Econometrics Course: Cost at the Dependent Variable (II)

Paul G. Barnett, PhD May 9, 2012

Review of Ordinarily Least Squares (OLS)

Classic linear model

Assume dependent variable can be expressed as a linear function of the chosen independent variables, e.g.:
 Y_i = α + β X_i + ε_i

Review of OLS assumptions

- Expected value of error is zero $E(\varepsilon_i)=0$
- Errors are independent $E(\varepsilon_i \varepsilon_j)=0$
- Errors have identical variance $E(\epsilon_i^2) = \sigma^2$
- Errors are normally distributed
- Errors are not correlated with independent variables E(X_iε_i)=0

Cost is a difficult variable

- Skewed by rare but extremely high cost events
- Zero cost incurred by enrollees who don't use care
- No negative values

Review from last session

- Applying Ordinary Least Squares OLS to data that aren't normal can result in biased parameters
 - OLS can predict *negative* costs
- Log transformation can make cost more normally distributed
- Predicted cost is affected by re-transformation bias
 - Corrected using smearing estimator
 - Assumes constant error (homoscedasticity)

Topics for today's course

- What to do when there is heteroscedasticity?
- What to do when there are many zeros values?
- How to test differences in groups with no assumptions about distribution?
- How to determine which method is best?

Topics for today's course

- What to do when there is heteroscedasticity?
- What to do when there are many zeros values?
- How to test differences in groups with no assumptions about distribution?
- How to determine which method is best?

Properties of variance of the errors

- Homoscedasticity
 - Identical variance $E(\epsilon_i^2) = \sigma^2$
- Heteroscedasticity
 - -Variance depends on x (or on predicted y)

Homoscedasticity

– Errors have identical variance $E(\epsilon_i^2) = \sigma^2$

Heteroscedasticity

– Errors depend on x (or on predicted y)

Why worry about heteroscedasticity?

OLS with homoscedastic retransformation

- "If error term ε is heteroscedastic, estimates can be appreciably biased"
- Reminding Manning and Mullahy of Longfellow's nursery rhyme:

"When she was good, she was very, very good, but when she was bad, she was horrid"

JHE 20:461, 2001

Generalized Linear Models (GLM)

- Analyst specifies a link function g()
- Analyst specifies a variance function
 - Key reading: "Estimating log models: to transform or not to transform," Mullahy and Manning JHE 20:461, 2001

Link function g() in GLM

- **g** (E (y | x))= $\alpha + \beta x$
- Link function can be natural log, square root, or other function
 - $-E.g. \ln (E(y | x)) = \alpha + \beta x$
 - When link function is natural log, then β represents percent change in y

GLM vs. OLS

- OLS of log estimate: E (ln (y) | x))
- GLM estimate: ln (E (y | x))
 - Log of expectation of y is not the same as expectation of log Y!
- With GLM to find predicted Y
 - No retransformation bias with GLM
 - Smearing estimator not used

Variance function

- GLM does not assume constant varianceGLM assumes there is function that
- explains the relationship between the variance and mean

$$-v(y \mid x)$$

Variance assumptions for GLM cost models

- Gamma Distribution (most common)
 - -Variance is proportional to the square of the mean
- Poisson Distribution
 - Variance is proportional to the mean

Estimation methods

- How to specify log link and gamma distribution with dependent variable Y and independent variables X1, X2, X3
- Stata

GLM Y X1 X2 X3, FAM(GAM) LINK(LOG)

SAS (warning: SAS drops zero cost observations!!!!!!)

PROC GENMOD MODEL Y=X1 X2 X3 / DIST=GAMMA LINK=LOG;

Choice between GLM and OLS of log transform

- GLM advantages:
 - -GLM can correct for heteroscedasticity
 - -GLM does not lead to retransformation error
- OLS of log transform advantages
 - -OLS is more efficient (standard errors are smaller than with GLM)

Which link function? **–Box-Cox regression** -Stata command: **boxcox cost** {indep. vars} if y > 0 $\frac{COST^{\theta} - 1}{\theta} = \alpha + \beta x + \varepsilon$

Which link function?

Box-Cox parameter

Link function	Theta
Inverse (1/cost)	-1
Log(cost)	0
Square root (cost)	.5
Cost	1
Cost Squared	2

Which variance structure with GLM?

Modified Park test

- GLM regression & find residual
- Square the residuals
- Second regression by OLS
 - Dependent variable squared residuals
 - Independent variable predicted y

$$(Y_i - \hat{Y}_i)^2 = \gamma_0 + \gamma_1 \hat{Y}_i + \upsilon_i$$

Which variance structure with GLM?

