Propensity Scores

Todd Wagner, PhD
 July 2012

Outline

1. Background on assessing causation

- Randomized trials
- Observational studies

2. Calculating a propensity score
3. Limitations

Causality

- Researchers are often interested in understanding causal relationships
- Does drinking red wine affect health?
- Does a new treatment improve mortality?
- Randomized trial provides a venue for understanding causation

Randomization

Note: random sorting can, by chance, lead to unbalanced groups. Most trials use checks and balances to preserve randomization

Trial analysis

- The expected effect of treatment is
$\mathrm{E}(\mathrm{Y})=\mathrm{E}\left(\mathrm{Y}^{\mathrm{A}}\right)-\mathrm{E}\left(\mathrm{Y}^{\mathrm{B}}\right)$

Expected effect on group A minus expected effect on group B (i.e., mean difference).

Trial Analysis (II)

- $\mathrm{E}(\mathrm{Y})=\mathrm{E}\left(\mathrm{Y}^{\mathrm{A}}\right)-\mathrm{E}\left(\mathrm{Y}^{\mathrm{B}}\right)$ can be analyzed using the following model

$$
\mathrm{y}_{\mathrm{i}}=\alpha+\beta \mathrm{x}_{\mathrm{i}}+\varepsilon_{\mathrm{i}}
$$

Where

- y is the outcome
- α is the intercept
-x is the mean difference in the outcome between treatment A relative to treatment B
$-\varepsilon$ is the error term
- i denotes the unit of analysis (person)

Trial Analysis (III)

- The model can be expanded to control for baseline characteristics

$$
\mathrm{y}_{\mathrm{i}}=\alpha+\beta \mathrm{x}_{\mathrm{i}}+\delta \mathrm{Z}_{\mathrm{i}}+\varepsilon_{\mathrm{i}}
$$

Where

- y is outcome
- α is the intercept
$-x$ is the added value of the treatment A relative to treatment B
-Z is a vector of baseline characteristics (predetermined prior to randomization)
$-\varepsilon$ is the error term
- i denotes the unit of analysis (person)

Assumptions

- Classic linear model (CLR) assumes that
- Right hand side variables are measured without noise (i.e., considered fixed in repeated samples)
- There is no correlation between the right hand side variables and the error term $\quad E\left(x_{i} u_{i}\right)=0$
- If these conditions hold, β is an unbiased estimate of the causal effect of the treatment on the outcome

Observational Studies

- Randomized trials may be
- Unethical
- Infeasible
- Impractical
- Not scientifically justified

Sorting without randomization

Sorting without randomization

Sorting without randomization

Patient
characteristics

Provider
Characteristics
Unobserved
characteristics
Teamwork,
provider
communication,
patient education

Unobserved factors affect outcome and
sorting. Treatment effect is biased.
Provides little or no information on causality
No fix.

Sorting without randomization

Propensity Scores

- What it is: Another way to correct for observable characteristics
- What it is not: A way to adjust for unobserved characteristics
- If you read wikipedia, you will get the wrong impression about propensity scores

Strong Ignorability

- Propensity scores were not developed to handle non-random sorting
- To make statements about causation, you would need to make an assumption that treatment assignment is strongly ignorable.
- Similar to assumptions of missing at random
- Equivalent to stating that all variables of interest are observed

Calculating the Propensity Score

- One group receives treatment and another group doesn't
- Use a logistic regression model to estimate the probability that a person received treatment
- This predicted probability is the propensity score

Variables to Include

- Include variables that are unrelated to the exposure but related to the outcome
- This will decrease the variance of an
 estimated exposure effect without increasing bias

Variables to Exclude

- Exclude variables that are related to the exposure but not to the outcome
- These variables will increase the variance of the estimated exposure effect without decreasing bias
- Variable selection is particularly important in small studies $(\mathrm{n}<500)$

Example: Resident Surgery

- Do cardiac bypass patients have better / worse outcomes when their surgery is conducted by a resident?
- CSP 474
- Randomized patients to radial artery or saphenous vein
- Tracked primary surgeon

Is Resident Assignment Random?

