Modeling Utilities over Time

Vilija R. Joyce, MS January 11, 2012

Objectives

■ To describe how to analyze health-related quality of life (HRQoL) data with multiple observations over time

Outline

- Introduction to types of longitudinal studies and models
- Real-world example: Modeling the change in health-related quality of life (HRQoL) in patients with advanced HIV
 - OPTIMA
 - Exploratory analysis
 - Models

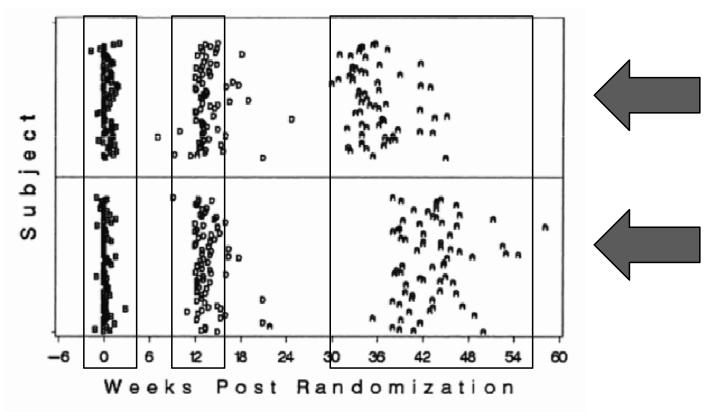
3 Important Features of Longitudinal Studies

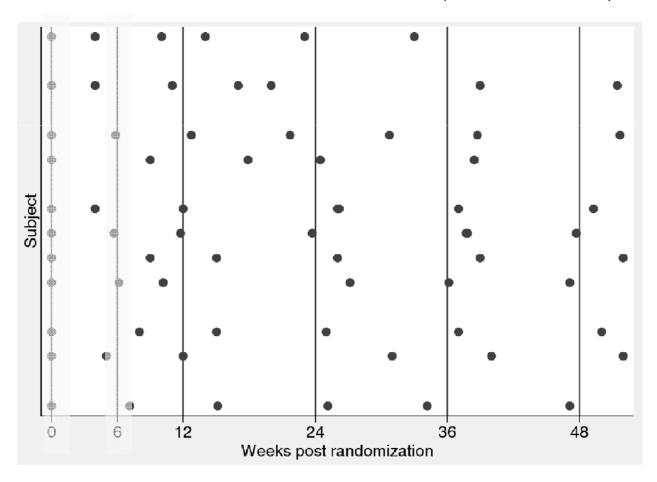
- 1. Multiple waves of data
- 2. Sensible metric for time
- Outcomes that change systematically over time
 - Precision of outcomes must be equatable over time
 - Outcomes must be equally valid over time
 - Preserve outcome precision over time

Repeated Measures Models

- Applicable to studies where...
 - Subjects are experiencing the same condition
 - Assessments correspond to an event or intervention phase
 - Assessments are limited (< 4) with time conceptualized as a categorical variable

Repeated Measures Models (cont'd)




Figure 1.2. Timing of observations in a study with an event-driven design with assessments before (B), during (D), and 4 months after (A) therapy. Data are from the adjuvant breast cancer study [41]. Each row corresponds to a randomized subject. Subjects randomized to the 16-week regimen appear in the upper half of the figure and subjects randomized to the CAF regiment are in the lower half of the figure.

Fairclough DL. *Design and Analysis of Quality of Life Studies in Clinical Trials.* 2nd ed. Boca Raton, FL: Chapman and Hall/CRC Press; 2010.

Repeated Measures Models – Drawbacks

Assessments may not take place when scheduled.

Repeated Measures Models – Drawbacks (cont'd)

■ Timing of observations for 1 site over 1 year in the OPTIMA trial

History of Growth Curve Models

- 1980s = development of statistical models
- Various names
 - Individual growth curve models
 - Random coefficient models
 - Hierarchical linear models
 - Multilevel models
 - Mixed models
- Describe changes in height and weight as a function of age in children.

Why Not Use OLS?

