any children in $t-1$	0.085	0.279	0.090	0.286
	0.025	0.156	0.022	0.146

Exogenous variables X_{t} : race, AFQT score, non-earned income, spouse income if married, ubanicity, region, and time trend

Exogenous price and supply side variables

| Variable name | Mean | Std Dev | Min | Max |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Schooling variables P_{t}^{s} | | | | |
| Two-year college semester tuition (hundreds) | 12.145 | 9.175 | 0.100 | 52.370 |
| Two-year college tuition missing indicator | 0.040 | 0.195 | 0 | 1 |
| Four-year college semester tuition (hundreds) | 19.928 | 10.751 | 2.480 | 71.540 |
| Four-year college tuition missing indicator | 0.035 | 0.183 | 0 | 1 |
| Graduate school semester tuition (hundreds) | 19.928 | 12.155 | 3.690 | 73.720 |
| Graduate school tuition missing indicator | 0.144 | 0.351 | 0 | 1 |
| Employment variables P_{t}^{e} | | | | |
| Total employment (100 thousands) | 6.052 | 4.679 | 0.260 | 19.660 |
| Manufacturing employment | 8.015 | 5.579 | 0.090 | 22.255 |
| Service employment | 17.854 | 15.327 | 0.538 | 68.753 |
| Total earnings (millions) | 237.404 | 204.472 | 7.681 | 947.313 |
| Manufacturing earnings | 43.282 | 33.204 | 0.336 | 155.744 |
| Service earnings | 62.909 | 62.327 | 1.117 | 308.139 |
| Employment data missing | 0.034 | 0.182 | 0 | 1 |

Exogenous price and supply side variables

Variable name

Mean Std Dev Min Max

Marriage and Children variables P_{t}^{m} and P_{t}^{k}				
Monthly AFDC payment (hundreds)	5.217	1.698	1.471	11.867
Monthly AFDC payment missing indicator	0.149	0.356	0	1
Child care funds (millions)	0.274	0.818	0.002	7.726
Child care funds missing indictor	0.490	0.500	0	1
Per capita income (thousands)	21.446	3.426	12.688	38.180
Total population (millions)	11.036	8.528	0.454	35.025

Exogenous price and supply side variables

Mean Std Dev Min Max

Consumption variables P_{t}^{b}

Mean price of food	1.596	0.299	1.052	3.212
Mean price of junkfood	3.987	0.564	2.356	6.601
Mean price of cigarettes	16.842	7.919	2.382	51.853
Mean price of beer	4.037	1.155	1.478	9.076
Mean price of wine	5.437	0.940	3.362	8.300
Mean price of liquor	9.039	1.692	2.302	13.994
Retail sales in food stores (millions)	20.28	15.977	0.808	59.957
Retail sales in restaurants (millions)	11.347	9.458	0.416	42.428
Cost of living	1.097	0.212	0.729	2.355
Price index	1.386	0.237	1.02	1.852
Food prices and sales data missing	0.034	0.182	0	1

