

What Have We Learned From Economic Analyses of Prevention?

Louise B. Russell, PhD Health Economics Cyber Seminar VA Health Economics Resource Center January 19, 2011

The Prevention Agenda

"Healthy People 2010 is a comprehensive set of disease prevention and health promotion objectives for the Nation to achieve over the first decade of the new century. ... [It] identifies a wide range of public health priorities".

• In the health reform debate, prevention was promoted as a way to control medical costs.

History and Expectations

- Prevention has brought major gains in health and lifespan over the last two centuries.
- Today's leading causes of death heart disease, cancer, diabetes – can now be prevented or delayed.
- Prevention's appeal
 - Better to avoid disease/injury than repair it
 - Prevent the disease, prevent treatment costs
 - Expectation: Better health, lower medical spending
- But does it reduce medical spending?

Radio advertisement

- Man scheduled to undergo bypass surgery
- Cost of the surgery: \$50,000
- Wouldn't it be better to avoid surgery through prevention? By losing weight, quitting smoking, exercising, taking medications to reduce blood pressure and cholesterol?
- Better for health

GERS

• Cheaper for the medical system

But – prevention is more complicated

- Medical science can only identify those **at risk** of heart disease, a much larger group than those who will someday be candidates for bypass surgery.
- Prevention must be delivered to all people at risk, often repeatedly over many years, to prevent some from developing disease → costs mount up.
- Some develop disease anyway, since prevention is not 100% effective; some do not develop it even without prevention → all receive prevention, but not all experience savings.

Cost-effectiveness Analysis

First applied to health and medicine in the 1970s

Weinstein MC, WB Stason. *Hypertension: A Policy Perspective* (Cambridge MA: Harvard University Press, 1976).

- Blood pressure medication extends life and reduces treatment costs for heart disease and stroke
- But the accumulated costs of medication over many years are greater than the savings
- Prevention costs more than treatment

Is Prevention Better than Cure?

Russell LB. *Is Prevention better than Cure?* (Washington DC: Brookings, 1986).

- Examined vaccines, blood pressure medication, cancer screening, lifestyle change.
- Prevention usually adds to medical spending.

When is prevention worth the cost?

Outline of the rest of the talk

- How cost-effectiveness analysis (CEA) addresses the cost question
- Review of prevention CEAs
- Features that make prevention more, or less, cost-effective
- Patients' time, the forgotten cost

Three Types of Prevention

- **Primary** prevention prevents the disease from occurring, e.g., vaccines.
- Secondary prevention detects risk factors, or preclinical disease, and intervenes to prevent further development, e.g., antihypertensive medication, cancer screening.
- Tertiary prevention intervenes to prevent or moderate consequences of established disease, e.g., blindness from diabetes.
- Focus here: primary and secondary prevention

How CEA addresses the cost question

- CEA compares the costs and health outcomes of alternatives (example, next slide)
- Usually counts only medical sector costs
 - Could count other costs and the societal perspective does
 - But medical costs are the point at issue
- Difference in costs and health outcomes between 2 alternatives: *net* costs and *net* health effects
- **Cost-effectiveness ratio**: *net* cost divided by *net* health effect, e.g., net cost per year of healthy life saved

Annual Costs and Healthy Days per patient: Guided self-management vs. traditional asthma care, 1997\$