- Ordinary least squares (OLS) regression assumes that observations are independent
- Biased standard errors
- Growth curve models can handle correlated errors

Definition of a Growth Curve Model

- Change over time in a phenomenon of interest (e.g. quality of life) at both the individual and aggregate levels.
- 2 types of questions about change:
 - Level 1: **Within-person** change (how individuals change over time)

 Time-varying predictors (e.g. days since randomization)
 - Level 2: **Between-person** differences in change (how changes vary across individuals) *Time-invariant predictors (e.g. randomization group)*

Level 1 Submodel – Within-Person

$$Y_{ij} = \left[\pi_{0i} + \pi_{1i}(time_{ij})\right] + \left[\varepsilon_{ij}\right]$$

$$Y_{ij}$$
 = The outcome of interest (for subject *i* at time *j*)

 π_{0i} = Intercept, or subject *i*'s true value of QoL at baseline

 π_{li} = Slope, or subject *i*'s rate of change in true QoL

 ε_{ii} = Residual or random measurement error

Level 2 Submodels – Between-Person

$$Y_{ij} = \left[\pi_{0i}\right] + \left[\pi_{1i}\right](time_{ij}) + \left[\varepsilon_{ij}\right]$$

Level 1 model

$$\pi_{0i} = \gamma_{00} + \gamma_{01}INTVN + \zeta_{0i} \\
\pi_{1i} = \gamma_{10} + \gamma_{11}INTVN + \zeta_{1i}$$

Level 2 submodels

ITVN = Intervention

 γ_{00} = Population intercept

 γ_{01} = Deviation from population intercept

 $\zeta_{0i} = \text{Residual}$

 γ_{10} = Population slope

 γ_{11} = Deviation from population slope

 $\zeta_{1i} = \text{Residual}$

Integrated Growth Curve Model

$$Y_{ij} = \left[\pi_{0i} + \pi_{1i}(time_{ij})\right] + \left[\varepsilon_{ij}\right]$$
 Level 1 model

$$\pi_{0i} = \gamma_{00} + \gamma_{01} INTVN + \zeta_{0i}$$

$$\pi_{1i} = \gamma_{10} + \gamma_{11} INTVN + \zeta_{1i}$$

Level 2 submodels

$$Y_{ij} = \left[(\gamma_{00} + \gamma_{10}TIME_{ij} + \gamma_{01}INTVN_i + \gamma_{11}(INTVN_i \times TIME_{ij}) \right] + \left[\zeta_{0i} + \zeta_{1i}TIME_{ij} + \varepsilon_{ij} \right]$$
Fixed Effects

Random Effects

Advantages of Growth Curve Models

- Advantages
 - Data modeled at the individual level
 - Flexible time variable
 - Easy handling of missing data
 - Easily incorporate data nesting/clustering

Outline

- Introduction to types of longitudinal studies and models
- Real-world example: Modeling the change in health-related quality of life (HRQoL) in patients with advanced HIV
 - OPTIMA
 - Exploratory analysis
 - Models

OPTIMA

- Effective antiretroviral therapy (ART) improves survival in HIV-infected patients.
- The optimal management strategy for advanced HIV patients infected with multidrug resistant HIV is unclear.
- CSP #512, Options in Management with Antiretrovirals
- 2x2 open randomized study
 - 3 month therapy interruption vs. no interruption
 - Treatment intensification (5+ antiretroviral drugs) vs. standard treatment (4 or fewer drugs)
- UK, Canada, and US
- June 2001 December 2007
- 368 patients randomized

Outcomes

- Primary and secondary outcomes
 - Time to first AIDS-defining event or death
 - Time to first serious adverse event
- No significant differences in outcomes among the management strategy groups

Outcomes (cont'd)

