9 Factors that Influence Prescribers' Response to Alerts at the Point-of-Care: Implications for VA Order Check Design

Alissa L. Russ, PhD alissa.russ@va.gov

Research Scientist Roudebush VA HSR&D Center of Excellence on Implementing Evidence-Based Practice (CIEBP) Regenstrief Institute, Inc.

Adjunct Assistant Professor Purdue University College of Pharmacy

My Background

- Human Factors Engineering:
 - design of technology, processes, and work systems so they are compatible with human cognitive and physical capabilities and limitations

Audience Question #1

What is your primary role in the VA?

- a. informatics
- b. patient care
- c. research
- d. other
- e. work outside the VA

Outline

- 1. Overview of VA alerts
- 2. Results from field observations and interviews with VA prescribers
- 3. Framework for prescriber–alert interaction
- 4. Describe potential implications for VA alert design and medication safety

Computerized Medication Alerts

Background:

1.5 million preventable adverse drug events annually in U.S. (IOM, 2006)

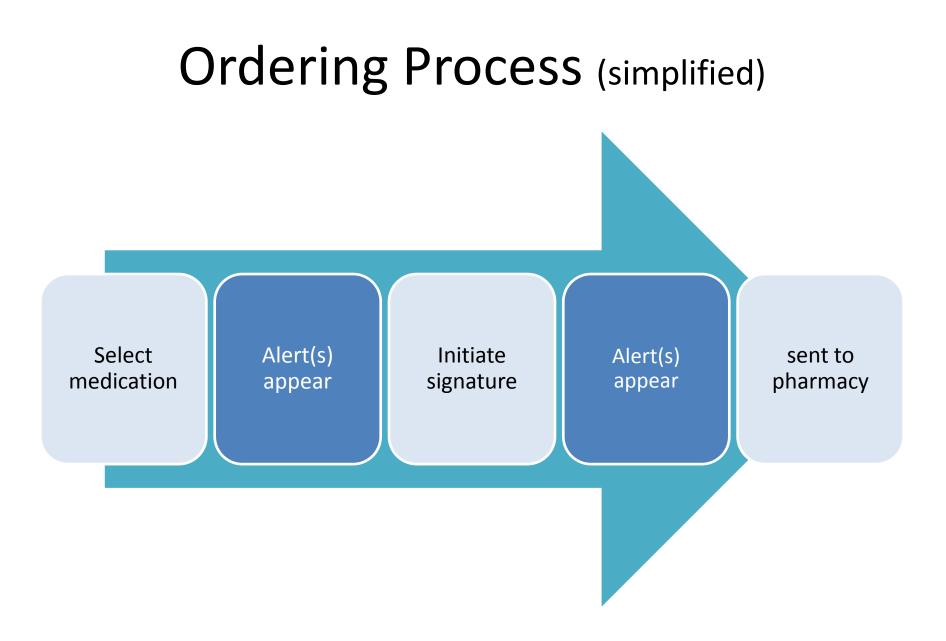
Literature:

- Alert fatigue (Grizzle et al, 2007)
- Database analyses, surveys (Van der Sijs et al, 2006)

Study Aim:

Identify factors that influence how prescribers perceive and respond to alerts at the point-of-care

Medication Alerts (i.e. order checks)


plicate drug order: Hold LISINOPRIL T. R HIGH BLOOD PRESSURE (HOLD)	λΒ ZUMLa	I I AKE U	INE TABLET	UHALLY EVE	HY DAY
50			10		
Accept 0	rder	Cancel	Order		

Medication Alerts (i.e. order checks)

Order Checking
Previous adverse reaction to: PENICILLIN (LOCAL)
Accept Order Cancel Order

Medication Alerts (i.e. order checks)

Order Checks	
PENICILLIN VK TAB-250MG TAKE ONE TABLET ORALLY EVERY 6 HOURS Quantity: 120 Refills: 0 *UNSIGNED*	
Previous adverse reaction to: PENICILLIN (LOCAL)	
	Cancel Selected Order(s)
Enter justification for overriding critical order checks -	
J	
Continue	

Audience Question #2:

- According to human factors science, what is the primary way that providers learn about how health IT is designed and intended to be used for patient care?
 - a. operations manual
 - **b**. from their peers
 - c. training sessions
 - d. software interface design
 - e. talk to the developers

Answer for Question #2:

- According to human factors science, what is the primary way that providers learn about how health IT is designed and intended to be used for patient care?
 - a. operations manual
 - b. from their peers
 - c. training sessions
 - d. software interface design
 - e. talk to the developers