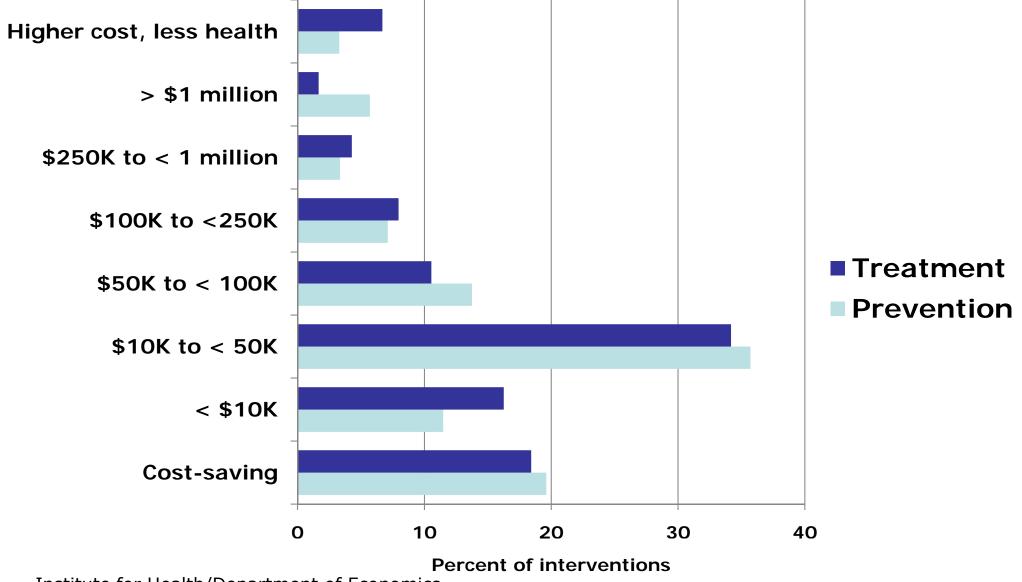
Lahdensuo A et al. British Medical Journal. 1998;316:1138-1139.

Costs/ Health effects	Self- management	Traditional	Difference
	manayement	nautional	
Counseling	348	179	169
Peak flow meter	32	0	32
Drugs	613	623	-10
Physician visits	47	80	-33
Hospital stays	33	52	-20
TOTAL COSTS	1074	935	138
HEALTHY DAYS	359.2	344.3	14.9
Cost-effectiveness ra			

Institute for Health/Department of Economics

Terminology

- An intervention is **cost-saving** if its net costs are negative. No cost-effectiveness ratio is calculated.
- An intervention is cost-effective if it costs more than the alternative but improves health and is judged to be good value for money.
- World Health Organization guideline
 - cost-effective: < 3 times per capita GDP
 (\$140,000 in the U.S.), for each year of life saved
 - very cost-effective: < GDP per capita (\$47,000)</pre>


Recent Review of Prevention CEAS

Cohen JT, PJ Neumann, MC Weinstein. *New England Journal of Medicine*. 2008;358:661-663.

- Tufts-New England Medical Center CEA Registry
- 599 CEA studies published in 2000-2005
- 279 prevention comparisons
- 1221 treatment comparisons
- Less than 20% of preventive interventions, and a similar share of treatment interventions, reduced medical spending.

Cost per healthy year of life saved

Institute for Health/Department of Economics

TGERS

What makes prevention more cost-effective?

- Component costs
- Risk profile of patients
- Frequency of intervention

Blood pressure medication

Weinstein, Stason. *Hypertension: A Policy Perspective*

• Medication is a better value for those whose blood pressure at diagnosis is higher.

Edelson JT et al. Long-term cost-effectiveness of various initial monotherapies for mild to moderate hypertension. *Journal of the American Medical Association.* 1990;263:407-413

- No medication is cost-saving
- Some are more cost-effective than others
- Diuretics, currently the first line of therapy, are among the most cost-effective.

Blood	pressure	medication	

Updated to 2007\$ in LB Russell, Prevention's Potential

Cost per life-year in people aged 35-64,	
without heart disease, 2007\$	

9,282
1

hydrochlorothiazide (diuretic) 44,057

nifedipine	(calcium	channel	blocker)	84,890
------------	----------	---------	----------	--------