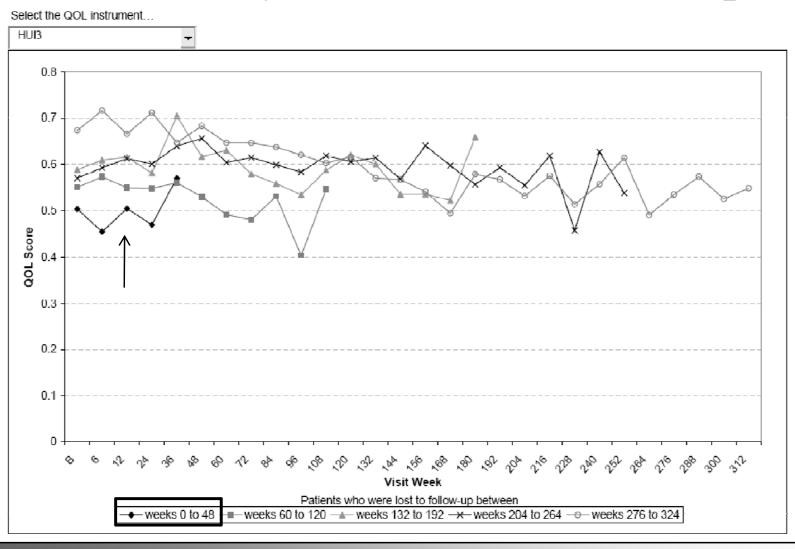
- Other sociodemographic and clinical data (e.g. age, sex, serious adverse events)
- Health-Related Quality of Life (HRQoL)
 - Baseline, 6, 12, 24, every 12 weeks thereafter
 - Health Utilities Index Mark 3 (HUI3)
 - EQ-5D
 - Visual analog scale
 - Medical Outcomes Study HIV Health Survey
 - Standard gamble (SG) (US patients only)
 - Time trade-off (TTO) (US patients only)
 - 5,141 HRQoL assessments over 6.25 years of follow-up (median 3.2 years)

HRQoL Outcome: Health Utilities Index Mark 3 (HUI3)

- Preference/utility-based instrument
- 17 questions, 8 attributes, each with 5–6 levels
- 972,000 possible health states.
- Weights are estimated with valuation data from a sample of adults in Hamilton, Ontario, Canada
- Utilities range from -0.36 to 1

Research Questions

- What is the longitudinal effect of treatment intensification on HRQoL in patients with advanced HIV?
- What is the effect of ongoing serious adverse events (a time-dependent predictor) on HRQoL?


Outline

- Introduction to types of longitudinal studies and models
- Real-world example: Modeling the change in health-related quality of life (HRQoL) in patients with advanced HIV
 - OPTIMA
 - Exploratory analysis
 - Models

Missing Data

- Why is missing data a problem?
 - Loss of statistical power
 - Bias of estimates
- At baseline, 4% of HUI3 assessments in the OPTIMA trial were missing.
- Plots to describe missingness
 - Average QoL scores by time of drop-out
 - Average QoL scores by time to death
 - Average QoL scores by % missing over time

Mean HUI3 by Visit Week, Patients Grouped by When They Were Lost to Follow-Up

Missing Data

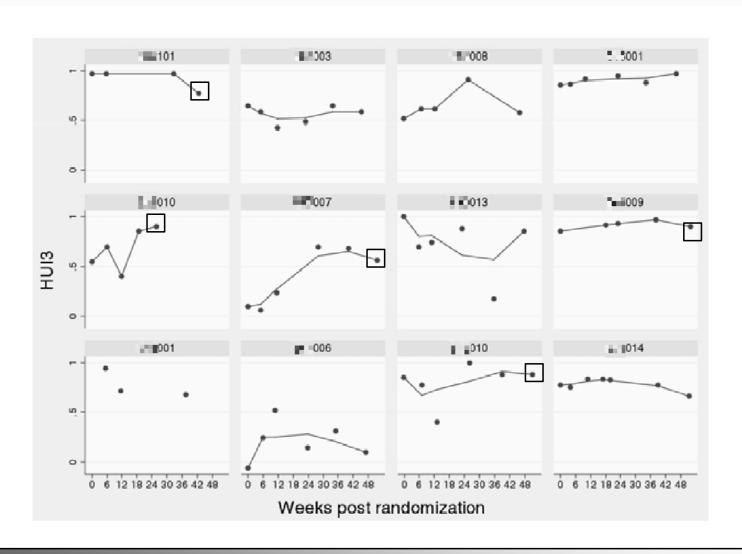
- Other patterns/mechanisms?
 - Do baseline characteristics predict drop-out?
 - Proportional hazards model (PROC PHREG)
 - Are "skippers" patients with intermittent QOL assessments different from those with few skipped assessments?
 - Regressions (PROC REG)
 - Are certain clinical events associated with "missing" QoL assessments?
 - Generalized linear mixed model (PROC GLIMMIX)

Missing Data

■ What next?