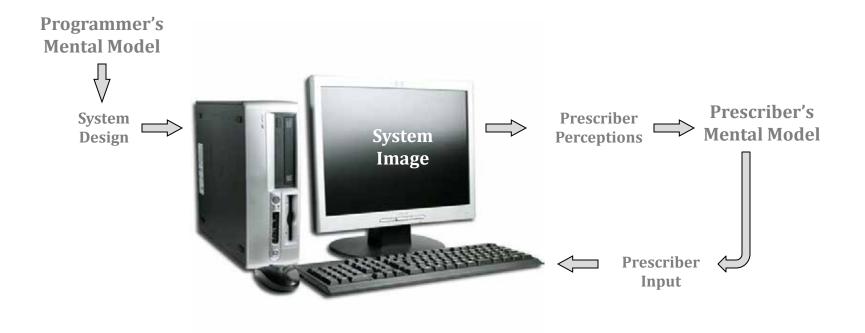
Methods

- Field observations and interviews
 - Major Midwestern VA Medical Center
 - ½ day per prescriber
 - NPs, MDs, Clinical Pharmacists
- Qualitative analysis
 - Inductive, emergent themes (Campbell 2006; Patterson 2002)
 - Team consensus
 - MAXQDA software

Data Analysis

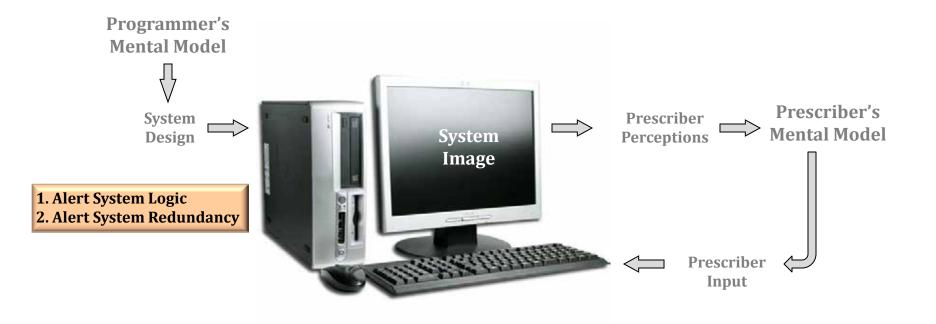
Observations				
Total hrs	102.8 hrs			
Typed Notes	351 pgs			
Patients	146			
Alerts	320			
Qualitative Analysis				
Meetings	30 (27.5 hrs)			

Jason Saleem PhD Alan Zillich PharmD Sue McManus PhD, NP


Recruiting Results

Prescribers	N=30
Primary Care (PC)	20 prescribers: 5 PC teams 4 per team
Specialty clinics	10 prescribers 8 clinics
Expertise	18 physicians 7 nurse practitioners 5 pharmacists
Age	42 (27-63) yrs
Years in VA	10 (<1-24) yrs
Gender	14M/16F

Results: prescriber-alert interaction


- 44 themes
- 9 overarching factors
- framework

Underlying Framework

From Norman 1990 and adapted by Russ et al 2012 for prescribing

Prescriber-Alert Interaction

Norman 1990 Russ et al, *IJMI* 2012

1. Alert System Logic


- External Crosschecks:
 - Compares VA meds across VAMCs
 - Compares VA meds to entered non-VA meds
 - Perceived as strength of VA alert system
- <u>Detection</u> (over/under detection)
 - Identified gaps; prescribers wanted <u>more</u> alerts for:
 - lithium
 - thyroid and liver function
 - non-steriodal anti-inflammatory drugs (NSAIDs)
 - medications that can affect psychiatry patients

2. Alert System Redundancy

Repetition within an encounter

- Example:
 - 1: NP orders niacin; alert for niacin/pravastatin
 - 2: NP signs order, alert appears again
 - 3: NP orders pravastatin; alert for pravastatin/niacin
 - 4: NP signs order, alert appears again
 - Observer noted: We have now seen the same alert
 4 times in last 10 min or less.

Prescriber-Alert Interaction

Norman 1990 Russ et al, *IJMI* 2012

3. Alert Display

- 5 themes included:
 - <u>Format</u>
 - <u>Salience</u>
 - <u>Timing</u>
 - Level of intrusiveness
 - <u>Retrievability</u>
- "Redesigning Medication Alerts to Support Prescriber Workflow"
 - HSR&D grant PPO #09-298
 - Coming soon to a journal near you...