Decision/Outcome	Estimator	Explanatory Variables		
		Endogenous	Exogenous	Unobs'd Het
Initially observed state variables	$\begin{gathered} 2 \text { logit } \\ 7 \text { ols } \end{gathered}$		$\mathrm{X}_{1}, \mathrm{P}_{1}, \mathrm{Z}_{1}$	$\rho^{\prime} \mu$
Enrolled	logit	$B_{t}, S_{t}, E_{t}, M_{t}, K_{t}$	$\mathrm{X}_{\mathrm{t}}, \mathrm{P}_{\mathrm{t}}^{\mathrm{s}}, \underset{\mathrm{pb}}{ }, \mathrm{P}_{\mathrm{t}}^{\mathrm{p}}, \mathrm{P}_{\mathrm{t}}, \mathrm{P}_{\mathrm{t}}^{\mathrm{k}}$	$\rho^{s} \mu, \omega^{s} v_{t}$
Employed	mlogit	$B_{t}, S_{t}, E_{t}, M_{t}, K_{t}$	$\mathrm{X}_{\mathrm{t}}, \mathrm{P}_{\mathrm{t}}^{\mathrm{s}}, \underset{\mathrm{p}^{\mathrm{b}}}{\mathrm{P}_{t}^{e}, \mathrm{P}_{\mathrm{t}}, \mathrm{P}_{\mathrm{t}}^{\mathrm{k}}}$	$\rho^{\mathrm{e}} \mu, \omega^{\mathrm{e}} \mathrm{V}_{\mathrm{t}}$
Married	logit	$B_{t}, S_{t}, E_{t}, M_{t}, K_{t}$	$\mathrm{X}_{\mathrm{t}}, \mathrm{P}_{\mathrm{t}}^{\mathrm{s}}, \underset{\mathrm{pb}}{\mathrm{p}_{\mathrm{b}}^{e}} \mathrm{P}_{\mathrm{t}}^{\mathrm{m}}, \mathrm{P}_{\mathrm{t}}^{\mathrm{k}}$	$\rho^{m} \mu, \omega^{m} \nu_{t}$
Change in kids	mlogit	$B_{t}, S_{t}, E_{t}, M_{t}, K_{t}$		$\rho^{k} \mu, \omega^{k} v_{t}$
Wage not obs'd	logit	$B_{t}, S_{t}, E_{t}, M_{t}, K_{t}$	X_{t}	$\rho^{n} \mu, \omega^{n} v_{t}$
Wage if emp'd	CDE	$B_{t}, S_{t}, E_{t}, M_{t}, K_{t}$	$\mathrm{X}_{\mathrm{t}}, \mathrm{Pe}_{\mathrm{t}}$	$\rho^{\mathrm{w}} \mu, \omega^{\mathrm{w}} \nu_{t}$
Body Mass	CDE	$\begin{gathered} \mathrm{B}_{\mathrm{t}}, \mathrm{~S}_{\mathrm{t}+1}, \mathrm{E}_{\mathrm{t}+1}, \\ \mathrm{M}_{\mathrm{t}+1}, \mathrm{~K}_{\mathrm{t}+1} \end{gathered}$	$\mathrm{X}_{\mathrm{t}} \mathrm{Pb}^{\text {b }}$	$\rho^{\mathrm{b}} \mu, \omega^{\mathrm{b}} v_{t}$
Attrition	logit	$\begin{gathered} \mathrm{B}_{\mathrm{t}+1}, \mathrm{~S}_{\mathrm{t}+1}, \mathrm{E}_{\mathrm{t}+1}, \\ M_{\mathrm{t}+1}, \end{gathered}$	X_{t}	$\rho^{\mathrm{a}} \mu, \omega^{\mathrm{a}} v_{t}$

What do hourly wages look like among the employed?

... and In(wages)?

Empirical Model of Wages

productivity $\longrightarrow+\eta_{4} B_{t}+\eta_{5} M_{t}+\eta_{6} K_{t}$
$\underset{\substack{\text { exogenous determinants } \\ \text { and changes in skill prices }}}{\longrightarrow}+\eta_{7} X_{t}+\eta_{8} \mathrm{P}_{\mathrm{t}}^{\mathrm{e}}+\eta_{9} \mathrm{t}$
unobserved permanent and time varying heterogeneity
$+\rho^{\mathrm{W}} \mu+\omega^{\mathrm{W}} \nu_{\mathrm{t}}+\varepsilon_{\mathrm{t}}^{\mathrm{W}}$

Unobserved Heterogeneity Specification

- Permanent: rate of time preference, genetics
- Time-varying: unmodeled stressors

$$
u_{t}^{\mathrm{e}}=\rho^{\mathrm{e}} \mu+\omega^{\mathrm{e}} v_{\mathrm{t}}+\varepsilon_{\mathrm{t}}^{\mathrm{e}}
$$

where u_{t}^{e} is the unobserved component for equation e decomposed into

- permanent heterogeneity factor μ with factor loading ρ^{e}
- time-varying heterogeneity factor v_{t} with factor loading ω^{e}
- iid component ε_{t}^{e}
distributed $N\left(0, \sigma_{\mathrm{e}}^{2}\right)$ for continuous equations and
Extreme Value for dichotomous/polychotomous outcomes