prazosin hydrochloride (alpha blocker) 166,288

Institute for Health/Department of Economics

Statins to reduce cholesterol

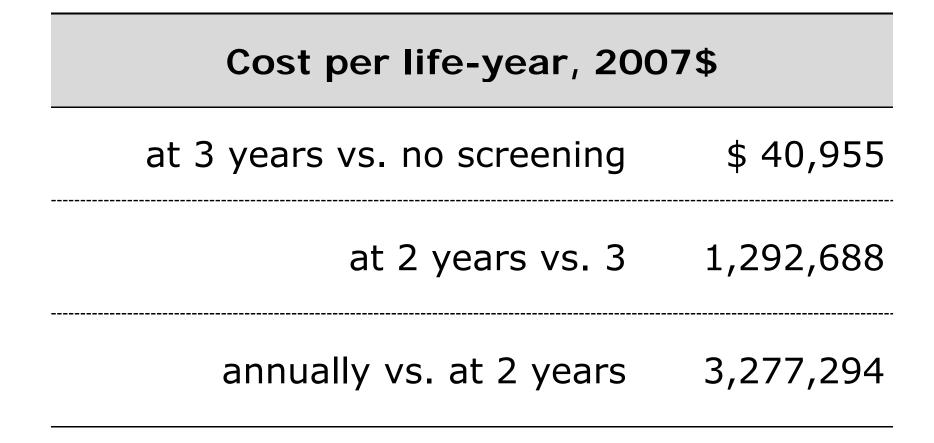
Prosser LA et al. Cost-effectiveness of cholesterol-lowering therapies according to selected patient characteristics. *Annals of Internal* Medicine. 2000;132:769-779.

- Cost-effectiveness of statins varies widely with patients' risk profile
 - LDL
 - Blood pressure
 - Smoking
 - HDL
 - Existing heart disease
- Health gains and treatment savings are greatest for people at greatest risk.

STATINS: cost per healthy year in people 55-64, 2007\$

No CHD at baseline, high LDL cholesterol	
Men, LDL 4.2-4.9 mmol/L (160-189 mg/dL)	
DBP<95, nonsmoker, HDL>1.3 (49)	344,000
DBP≥95, smoker, HDL<0.9 (35)	165,000
Women, LDL 4.2-4.9 mmol/L (160-189 mg/dL)	
DBP<95, nonsmoker, HDL>1.3 (49)	539,000
DBP≥95, smoker, HDL<0.9 (35)	224,000
No CHD at baseline, very high LDL cholesterol	
Men , LDL≥ 4.9 mmol/L (≥190 mg/dL)	
DBP<95, nonsmoker, HDL>1.3 (49)	210,000
DBP≥95, smoker, HDL<0.9 (35)	88,000
Women, LDL≥ 4.9 mmol/L (≥190 mg/dL)	
DBP<95, nonsmoker, HDL>1.3 (49)	389,000
DBP≥95, smoker, HDL<0.9 (35)	180,000
CHD at baseline	
Men	5,800
Women Institute for Health/Department of Economics	12,600

Cervical cancer screening


Eddy DM. Screening for Cervical Cancer. *Annals of Internal Medicine*. 1990;113:214-226

• Another classic CEA

- Screening frequency is a major determinant of cost-effectiveness
- Compare interventions by intensity, not only with no intervention (here, no screening)
- Example: screening every 3 years vs. every 2 years

Cervical cancer screening

Institute for Health/Department of Economics

Rutgers

Pneumococcal pneumonia vaccine

Sisk JE et al. Annals of Internal Medicine. 2003;12:960-968

- At \$16 per person (1995\$) -- about \$25 today vaccination against pneumococcal pneumonia reduces medical spending for adults 50-64 with congestive heart failure, chronic lung disease, diabetes, and other chronic conditions
- The 2010 cost/dose, excluding administration costs
 - \$19 for the US Centers for Disease Control
 - \$38 for private US purchasers.
- Vaccination would be cost-saving at the CDC price, not at the private price

What about those 5:1 savings claims?

- CEAs of childhood vaccinations typically estimate
 - savings in parents' time, valued at the wage rate
 - children's future earnings

- They compare vaccination costs with medical savings, savings in parents' time, and children's future earnings.
- The reported ratio: all dollars saved to dollars spent.
- Often a vaccination strategy that saves when time/earnings are considered costs the medical system more than it saves.

Example of 5:1 savings

Lieu TA et al. Cost-effectiveness of a routine varicella vaccination program for US children. *JAMA*. 1994;271:375-81.

- Abstract: including parents' time and children's future earnings, varicella vaccine "would save more than \$5 for every dollar invested".
- Next line: medical costs of vaccination are greater than medical savings.
- Medical costs: vaccination saved 90 cents for every dollar spent (Table 4, "health care payer's perspective").
- Assumed a private-sector price of \$35 per dose (1990\$), about \$75 today. Current private-sector price is \$84.