4. Alert Content

Specification: explanation of why an alert was triggered

Order check appears:

Duplicate drug class, non- opioids [antitussives]/expectorants. Non-VA medication guiafenesin.

MD: "I don't even know what that means. It says expectorants, but it doesn't say what the other [medication] is. It says non-VA medication guiafenesin, but you're [pt 4] getting that here, right?"

Audience Question #3

Out of the 30 prescribers in the study, data from _____ prescribers indicated that there was confusion about why alerts were triggered.

- a. less than 5
- **b**. 5-9
- **c.** 10-19
- d. more than 20

Audience Question #3

Out of the 30 prescribers in the study, data from

<u>21</u> prescribers indicated that there was confusion about why alerts were triggered.

- a. less than 5
- **b.** 5-9
- **c.** 10-19
- d. more than 20

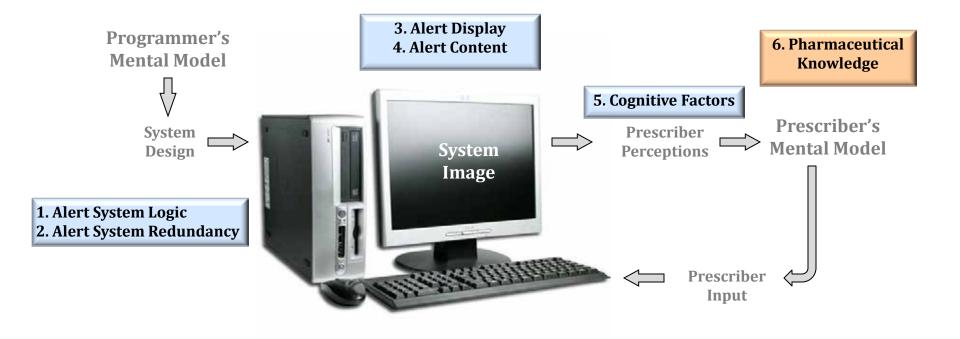
Implication: a lack of specification poses a substantial barrier to resolving alerts; additional attention is needed on the clinical content presented by alerts

Prescriber-Alert Interaction

Norman 1988 Russ et al, *IJMI* 2012

5. Cognitive factors Audience Question #4:

In this study, alerts sometimes supported <u>awareness</u> by providing *new* information for prescribers. Prescribers found alerts particularly helpful for:


- a. new patients
- b. new medications
- c. medications they rarely prescribed
- d. allergies documented by someone else
- e. all of the above

Answer for #4:

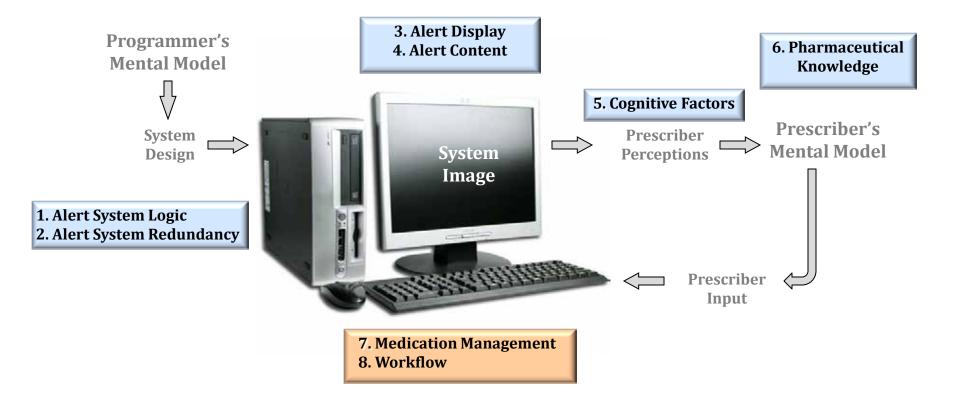
In this study, alerts sometimes supported <u>awareness</u> by providing *new* information for prescribers. Prescribers found alerts particularly helpful for:

- a. new patients
- b. new medications
- c. medications they rarely prescribed
- d. allergies documented by someone else
 e. <u>all of the above</u>

Prescriber-Alert Interaction

Norman 1990 Russ et al, *IJMI* 2012

6. Pharmaceutical Knowledge:


6. Pharmaceutical Knowledge:

- <u>Pharmacist consultation and proximity</u>: pharmacists consulted in real-time to help resolve alerts
- "Physicians are not trained like pharmacists. We have to learn what a significant, clinically-relevant interaction <u>is</u>."
 - VA physician