Individual's optimal decisions

about schooling, employment, marriage, and child accumulation

$$
\begin{aligned}
& p\left(d_{t}^{\operatorname{sem} k}=1 \mid \Omega_{t}\right)=\frac{e^{\beta_{\operatorname{sem} k} \Omega_{t}}}{\sum_{(\operatorname{sem} k)^{\prime}} e^{\beta_{(\operatorname{sem} k)^{\prime}} \Omega_{t}}} \\
& s=0,1 \quad e=0,1,2 \quad m=0,1 \quad k=-1,0,1
\end{aligned}
$$

Theory suggests that these decisions are jointly made, hence the observed behaviors are modeled jointly.

Because of the number of combinations, we specify equations for each behavior but estimate them jointly (correlated by the permanent and time varying unobserved heterogeneity).

School Enrollment by Age and Gender

Employment by Age and Gender

Marital Status by Age and Gender

Child Attainment
by Age, Gender, Marital Status

Body Mass Transition

$$
B_{t+1}=b\left(B_{t}, C_{I t}^{*}, C_{E t}^{*}, X_{t}, \epsilon_{t}^{b}\right) \longleftarrow \quad \text { body mass }
$$

$\begin{aligned} B_{t+1}= & \eta_{0}+\eta_{1} B_{t} \\ & +\eta_{2} S_{t+1}+\eta_{4} E_{t+1}+\eta_{5} M_{t+1}+\eta_{6} K_{t+1}\end{aligned}$
$+\eta_{7} X_{t}+\eta_{8} P_{t}^{b}$
$+\rho^{\mathrm{b}} \mu+\omega^{\mathrm{b}} v_{\mathrm{t}}+\varepsilon_{\mathrm{t}}^{\mathrm{b}}$

	Under	Normal	Over	Obese
Female	3.95	55.75	22.77	17.53
Male	0.74	46.25	37.91	15.10

What does the distribution of body mass look like?

What does body mass look like as we age?

Distribution of Body Mass as Individuals Age, by Gender

What does body mass look like as we age?

Weight Gain by Age and Gender
(relative to weight at age 30)

How should we estimate wages?

- OLS ? : quantifies how variation in rhs variables explain variation in the lhs variable, on average.
- It explains how the mean W varies with Z.
- In estimation, we also recover the variance of W.
- The mean and variance of W define the distribution of wages (under the assumption of a normal density).

How should we estimate wages?

- So, using OLS, we can obtain the marginal effect of Z on W, on average.
- But what if Z has a different effect on W at different values of W?
- Might BMI have one effect on wages at low levels of the wage and a different effect on wages at higher levels of the wage?
- How can we capture that?

Might there be a more flexible way of modeling the density?

$$
\begin{aligned}
& p\left[w_{k-1} \leq W \leq w_{k} \mid Z\right]=\lambda(k, Z){ }_{j=1}^{k-1}[1-\lambda(j, Z)] \\
& E[\mu(W) \mid Z]=\sum_{k=1}^{K} W(k \mid K) \lambda(k, Z){ }_{j=1}^{k-1}[1-\lambda(j, Z)]
\end{aligned}
$$

Conditional Density Estimation

Replicate each observation K times and create an indicator of which cell an individual's wage falls into.
Interact Z's with α 's fully.
Estimate a logit equation (or hazard), $\lambda(k, Z)$.

$$
E[\mu(W) \mid Z]=\sum_{k=1}^{K} w(k \mid K) \lambda(k, Z){\underset{j=1}{k-1}[1-\lambda(j, Z)]}_{j=1}
$$