Institute for Health/Department of Economics

Patients' Time: The Forgotten Cost

- Societal perspective, recommended by the Panel on Cost-Effectiveness in Health and Medicine, includes costs and health effects for all who are significantly affected by the intervention.
- Costs = real resources

- Unpaid time of patients and caregivers is a real resource.
 - Affects patients' decisions
 - Taken from other uses

Self-monitoring of blood glucose

Russell, Safford. Am J Managed Care. 2008;14:395-396.

Cost per healthy year, 2006\$

	Without patient time	With patient time
Once daily	\$7,856	\$41,720
Three times daily	6,601	38,619

Institute for Health/Department of Economics

Opportunity Costs (Russell LB, Prevention's Potential)

2007\$	\$/yr	Yrs/\$1m
Chickenpox vaccine, pre-school children	5,367	186
Screening for colorectal cancer		
white men, sigmoidoscopy at 55	1,732	577
white men, sigmoidoscopy every 10 years vs. at 55	21,366	47
Mammography		
women aged 50-79, every 2 years	30,619	33
MRI for women with BRCA1		
mammography alone	20,494	49
mammography plus MRI	514,660	2
Screening for diabetes		
adults 55 with high blood pressure vs. no screening	51,211	20
all adults 55 vs. those with high blood pressure	537,756	2
Screening once for HIV		
prevalence 1.0%	34,713	29
prevalence 0.1%	68,412	15
Diet/exercise to prevent diabetes, high-risk adults	191,635	5
Smoking cessation, average of 15 programs	5,221	192
Institute for Health/Department of Economics		

Rutgers

References

- Cohen JT, PJ Neumann, MC Weinstein. Does preventive care save money? Health economics and the presidential candidates. *New England Journal of Medicine*. 2008;358:661-663.
- Cost-Effectiveness in Health and Medicine. MR Gold, JE Siegel, LB Russell, MC Weinstein, eds. (New York, NY: Oxford University Press, 1996).
- Eddy DM. Screening for Cervical Cancer. Annals of Internal Medicine. 1990;113:214-226.
- *Economic Models of Colorectal Cancer Screening in Average-Risk Adults.* M Pignone, LB Russell, J Wagner, eds. (Washington DC: National Academies Press, 2005).
- Edelson JT et al. Long-term cost-effectiveness of various initial monotherapies for mild to moderate hypertension. *Journal of the American Medical Association.* 1990;263:407-413.
- Lahdensuo A et al. Randomised comparison of cost effectiveness of guided self management and traditional treatment of asthma in Finland. *British Medical Journal*. 1998;316:1138-1139.
- Lieu TA, Cochi SL, Black SB, et al. Cost-effectiveness of a routine varicella vaccination program for US children. *JAMA*. 1994;271:375-381.
- Prosser LA et al. Cost-effectiveness of cholesterol-lowering therapies according to selected patient characteristics. *Annals of Internal* Medicine. 2000;132:769-779.
- Russell LB. Completing costs: patients' time. *Medical Care.* 2009;47:S89-S93 (*Health Care Costs: In Pursuit of Standardized Methods and Estimates for Research and Policy Applications*).

Institute for Health/Department of Economics

References, continued

- Russell LB. Educated Guesses: Making Policy about Medical Screening Tests. (Berkeley CA: University of California Press, 1994).
- Russell LB. Is Prevention better than Cure? (Washington DC: Brookings, 1986).
- Russell LB. Preventing chronic disease: an important investment, but don't count on cost savings. *Health Affairs*. 2009;28:42-45.
- Russell LB. *Prevention's Potential for Slowing the Growth of Medical Spending*, National Coalition on Health Care, 2007.
- Russell LB, Y Ibuka, KG Abraham. Health-related activities in the American Time Use Survey. *Medical Care*. 2007;45:680-685.
- Russell LB, MM Safford. Importance of recognizing patient's time as a cost of selfmanagement (letter). *American Journal of Managed Care*. 2008;14:395-396.
- Sisk JE et al. Cost-effectiveness of vaccination against invasive pneumococcal disease among people fifty through sixty-four years of age: role of comorbid conditions and race. *Annals of Internal Medicine*. 2003;12:960-968.
- Weinstein MC, WB Stason. *Hypertension: A Policy Perspective* (Cambridge: Harvard University Press, 1976).