• Implications:

- Alert language, information currently inadequate
- Universal design needed for alerts to help support prescribers with different training and levels of experience

Prescriber-Alert Interaction

Norman 1990 Russ et al, *IJMI* 2012

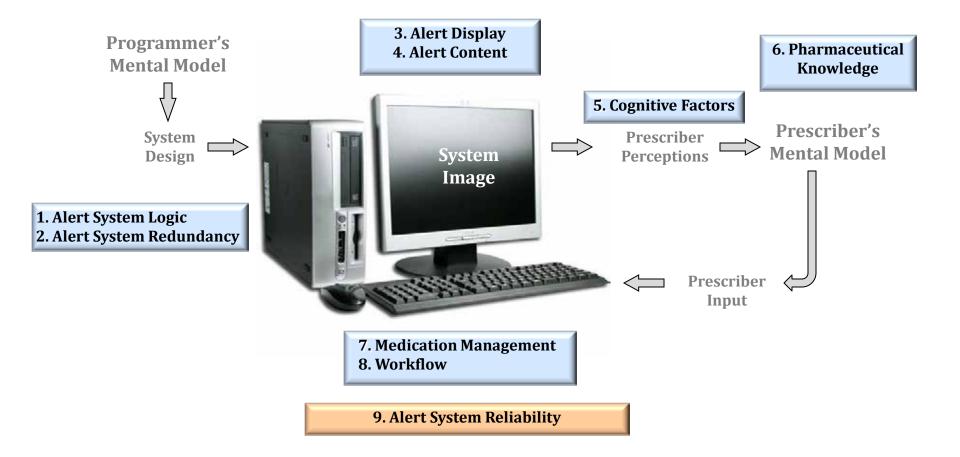
7. Medication Management

- <u>Computerized Provider Order Entry (CPOE) design</u>
 - CPOE design sometimes hindered alert resolution
 - MD orders mycophenolate
 - Duplicate drug class alert: mycophenolate/azathioprine
 - MD overrides alert
 - MD explains: "I couldn't discontinue the [azathioprine] because it is coming from [another VAMC]....I can only tell the patient to stop it."
 - Implications: need more advanced CPOE and alert for EHR interoperability

8. Workflow Audience Question #5:

In this study, after computer delays reached _____, prescribers began expressing frustration.

- a. 10-15 sec
- b. 16-30 sec
- **c.** 31-60 sec
- d. 61-90 sec


Answer for #5:

In this study, after computer delays reached _____, prescribers began expressing frustration.

- a. <u>10-15 sec</u>
- b. 16-30 sec
- **c.** 31-60 sec
- d. 61-90 sec

Prescriber-Alert Interaction

Norman 1990 Russ et al, *IJMI* 2012

9. Alert System Reliability

- <u>Common care practices</u>:
 - alerts inappropriately warn against practices that apply to **broad** patient populations

Alert Trigger

• NPH* insulin/regular insulin/metformin

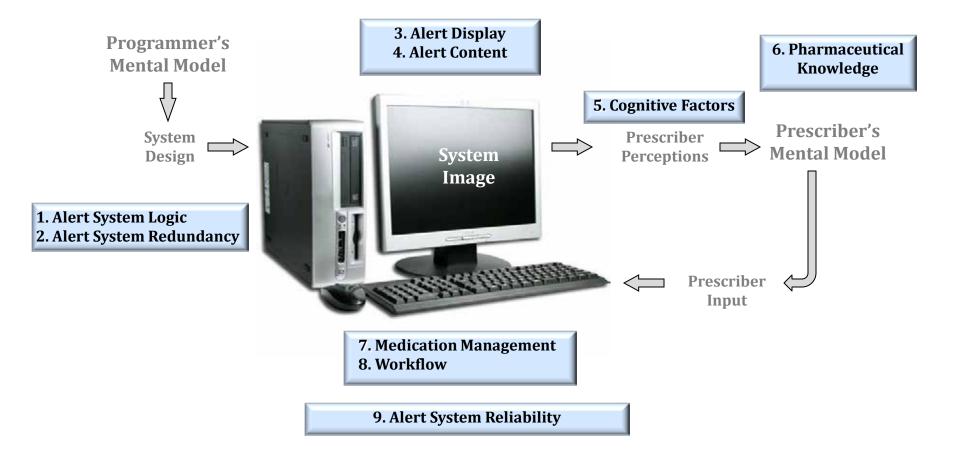
- **Prescriber Response**
- "There are tons of [diabetic] patients on this combination and that is safe."