Replication of Literature: In(wages) of females

Variable	Model 1	
$\mathrm{BMI}_{\mathrm{t}}$	-0.008	(0.002)
$\mathrm{BMI}_{\mathrm{t}} \leq 18.5$	-0.047	(0.024) $* *$
$25 \leq \mathrm{BMI}_{\mathrm{t}}<30$	-0.022	(0.013) $*$
$\mathrm{BMI}_{\mathrm{t}} \geq 30$	$-\mathbf{0 . 0 4 9}$	(0.025) $* *$
$\mathrm{BMI}_{\mathrm{t}} \times$ Black	$\mathbf{0 . 0 0 6}$	(0.002) $* * *$
$\mathrm{BMI}_{\mathrm{t}} \times$ Hisp	0.002	(0.003)
$\mathrm{BMI}_{\mathrm{t}} \times$ Asian	0.001	(0.005)

Model $\quad X_{t}, B_{t}$

Includes:

Marginal
Effect of 5\%
0.122 white females 0.057 black females

Results re-transformed to levels, so changes are in cents.

Replication of Literature: In(wages) of females

Variable	Model 1		Model 2	
$B M I_{t}$	-0.008	$\underset{* * *}{(0.002)}$	-0.008	$\underset{* * *}{(0.002)}$
$\mathrm{BMI}_{\mathrm{t}} \leq 18.5$	-0.047	(0.024)	-0.029	(0.019)
$25 \leq \mathrm{BMI}_{\mathrm{t}}<30$	-0.022	$\underset{*}{(0.013)}$	-0.008	(0.012)
$\mathrm{BMI}_{\mathrm{t}} \geq 30$	-0.049	(0.025)	-0.010	(0.021)
BMI \times Black	0.006	(0.002)	0.004	(0.002)
$\mathrm{BMI}_{\mathrm{t}} \times$ Hisp	0.002	(0.003)	0.001	(0.003)
$\mathrm{BMI}_{\mathrm{t}} \times$ Asian	0.001	(0.005)	0.001	(0.004)
Model Includes:	X_{t}, B_{t}		$\begin{gathered} X_{t}, B_{t^{\prime}} \\ S_{t}, E_{t}, M_{t}, K_{t} \end{gathered}$	
Marginal Effect of 5\%	0.057		0.1	

Replication of Literature: In(wages) of females

Variable	Model 1		Model 2		Model 3	
BMI ${ }_{\text {t }}$	-0.008	$\underset{* *}{(0.002)}$	-0.008	(0.002)	-0.008	$\begin{aligned} & (0.00 \\ & * * * 2) \end{aligned}$
$\mathrm{BMI}_{\mathrm{t}} \leq 18.5$	-0.047	(0.024)	-0.029	(0.019)	-0.028	(0.019)
$25 \leq \mathrm{BMI}_{\mathrm{t}}<30$	-0.022	(0.013)	-0.008	(0.012)	-0.010	(0.012)
$\mathrm{BMI}_{\mathrm{t}} \geq 30$	-0.049	(0.025)	-0.010	(0.021)	-0.013	(0.021)
BMI \times Black	0.006	$(\underset{* * *}{(0.002)}$	0.004	(0.002)	0.004	$\underset{*}{(0.002)}$
$\mathrm{BMI}_{\mathrm{t}} \times$ Hisp	0.002	(0.003)	0.001	(0.003)	0.000	(0.003)
BMI ${ }_{\text {c }} \times$ Asian	0.001	(0.005)	0.001	(0.004)	0.002	(0.004)
Model Includes:	$\mathrm{X}_{\mathrm{t}}, \mathrm{B}_{\mathrm{t}}$		$\begin{gathered} X_{t}, B_{t} \\ S_{t}, E_{t}, M_{t}, K_{t} \end{gathered}$		$\begin{gathered} X_{t}, B_{t} \\ S_{t}, E_{t}, M_{t}, K_{t}, P e_{t} \end{gathered}$	
Marginal Effect of 5\%	0.122		0.102		0.099	