- Assignment may depend on
- Patient risk
- Availability of resident
- Resident skill
- Local culture
- In CSP 474, 23\% (167 / 725) of cases led by resident

Use of Resident Varies by Site

Site	Resident \%		
501	0%		
506	81%		
521	6%		
523	0%		
578	89%		
580	0%		Only supplies information on control
:---			
group.			
598			

Resident Assignment in CSP 474

Bakaeen F, Sethi G, Wagner T, et al. Coronary Artery Bypass Graft Patency: Residents Versus Attending Surgeons. Annals of Thoracic Surgery. in press

Resident Assignment in CSP 474

	OR	P value
Age	1.00	0.79
Canadian Functional Class		
Class 2	1.93	0.15
Class 3	2.12	0.09
Class 4	4.25	0.02
Urgent priority	0.93	0.89
Artery condition at site		
Calcified	0.67	0.25
Sclerotic	2.63	0.00
site 2	62.89	0.00
site 3	0.67	0.60
site 5	138.16	0.00
site 7	11.66	0.00
associated with age		
site 8	19.85	0.00
site 9	1.76	0.43
endo vascular harvest	0.20	0.01
On pump surgery	1.20	0.75
1-2 grafts	1.70	0.16
4-5 grafts	0.79	

Bakaeen F, Sethi G, Wagner T, et al. Coronary Artery Bypass Graft Patency: Residents Versus Attending Surgeons. Annals of Thoracic Surgery. in press

Resident Assignment in CSP 474

	OR	P value	
Age	1.00	0.79	
Canadian Functional Class			
Class 2	1.93	0.15	Assignment
Class 3	2.12	0.09	associated with
Class 4	4.25	0.02	angina symptoms
Urgent priority	0.93	0.89	and planned
Artery condition at site			harvesting technique
Calcified	0.67	0.25	
Sclerotic	2.63	0.00	
site 2	62.89	0.00	
site 3	0.67	0.60	
site 5	138.16	0.00	
site 7	11.66	0.00	
site 8	19.85	0.00	
site 9	1.76	0.43	
endo vascular harvest	0.20	0.01	
On pump surgery	1.20	0.75	
1-2 grafts	1.70	0.16	
4-5 grafts	0.79	0.46	

Bakaeen F, Sethi G, Wagner T, et al. Coronary Artery Bypass Graft Patency: Residents Versus Attending Surgeons. Annals of Thoracic Surgery. in press

Sorting

- Sorting is non-random
- If sorting is fully observed, we can estimate unbiased effect of resident surgeon effect
- Improbable that we fully observe the sorting process
- Thus $\mathrm{E}\left(\mathrm{x}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}\right) \neq 0$
- Multivariate is biased and we need instrumental variables

Dimensionality

- The treatment and non-treatment groups may be different on many dimensions
- The propensity score reduces these to a single dimension

Common Support

These are the densities of having resident or non-resident surgery (m1 is propensity score)

Using the Propensity Score

- Match individuals (perhaps most common approach)
- Include it as a covariate (quintiles of the PS) in the regression model
- Include it as a weight in a regression (i.e., place more weight on similar cases)
- Conduct subgroup analyses on similar groups (stratification)

Matched Analyses

- The idea is to select controls that resemble the treatment group in all dimensions, except for treatment
- You can exclude cases and controls that don't match, which can reduce the sample size/power.
- Different matching methods

Matching Methods

- Nearest Neighbor: rank the propensity score and choose control that is closest to case.
- Caliper: choose your common support and from within randomly draw controls

PS or Multivariate Regression?

- There seems to be little advantage to using PS over multivariate analyses in most cases. ${ }^{1}$
- PS provides flexibility in the functional form
- Propensity scores may be preferable if the sample size is small and the outcome of interest is rare. ${ }^{2}$

■ 1. Winkelmeyer. Nephrol. Dial. Transplant 2004; 19(7): 1671-1673.
2. Cepeda et al. Am J Epidemiol 2003; 158: 280-287

Silk purse out of sow's ear?

- Propensity scores focus only on observed, not on unobserved.
- Improbable that we fully observe the sorting process
- Thus $\mathrm{E}\left(\mathrm{x}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}\right) \neq 0$
- Multivariate (including propensity score) is biased and we need instrumental variables

Second Example

- CSP 474 was a randomized trial that enrolled patients in 11 sites
- Patients were randomized to two types of heart bypass
■ Is the sample generalizable?
We compared enrollees to non-enrollees.