- Serious adverse events predicted missing HRQoL data in the OPTIMA trial.
- BUT, serious adverse events were distributed equally among the randomization groups.
- Missing data left "as is".
- Other QoL studies, where missing data are not ignorable?
 - Consider imputation as part of your sensitivity analyses.
 - Fairclough 2010, Ch. 9, Multiple Imputation

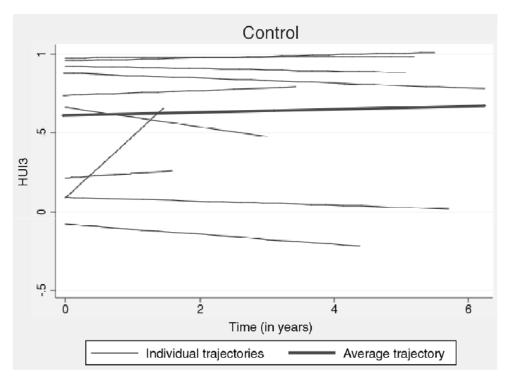
Excerpt from person-period OPTIMA HRQoL dataset

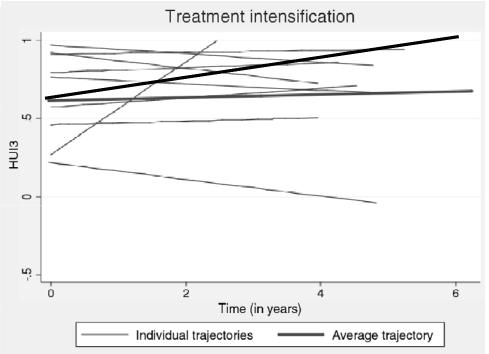

	Subject ID	Health Utilities Index	Indicator Treatment Intensification	Time in Years	Indicator ongoing SAE
4970	.003	0,85434496	0	0	0
4971	.003	0.97258	0	0.0958247775	0
4972	.003	0.85434496	Ó	0,2299794661	0
4973	.003	0.905401	0	0.5941136208	0
4974	.003	0.97258	ŷ	0.7665982204	Û
4975	.003	0.97258	0	0.9965776865	0
4976	.003	0.97258	0	1.2539356605	0
4977	.003	0.838222	0	1.4373716632	0
4978	.003	0.97258	0	1.6865160849	0
4979	.003	0.97258	Ó	1.8590006845	0
4980	.003	0.879352	0	2,2614647502	0
4981	.003	0.93145	0	2.7405886379	0
4982	.003	0.97258	0	2.9897330595	0
4983	.003	0.97258	0	3.2580424367	0
4984	.003		0	3.4688569473	0
4985	.003	0.9188368	Ó	3,5071868583	0
4986	.003	1	0	3,832991102	0
4987	.003	0.97258	0	4.1587953457	0
4988	.003	0.93145	0	4.5037645448	0
4989	.003	0,8530288	0	4,772073922	0
4990	.003	0.97258	0	5.2320328542	0
4991	.004	0,97258	1	0	0
4992	.004	0.97258	1	0.1533196441	0
4993	.004	0.85434496	1	0,2874743326	Ô
4994	.004	0.9188368	1	0.4791238877	1.
4995	.004	0.838222	1	0.7091033539	1
4996	.004	1	1	0,9582477755	1.
4997	.004	0.94516	1	1.1882272416	1.
4998	.004	0.68467	1	1.3607118412	1.
. 1	1.*	1	1		

Each subject has multiple records, one per assessment

Level 1: Within-Person Change over Time

$$Y_{ij} = \left[\pi_{0i} + \pi_{1i}(time_{ij})\right] + \left[\varepsilon_{ij}\right]$$


Level 1 model



Level 2: Differences in Change Across People

$$\pi_{0i} = \gamma_{00} + \gamma_{01}INTVN + \zeta_{0i}$$

$$\pi_{1i} = \gamma_{10} + \gamma_{11}INTVN + \zeta_{1i}$$

Level 2 submodels

Outline

- Introduction to types of longitudinal studies and models
- Real-world example: Modeling the change in health-related quality of life (HRQoL) in patients with advanced HIV
 - OPTIMA
 - Exploratory analysis
 - Models

Research Questions

- What is the longitudinal effect of treatment intensification on HRQoL in patients with advanced HIV?
- What is the effect of ongoing serious adverse events (a time-dependent predictor) on HRQoL?