Replication of Literature: In(wages) of females

Variable	Model 1		Model 2		Model 3		Model 4	
BMI ${ }_{\text {t }}$	-0.008	$(\underset{* * *}{(0.002)}$	-0.008	$\underset{* *}{(0.002)}$	-0.008	$\begin{aligned} & (0.00 \\ & * * * 2) \end{aligned}$	-0.003	(0.002)
$\mathrm{BMI}_{\mathrm{t}} \leq 18.5$	-0.047	(0.024)	-0.029	(0.019)	-0.028	(0.019)	-0.046	${ }_{(0.014)}^{\text {*** }}$
$25 \leq \mathrm{BMI}_{\mathrm{t}}<30$	-0.022	(0.013)	-0.008	(0.012)	-0.010	(0.012)	0.008	(0.009)
$B M I_{t} \geq 30$	-0.049	(0.025)	-0.010	(0.021)	-0.013	(0.021)	-0.006	(0.015)
BMI ${ }_{\text {t }} \times$ Black	0.006	$(\underset{* *}{(0.002)}$	0.004	(0.002)	0.004	$\underset{*}{(0.002)}$	0.004	(0.003)
$\mathrm{BMI}_{\mathrm{t}} \times \mathrm{Hisp}$	0.002	(0.003)	0.001	(0.003)	0.000	(0.003)	0.004	(0.003)
BMI ${ }_{\text {t }} \times$ Asian	0.001	(0.005)	0.001	(0.004)	0.002	(0.004)	-0.003	(0.006)
Model Includes:	X_{t}, B_{t}		$\begin{gathered} X_{t}, B_{t^{\prime}} \\ S_{t}, E_{t}, M_{t}, K_{t} \end{gathered}$		$\begin{gathered} X_{t}, B_{t} \\ S_{t}, E_{t}, M_{t}, K_{t}, P_{t}^{e} \end{gathered}$		$\begin{gathered} X_{t}, B_{t} \\ S_{t}, E_{t}, M_{t}, K_{t}, P^{e} \\ \text { fixed effects } \end{gathered}$	
Marginal	0.122		0.102		0.099		0.034	
Effect of 5\% ,	0.057		0.062		0.063		-0.006	

BMI Specification: Single index with fixed effects

Source: NLSY79 data

Preliminary Results - quantile regression

Variable	$\begin{gathered} 25^{\text {th }} \\ \text { percentile } \end{gathered}$		$50^{\text {th }}$ percentile		$\begin{gathered} 75^{\text {th }} \\ \text { percentile } \end{gathered}$		
$\mathrm{BMI}_{\mathrm{t}}$	-0.053	(0.012)	-0.071	(0.010)	-0.102	(0.015)	
$\mathrm{BMI}_{\mathrm{t}} \leq 18.5$	-0.241	$\underset{* * *}{(0.083)}$	-0.232	(0.082)	-0.298	(0.124)	
$25 \leq \mathrm{BMI}_{\mathrm{t}}<30$	-0.173	$\underset{* *}{(0.085)}$	-0.117	(0.083)	-0.070	(0.109)	
$\mathrm{BMI}_{\mathrm{t}} \geq 30$	-0.281	(0.126)	-0.225	(0.110)	0.004	(0.170)	
$\mathrm{BMI}_{\mathrm{t}} \times$ Black	0.035	(0.008)	0.044	(0.009)	0.050	(0.013)	CDE Averages:
$\mathrm{BMI}_{\mathrm{t}} \times \mathrm{Hisp}$	0.021	$\underset{* *}{(0.011)}$	-0.001	(0.010)	-0.009	(0.018)	0.104 whites 0.064 blacks
$B M I_{t} \times$ Asian	-0.007	(0.023)	0.006	(0.022)	0.061	(0.024)	