Methods

- We identified eligible bypass patients across VA (2003-2008)
- We compared:
- participants and nonparticipants within participating sites
- participating sites and non-participating sites
- participants and all non-participants

Propensity Scores

- A reviewer suggested that we should use a propensity score to identify degree of overlap
- Estimated a logistic regression for participation (pscore and pstest command in Stata)

Group Comparison before PS

kernel $=$ epanechnikov, bandwidth $=0.0045$

	Mean				\%reduct	t-test			
Variable	Sample	Treated Control		\%bias	\|bias		t	$p>t$	
ms_1	Unmatched	. 09729	. 10659	-3.1		-0.75	0.455		
	Matched	. 09729	. 0986	-0.4	85.9	-0.22	0.827		
ms_3	Unmatched	. 35407	. 36275	-1.8		-0.45	0.655		
	Matched	. 35407	. 35769	-0.8	58.3	-0.37	0.710		
male	Unmatched	. 99043	. 99069	-0.3		-0.07	0.946		
	Matched	. 99043	. 99049	-0.1	76.6	-0.03	0.975		
aa2	Unmatched	. 12919	. 09003	12.6		3.37	0.001		
	Matched	. 12919	. 11989	3.0	76.3	1.36	0.173		
aa3	Unmatched	. 27113	. 22301	11.2		2.86	0.004		
	Matched	. 27113	. 26578	1.2	88.9	0.59	0.554		
								Only partial listing shown	
aa4	Unmatched	. 27751	. 22921	11.1		2.84	0.005		
	Matched	. 27751	. 26658	2.5	77.4	1.20	0.230		
aa5	Unmatched	. 10367	. 1388	-10.8		-2.52	0.012		
	Matched	. 10367	. 11048	-2.1	80.6	-1.10	0.272		
aa6	Unmatched	. 09569	. 13058	-11.0		-2.57	0.010		
	Matched	. 09569	. 10471	-2.8	74.2	-1.51	0.132		
aa7	Unmatched	. 05104	. 10121	-19.0		-4.14	0.000		
	Matched	. 05104	. 05918	-3.1	83.8	-1.82	0.069		
aa8	Unmatched	. 01754	. 05057	-18.3		-3.76	0.000		
	Matched	. 01754	. 0204	-1.6	91.4	-1.07	0.285		

Standardized difference $>10 \%$ indicated imbalance and $>20 \%$ severe imbalance

Results

- Participants tended to be slightly healthier and younger, but
- Sites that enrolled participants were different in provider and patient characteristics than non-participating site

PS Results

- 38 covariates in the PS model
- 20 variables showed an imbalance
-1 showed severe imbalance (quantity of CABG operations performed at site)
- Balance could be achieved using the propensity score
- After matching, participants and controls were similar

Generalizability

- To create generalizable estimates from the RCT, you can weight the analysis with the propensity score.

Li F, Zaslavsky A, Landrum M. Propensity score analysis with hierarchical data. Boston MA: Harvard University; 2007.

RCTs and Propensity Scores

- What would happen if you used a propensity score with data from a RCT?

Share Common Support

Summary

- Propensity scores offer another way to adjust for confounding based on observables
- Reducing the multidimensional nature of confounding can be helpful
- Propensity scores do not attempt to adjust for unobserved.

Unrealistic Expectations

"I asked you not to mix Science with Religion."

Weaknesses

- Propensity scores are often misunderstood
- While they can help create balance on observables, they do not control for unobservables or selection bias

Strengths

- Allow one to check for balance between control and treatment
- Without balance, average treatment effects can be very sensitive to the choice of the estimators. ${ }^{1}$

1. Imbens and Wooldridge 2007 http://www.nber.org/WNE/lect_1_match_fig.pdf

Further Reading

- Imbens and Wooldridge (2007) www.nber.org/WNE/lect_1_match_fig.pdf
- Guo and Fraser (2010) Propensity Score Analysis. Sage.
- Brookhart MA, et al Am J Epidemiol. 2006 Jun 15;163(12):1149-56. Variable selection for propensity score models.