 Parameter from GLM family test (modified Park test)

$$(Y_i - \hat{Y}_i)^2 = \gamma_0 + \gamma_1 \hat{Y}_i + \upsilon_i$$

γ_1	Variance
0	Gaussian (Norma)
1	Poisson
2	Gamma
3	Wald (Inverse Normal)

Other models for skewed data

- Generalized gamma models
 - Estimate link function, distribution, and parameters in single model
 - See: Basu & Rathouz (2005)

Questions?

Topics for today's course

- What to do when there is heteroscedasticity? (GLM models)
- What to do when there are many zeros values?
- How to test differences in groups with no assumptions about distribution?
- How to determine which method is best?

What to do when there are many zeros values?

 Example of participants enrolled in a health plan who have no utilization

Annual per person VHA costs FY09 among those who used VHA in FY10

The two-part model

- Part 1: Dependent variable is indicator any cost is incurred
 - -1 if cost is incurred (Y > 0)
 - -0 if no cost is incurred (Y=0)
- Part 2: Regression of how much cost, among those who incurred any cost

The two-part model

• Expected value of Y conditional on X $E(Y \mid X) = P(Y > 0) \mid X)E(Y \mid Y > 0, X)$ Is the mediat of

Is the product of:

Part 1. The probability that Y is greater than zero, conditional on X Part 2. Expected value of Y, conditional on Y being greater than zero, conditional on X

Predicted cost in two-part model

Predicted value of Y

E(Y | X) = P(Y > 0) | X)E(Y | Y > 0, X)Is the product of:

Part 1. Probability of any cost being incurred Part 2. Predicted cost conditional on incurring any cost

Question for class $P(Y > 0) \mid X)$

- Part one estimates probability Y > 0
 - Y > 0 is dichotomous indicator
 - -1 if cost is incurred (Y > 0)
 - 0 if no cost is incurred (Y=0)
- What type of regression should be used when the dependent variable is dichotomous (takes a value of either zero or one)?

First part of model Regression with dichotomous variable

- Logistic regression or probit
- Logistic regression uses maximum likelihood function to estimate log odds ratio:

$$\log \frac{P_i}{1 - P_i} = \alpha + \beta_1 X$$

Logistic regression syntax in SAS

Proc Logistic; Model Y = X1 X2 X3 / Descending; Output out={dataset} prob={variable name};

- Output statement saves the predicted probability that the dependent variable equals one (cost was incurred)
- Descending option in model statement is required, otherwise SAS estimates the probability that the dependent variable equals zero

Logistic regression syntax in Stata

Logit Y = X1 X2 X3 Predict {variable name}, pr

Predict statement generates the predicted probability that the dependent variable equals one (cost was incurred)

Second part of model Conditional quantity

- Regression involves only observations with non-zero cost (conditional cost regression)
- Use GLM or OLS with log cost

Two-part models

- Separate parameters for participation and conditional quantity
 - -How independent variables predict
 - participation in care
 - quantity of cost conditional on participation
 - each parameter may have its policy relevance
- Disadvantage: hard to predict confidence interval around predicted Y given X

Alternate to two-part model

OLS with untransformed cost OLS with log cost, using small positive values in place of zero Certain GLM models

Topics for today's course

- What to do when there is heteroscedasticity? (GLM models)
- What to do when there are many zeros values? (Two-part models)
- How to test differences in groups with no assumptions about distribution?
- How to determine which method is best?

Non-parametric statistical tests

- Make no assumptions about distribution, variance
- Wilcoxon rank-sum test
- Assigns rank to every observation
- Compares ranks of groups
- Calculates the probability that the rank order occurred by chance alone

Extension to more than two groups

- Group variable with more than two mutually exclusive values
- Kruskall Wallis test
 - is there any difference between any pairs of the mutually exclusive groups?
- If KW is significant, then a series of Wilcoxon tests allows comparison of pairs of groups

Limits of non-parametric test

- It is too conservative
 - Compares ranks, not means
 - Ignores influence of outliers
 - E.g. all other ranks being equal, Wilcoxon will give same result regardless of whether
 - Top ranked observation is \$1 million more costly than second observation, or
 - Top ranked observation just \$1 more costly
- Doesn't allow for additional explanatory variables

Topics for today's course

- What to do when there is heteroscedasticity? (GLM models)
- What to do when there are many zeros values? (Two-part models)
- How to test differences in groups with no assumptions about distribution? (Nonparametric statistical tests)
- How to determine which method is best?

Which method is best?