Model for longitudinal treatment effect

■ What is the longitudinal effect of treatment intensification on HRQoL in patients with advanced HIV?

$$Y_{ij} = \left[(\gamma_{00} + \gamma_{10}TIME_{ij} + \gamma_{01}INTVN_i + \gamma_{11}(INTVN_i \times TIME_{ij}) \right] + \left[\zeta_{0i} + \zeta_{1i}TIME_{ij} + \varepsilon_{ij} \right]$$

$$\overline{HUI3}_{ij} = \left[(\gamma_{00} + \gamma_{10}TIME_{ij}) + \gamma_{01}INTENSIFY_i + \gamma_{11}(INTENSIFY_i \times TIME_{ij}) \right] + \left[\zeta_{0i} + \zeta_{1i}TIME_{ij} + \varepsilon_{ij} \right]$$

```
proc mixed data = qol;
                              /*1. Evokes mixed procedure, identifies dataset, specifies */
                                   default estimation method or restrict max likelihood*/
model hui3 =
                              /*2. Dependent variable, QOL instrument HUI3*/
                              /*3. Time in years*/
ltime vears
                              /*4. Intensification group indicator*/
intensify
time years*intensify
                              /*5. Interaction term, time in years*intensification*/
/ solution ddfm=kr;
                              /*6. Significance tests for all fixed effects and Kenward-*/
                              /* Roger method of degrees of freedom*/
random int time years /
                              /*7. Specifies the intercept and time as random effects*/
subject=id
                              /*8. Specifies observations as nested within ID*/
                              /*9. Specifies an unstructured variance/covariance matrix*/
ltype=un;
                              /* for the random effects*/
run;
```

Results

The Mixed Procedure

Covariance Parameter Estimates										
Cov Parm	Subject	Estimate	Error	Value	Pr Z					
UN(1,1)	id	0.07349	0.006017	12.21	<.0001 /* Variance estimate for intercept*/					
UN(2,1)	id	-0.00416	0.001222	-3.41	0.0007 /* Covariance estimate for intercept and slope*/					
UN(2,2)	id	0.002837	0.000427	6.64	<.0001 /* Variance estimate for slope*/					
Residual		0.02942	0.000653	45.08	<.0001 /* Level 1 residual*/					

```
Fit Statistics

-2 Res Log Likelihood -1753.4

AIC (smaller is better) -1745.4

AICC (smaller is better) -1745.3

BIC (smaller is better) -1729.7
```

Results (cont'd)

$$HUI3_{ij} = \left[(\gamma_{00} + \gamma_{10}TIME_{ij} + \gamma_{01}INTENSIFY_i + \gamma_{11}(INTENSIFY_i \times TIME_{ij}) \right] + \left[\zeta_{0i} + \zeta_{1i}TIME_{ij} + \varepsilon_{ij} \right]$$

Solution for Fixed Effects

Effect

Standard				
Error	DF	t Value	Pr >	t

Intercept	0.5967	0.02056	358	29.02	<.0001 /* V ₀₀	* /
time_years	-0.01005	0.005510	191	-1.82	0.0696 /* γ ₁₀	*/
intensify	0.03245	0.02970	359	1.09	0.2754 /* γ ₀₁	*/
time years*intensify	-0.00348	0.007979	188	-0.44	$0.6634 /* \gamma_{11}$	*/

Conclusions:

Estimate

- no sustained differences in HUI3 HRQoL scores between the 2 groups and over time

Research Questions

- What is the longitudinal effect of treatment intensification on HRQoL in patients with advanced HIV?
- What is the effect of ongoing serious adverse events (a time-dependent predictor) on HRQoL?

