Econometrics with Observational Data

Introduction and Identification Todd Wagner

Goals for Course

- To enable researchers to conduct careful analyses with existing VA (and non-VA) datasets.
- We will
 - Describe econometric tools and their strengths and limitations
 - Use examples to reinforce learning

Goals of Today's Class

- Understanding causation with observational data
- Describe elements of an equation
- Example of an equation
- Assumptions of the classic linear model

Terminology

- Confusing terminology is a major barrier to interdisciplinary research
 - Multivariable or multivariate
 - Endogeneity or confounding
 - Interaction or Moderation
 - Right or Wrong
- Maciejewski ML, Weaver ML and Hebert PL.
 (2011) Med Care Res Rev 68 (2): 156-176

Polls

Understanding Causation: Randomized Clinical Trial

- RCTs are the gold-standard research design for assessing causality
- What is unique about a randomized trial? The treatment / exposure is randomly assigned
 Penefits of randomization:
- Benefits of randomization:

Causal inferences

Randomization

- Random assignment distinguishes experimental and non-experimental design
- Random assignment should not be confused with random selection
 - Selection can be important for generalizability (e.g., randomly-selected survey participants)
 - Random assignment is required for understanding causation

Limitations of RCTs

- Generalizability to real life may be low
 - Exclusion criteria may result in a select sample
- Hawthorne effect (both arms)
- RCTs are expensive and slow
- Can be unethical to randomize people to certain treatments or conditions
- Quasi-experimental design can fill an important role

Observational Data

- Widely available (especially in VA)
- Permit quick data analysis at a low cost
- May be realistic/ generalizable

Key independent variable may not be exogenous – it may be endogenous

Endogeneity

- A variable is said to be endogenous when it is correlated with the error term (assumption 4 in the classic linear model)
- If there exists a loop of causality between the independent and dependent variables of a model leads, then there is endogeneity

Endogeneity

- Endogeneity can come from:
 - Measurement error
 - Autoregression with autocorrelated errors
 - Simultaneity
 - Omitted variables
 - Sample selection

Elements of an Equation

Maciejewski ML, Diehr P, Smith MA, Hebert P. Common methodological terms in health services research and their synonyms. *Med Care.* Jun 2002;40(6):477-484.

Terms

- Univariate the statistical expression of one variable
- Bivariate- the expression of two variables
- Multivariate- the expression of more than one variable (can be dependent or independent variables)

Dependent variable Outcome measure

Error Term

Note the similarity to the equation of a line (y=mx+B)

$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$

"i" is an index.

If we are analyzing people, then this typically refers to the person

There may be other indexes

Error term

- Error exists because
- 1. Other important variables might be omitted
- 2. Measurement error
- 3. Human indeterminacy
- Understand error structure and minimize error
- Error can be additive or multiplicative

Example: is height associated with income?

$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$

- Y=income; X=height
- Hypothesis: Height is not related to income (B₁=0)
- If $B_1=0$, then what is B_0 ?

Height and Income

Estimator

- A statistic that provides information on the parameter of interest (e.g., height)
- Generated by applying a function to the data
- Many common estimators
 - Mean and median (univariate estimators)
 - Ordinary least squares (OLS) (multivariate estimator)

Ordinary Least Squares (OLS)

Other estimators

Least

 absolute
 deviations

 Maximum

 likelihood

Choosing an Estimator

- Least squares
- Unbiasedness
- Efficiency (minimum variance)
- Asymptotic properties
- Maximum likelihood
- Goodness of fit
- We'll talk more about identifying the "right" estimator throughout this course.

How is the OLS fit?

What about gender?

- How could gender affect the relationship between height and income?
 - Gender-specific intercept
 - Interaction

Gender Indicator Variable

Gender-specific Indicator

Interaction

Gender Interaction

Classic Linear Regression (CLR)

Assumptions

Classic Linear Regression

- No "superestimator"
- CLR models are often used as the starting point for analyses
- 5 assumptions for the CLR
- Variations in these assumption will guide your choice of estimator (and happiness of your reviewers)

Assumption 1

The dependent variable can be calculated as a linear function of a specific set of independent variables, plus an error term
For example,

 $Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + \beta_3 X_i Z_i + \mathcal{E}_i$

Violations to Assumption 1

- Omitted variables
- Non-linearities
 - Note: by transforming independent variables, a nonlinear function can be made from a linear function

Testing Assumption 1

- Theory-based transformations
- Empirically-based transformations
- Common sense
- Ramsey RESET test
- Pregibon Link test

Ramsey J. Tests for specification errors in classical linear least squares regression analysis. *Journal of the Royal Statistical Society*. 1969;Series B(31):350-371.
Pregibon D. Logistic regression diagnostics. *Annals of Statistics*. 1981;9(4):705-724.

Assumption 1 and Stepwise

- Statistical software allows for creating models in a "stepwise" fashion
- Be careful when using it.
 - Little penalty for adding a nuisance variable
 - -BIG penalty for missing an important covariate

Assumption 2

• Expected value of the error term is 0

 $E(u_i)=0$

Violations lead to biased interceptA concern when analyzing cost data

Assumption 3

- IID– Independent and identically distributed error terms
 - Autocorrelation: Errors are uncorrelated with each other
 - Homoskedasticity: Errors are identically distributed

Heteroskedasticity

Violating Assumption 3

Effects

- OLS coefficients are unbiased
- OLS is inefficient
- Standard errors are biased
- Plotting is often very helpful
- Different statistical tests for heteroskedasticity
 - GWHet--but statistical tests have limited power

Fixes for Assumption 3

 Transforming dependent variable may eliminate it

Robust standard errors (Huber White or sandwich estimators)

Assumption 4

- Observations on independent variables are considered fixed in repeated samples
- $\blacksquare E(x_i u_i) = 0$
- Violations
 - Errors in variables
 - Autoregression
 - Simultaneity

> Endogeneity

Assumption 4: Errors in Variables

- Measurement error of dependent variable
 (DV) is maintained in error term.
- OLS assumes that covariates are measured without error.
- Error in measuring covariates can be problematic

Common Violations

- Including a lagged dependent variable(s) as a covariate
- Contemporaneous correlation
 - Hausman test (but very weak in small samples)
- Instrumental variables offer a potential solution

Assumption 5

Observations > covariatesNo multicollinearity

- Solutions
 - Remove perfectly collinear variables
 - Increase sample size

Any Questions?

Statistical Software

I frequently use SAS for data management

I use Stata for my analyses

Stattransfer

Regression References

- Kennedy <u>A Guide to Econometrics</u>
- Greene. <u>Econometric Analysis</u>.
- Wooldridge. Econometric Analysis of Cross Section and Panel Data.
- Winship and Morgan (1999) The Estimation of Causal Effects from Observational Data *Annual Review of Sociology*, pp. 659-706.