- Find predictive accuracy of models
- Estimate regressions with half the data, test their predictive accuracy on the other half of the data
- Find
 - Mean Absolute Error (MAE)
 - -Root Mean Square Error (RMSE)

Mean Absolute Error

- For each observation
 - find difference between observed and predicted cost
 - take absolute value
 - find the mean
- Model with smallest value is best

Root Mean Square Error

- Square the differences between predicted and observed, find their mean, find its square root
- Best model has smallest value

Evaluations of residuals

- Mean residual (predicted less observed) or
- Mean predicted ratio (ratio of predicted to observed)
 - calculate separately for each decile of observed Y
 - A good model should have equal residuals (or equal mean ratio) for all deciles

Formal tests of residuals

- Variant of Hosmer-Lemeshow Test
 - F test of whether residuals in raw scale in each decile are significantly different
- Pregibon's Link Test
 - Tests if linearity assumption was violated
 See Manning, Basu, & Mullahy, 2005

Questions?

Review of presentation

- Cost is a difficult dependent variable
 - Skewed to the right by high outliers
 - May have many observations with zero values
 - -Cost is not-negative

When cost is skewed

OLS of raw cost is prone to bias

- Especially in small samples with influential outliers
- "A single case can have tremendous influence"

When cost is skewed (cont.)

Log transformed cost

- Log cost is more normally distributed than raw cost
- -Log cost can be estimated with OLS

When cost is skewed (cont.)

- To find predicted cost, must correct for retransformation bias
 - Smearing estimator assumes errors are homoscedastic
 - -Biased if errors are heteroscedasctic
- "When she was good, she was very, very good, but when she was bad, she was horrid"

When cost is skewed and errors are heteroscedastic

GLM with log link and gamma variance

- Considers heteroscedasctic errors
- -Not subject to retransformation bias
- May not be very efficient
- Alternative specification
 - Poisson instead of gamma variance function
 - Square root instead of log link function

When cost has many zero values

- Two part model
 - Logit or probit is the first part
 - Conditional cost regression is the second part

Comparison without distributional assumptions

- Non-parametric tests can be useful
- May be too conservative
- Don't allow co-variates

Evaluating models

- Mean Absolute Error
- Root Mean Square Error
- Other evaluations and tests of residuals

Next lecture

Non-linear dependent variables Ciaran Phibbs May 30, 2012

Key sources on GLM

- MANNING, W. G. (1998) The logged dependent variable, heteroscedasticity, and the retransformation problem, *J Health Econ*, 17, 283-95.
- * MANNING, W. G. & MULLAHY, J. (2001) Estimating log models: to transform or not to transform?, *J Health Econ*, 20, 461-94.
- * MANNING, W. G., BASU, A. & MULLAHY, J. (2005) Generalized modeling approaches to risk adjustment of skewed outcomes data, *J Health Econ*, 24, 465-88.
- BASU, A. & Rathouz P.J. (2005) Estimating marginal and incremental effects on health outcomes using flexible link and variance function models, *Biostatistics* 6(1): 93-109, 2005.

Key sources on two-part models

- * MULLAHY, J. (1998) Much ado about two: reconsidering retransformation and the twopart model in health econometrics, *J Health Econ*, 17, 247-81
- JONES, A. (2000) Health econometrics, in: Culyer, A. & Newhouse, J. (Eds.) *Handbook of Health Economics*, pp. 265-344 (Amsterdam, Elsevier).

References to worked examples

- FLEISHMAN, J. A., COHEN, J. W., MANNING, W. G. & KOSINSKI, M. (2006) Using the SF-12 health status measure to improve predictions of medical expenditures, *Med Care*, 44, I54-63.
- MONTEZ-RATH, M., CHRISTIANSEN, C. L., ETTNER, S. L., LOVELAND, S. & ROSEN, A. K. (2006) Performance of statistical models to predict mental health and substance abuse cost, *BMC Med Res Methodol*, 6, 53.

References to work examples (cont).

- MORAN, J. L., SOLOMON, P. J., PEISACH, A. R. & MARTIN, J. (2007) New models for old questions: generalized linear models for cost prediction, *J Eval Clin Pract*, 13, 381-9.
- DIER, P., YANEZ D., ASH, A., HORNBROOK, M., LIN, D. Y. (1999). Methods for analyzing health care utilization and costs <u>Ann Rev Public Health</u> (1999) 20:125-144 (Also gives accessible overview of methods, but lacks information from more recent developments)

Link to HERC Cyberseminar HSR&D study of worked example

Performance of Statistical Models to Predict Mental Health and Substance Abuse CostMaria Montez-Rath, M.S. 11/8/2006The audio:

- http://vaww.hsrd.research.va.gov/for_research ers/cyber_seminars/HERC110806.asx
- The Power point slides:
- http://vaww.hsrd.research.va.gov/for_research ers/cyber_seminars/HERC110806.pdf

Book chapters

MANNING, W. G. (2006) Dealing with skewed data on costs and expenditures, in: Jones, A. (Ed.) *The Elgar Companion to Health Economics*, pp. 439-446 (Cheltenham, UK, Edward Elgar).