Model	
Includes:	$S_{t}, E_{t}, M_{t}, K_{t}, P_{t}$

Marginal
Effect of 5\%

0.068	0.083	0.106
0.044	0.050	0.067

Quantile Reg Averages: 0.086 whites 0.054 blacks

Fit of preferred model

Outcome	Observed Average	Predicted Probability
Enrolled	15.88	15.89
Employment		
- full time	58.48	57.59
- part time	23.09	23.14
- not employed	18.44	19.27
Married	52.80	52.83
Children	88.96	
- no change	8.06	88.99
- acquire	2.44	8.61
- lose	25.68	2.40
BMI	10.71	25.64
Wage		10.32

Preliminary Results: preferred model Unobserved Heterogeneity Distribution

Time-varying

Simulated reduction in weight

Age	Predicted Wage By Age		Predicted Difference if BMI reduced 5\%		Age	Predicted Wage By Age		Predicted Difference if BMI reduced 5\%	
	White	Black	White	Black		White	Black	White	Black
19	6.38	5.84	0.000	-0.030	33	11.87	10.34	0.028	-0.006
20	6.78	5.97	-0.001	-0.032	34	12.09	10.59	0.028	-0.001
21	7.17	6.37	0.001	-0.035	35	12.15	10.83	0.036	-0.005
22	7.87	6.95	0.002	-0.034	36	12.64	11.02	0.036	0.011
23	8.59	7.47	0.005	-0.033	37	12.80	11.46	0.045	0.009
24	9.18	7.88	0.004	-0.035	38	13.14	11.78	0.043	0.018
25	9.65	8.25	0.008	-0.034	39	13.09	11.79	0.036	0.019
26	10.07	8.55	0.010	-0.033	40	13.69	12.39	0.045	0.024
27	10.45	8.91	0.012	-0.030	41	13.83	12.67	0.036	0.024
28	10.80	9.19	0.015	-0.025	42	14.17	12.95	0.051	0.020
29	11.14	9.45	0.018	-0.020	43	14.28	13.40	0.033	0.044
30	11.34	9.78	0.019	-0.019	44	14.17	14.03	0.050	0.016
31	11.58	10.09	0.021	-0.017	45	15.11	13.53	0.015	0.067
32	11.83	10.13	0.023	-0.005	Ave	10.96	9.57	0.020	-0.015

Preliminary Results: using preferred model

- No updating: simply compute the effect of a change in BMI given the values of one's observed RHS variables entering the period.
- Hence, this calculation provides only the direct effect of BMI on wages.
- We find that a 5% decrease in BMI leads to a small increase in wages for white females and a slight decrease in wages of black females.
- This simulation does not update state variables over time; hence no change in behaviors associated with the reduction in BMI.

Sources of differences from preliminary models

- Specification of BMI (more moments, interactions)
- Selection into employment
- Endogenous BMI
- Endogenous state variables (related to history of schooling, employment, marriage, and children)
- Random effects vs fixed effects
- Permanent and time-varying heterogeneity
- Modeling of effect of BMI on density of wages

Preliminary Conclusions

- Permanent and time-varying unobservables that influence BMI also affect wages (and therefore must be accounted for)
- In addition to its direct effect on wages, BMI has a significant effect on wages through particular endogenous channels: schooling, work experience, marital status, and number of children.
- Conditional density estimation results suggest that it is important to model the effect of BMI across the distribution of wages, not just the mean. (And to model the different effects of past decisions across the distribution of current BMI.)
- BMI appears to have only a very small statistically significant direct effect on women's wages (an effect that remains unexplained).

Additional Feedback ...

- The body mass index (BMI) specifies a particular relationship b / w weight and height
- In light of the positive height effect and conjectured "beauty" effect on wages, are the appropriate measures simply weight and height?
- How might we simulate a change in BMI or weight when updating?

Thank you!

- I look forward to further discussion.
- Please email me with any comments, questions, or suggestions:
donna_gilleskie@unc.edu

[^0]: 20052008 : Mean $=2 \mathrm{EB6}$, median $=27.8$, \% obese $=\%$