Model for effect of ongoing serious adverse events (SAE)

■ What is the effect of ongoing serious adverse events on HRQoL?

$$HUI3_{ij} = \left[(\gamma_{00} + \gamma_{10}TIME_{ij} + \left[\gamma_{20}SAE_{ij} \right] + \left[\gamma_{30}SAE_{ij} \times TIME_{ij} \right] \right) + \left[\zeta_{0i} + \zeta_{1i}TIME_{ij} + \varepsilon_{ij} \right]$$

```
proc mixed data = qol;
                              /*1. Evokes mixed procedure, identifies dataset, specifies */
                                   default estimation method or restrict max likelihood*/
                              /*2. Dependent variable, QOL instrument HUI3*/
model hui3 =
time years
                              /*3. Time in years*/
                              /*4. Indicator ongoing serious adverse event (SAE) */
sae ongoing
time years*sae ongoing
                              /*5. Interaction term, time in years*SAE*/
/ solution ddfm=kr;
                              /*6. Significance tests for all fixed effects and Kenward-*/
                                   Roger method of degrees of freedom*/
random int time years /
                              /*7. Specifies the intercept and time as random effects*/
subject=id
                              /*8. Specifies observations as nested within ID*/
                              /*9. Specifies an unstructured variance/covariance matrix*/
type=un;
                              /* for the random effects*/
run;
```

Results

$$HUI3_{ij} = \left[(\gamma_{00} + \gamma_{10}TIME_{ij} + \gamma_{20}SAE_{ij} + (\gamma_{30}SAE_{ij} \times TIME_{ij}) \right] + \left[\zeta_{0i} + \zeta_{1i}TIME_{ij} + \varepsilon_{ij} \right]$$

Solution for Fixed Effects

Standard

Effect	Estimate	Error	DF	t Value	Pr >	t	
--------	----------	-------	----	---------	------	---	--

Intercept	0.6130	0.01483	363	41.32	<.0001 /* γ ₀₀	* /
time_years	-0.00922	0.003879	192	-2.38	0.0185 /* γ ₁₀	* /
sae_ongoing	-0.03967	0.02604	4575	-1.52	0.1278 /* γ ₂₀	* /
time year*sae ongoin	-0.03445	0.01116	4429	-3.09	0.0020 /* γ ₃₀	*/

Conclusions:

- Effect of ongoing SAE status varies over time
- Rate of change in HUI3 scores over time differs by ongoing SAE status

-.009/year (no ongoing SAEs)

VS.

-.04/year (ongoing SAEs; -0.00922+ -0.03445)

A few final notes

- Centering
 - Simplifies interpretation
 - -2x2 trial?
 - Treatment A, Treatment B, Both
 - \bullet 0.5 = patient randomized to the group
 - -0.5 = patient not randomized to the group
 - Ex. Randomized to both? A=.5; B=.5; AB=.25

A few final notes (cont'd)

■ Model fit

- Deviance statistic (-2 Res Log Likelihood)
 - Models must be estimated using identical data
 - Models must be nested within one another
- Akaike Information Criteria (AIC)/Bayesian Information Criteria (BIC)
 - Models must be fit to the identical set of data; not-nested OK
 - Smaller information criterion is better
 - Raftery (1995) on BIC
 - 0-2 "weak"
 - 2-6 "positive"
 - 6-10 "strong"
 - − >10 "very strong"

Summary

- Introduction to growth curve modeling.
- Application of growth curve modeling to longitudinal quality of life data from OPTIMA.
- Growth curve modeling is powerful and flexible!

Suggested References

- Fairclough DL. *Design and Analysis of Quality of Life Studies in Clinical Trials*. 2nd ed. Boca Raton, FL: Chapman and Hall/CRC Press; 2010.
- Singer JD, Willett JB. *Applied Longitudinal Analysis*. *Modeling Change and Event Occurrence*. 1st ed. New York, NY: Oxford University Press; 2003.
 - http://www.ats.ucla.edu/stat/examples/alda/
- UCLA Academic Technology Service Statistical Computing
 - http://www.ats.ucla.edu/stat/

Questions?

- Next presentation February 1, 2012
 - Budget Impact Analysis (Patsi Sinnott, P.T., Ph.D., M.P.H.)
 - Register: http://www.hsrd.research.va.gov/cyberseminars/catalogupcoming.cfm?SeriesSort=HCEA

Vilija R. Joyce, MS
Health Economics Resource Center (HERC)
VA Palo Alto Healthcare System
795 Willow Road (152)
Menlo Park, CA USA
(650) 493-5000 ext. 2-23852
vilija.joyce@va.gov