• Mometasone with albuterol [inhalers].

 Duplicate drug class, antiretrovirals • "We have a lot of patients on multiple inhalers."

 "Each patient is on at least 3 antiretrovirals. The cocktail is how we treat patients."

9. Alert System Reliability


• Common care practices:

 alerts inappropriately warn against practices that apply to broad patient populations

Implications:

Reduce alerts that conflict with evidence

Prescriber-Alert Interaction

Norman 1990 Russ et al, *IJMI* 2012

Summary: alert design implications

- Alert interface is often a barrier for prescribers, and should be addressed along with alert fatigue
- Additional work is needed to understand how to present clinical content on alerts, so that alerts aid more prescriber types
- Need to prepare alert/CPOE systems for increased EHR interoperability

Conclusions

 One of first studies to examine alerts real-time at point-of-care

• Novel framework for prescriber-alert interaction

 Findings may inform alert redesigns to enhance patient safety "Some are critical interactions....For example, nitrates [and] phosphodiesterase inhibitors...

It has happened before where I didn't catch this interaction, but the computer did."

- Physician

INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS 81 (2012) 232-243

Prescribers' interactions with medication alerts at the point of prescribing: A multi-method, in situ investigation of the human–computer interaction

Alissa L. Russ^{*a,b,c,d,**}, Alan J. Zillich^{*a,c,d*}, M. Sue McManus^{*e*}, Bradley N. Doebbeling^{*a,b,d,f*}, Jason J. Saleem^{*a,b,d,g*}

^a Department of Veterans Affairs, Health Services Research and Development Center of Excellence on Implementing Evidence-Based Practice, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN, United States

^b Regenstrief Institute, Inc., Indianapolis, IN, United States

^c Department of Pharmacy Practice, Purdue University College of Pharmacy, West Lafayette, IN, United States

^d Indiana University (IU) Center for Health Services & Outcomes Research, Indianapolis, IN, United States

^o Department of Nephrology, Roudebush VAMC, Indianapolis, IN, United States

f Department of Medicine, IU School of Medicine, Indianapolis, IN, United States

⁸ Department of Electrical & Computer Engineering, Indiana University-Purdue University at Indianapolis (IUPUI), Indianapolis, IN, United States

Funding Support

- U.S. Department of Veterans Affairs, Veterans Health Administration
 - Health Services Research & Development (HSR&D)
- HSR&D Center of Excellence on Implementing Evidence-Based Practice (CIEBP)
 - Center grant #HFP 04-148
- Dr. Russ was supported by a VA HSR&D Associated Health Postdoctoral Fellowship
- Drs. Saleem and Zillich were supported by VA HSR&D Career Development Awards

Acknowledgements

- Study Participants
- Project Team
 - Jason Saleem, PhD
 - Alan Zillich, PharmD
 - Sue McManus, NP, PhD
 - Brad Doebbeling, MD, MSc

- Additional thanks:
 - Rich Frankel, PhD
 - Marshall Jones, PharmD
 - Kim Zipper, IT specialist
 - David Bickel, IT specialist
 - Bruce Molitoris, MD

Bibliography

- Campbell, E. M., Sittig, D. F., Ash, J. S., Guappone, K. P., & Dykstra, R. H. (2006). Types of unintended consequences related to computerized provider order entry. *J Am Med Inform Assoc, 13(5), 547-556*.
- Grizzle, A. J., Mahmood, M. H., Ko, Y., Murphy, J. E., Armstrong, E. P., Skrepnek, G. H., et al. (2007). Reasons provided by prescribers when overriding drug-drug interaction alerts. *Am J Manag Care*, 13(10), 573-578.
- Institute of Medicine of the national academies. (July 2006), Preventing medication errors. Report brief.
- Norman, D. A. (1990). *The Design of Everyday Things* (1st ed.). New York, NY: Doubleday.
- Patterson, E. S., Cook, R. I., & Render, M. L. (2002). Improving patient safety by identifying side effects from introducing bar coding in medication administration. *J Am Med Inform Assoc, 9(5), 540-553*.
- Russ AL, Zillich AJ, McManus MS, Doebbeling BD, Saleem JJ. (2012) "Prescribers' Interactions with Medication Alerts at the Point of Prescribing: A Multi-Method, In Situ Investigation of the Human-Computer Interaction", International Journal of Medical Informatics, 81(4):232-243.
- Van der Sijs, H., Aarts, J., Vulto, A., & Berg, M. (2006). Overriding of drug safety alerts in computerized physician order entry. *J Am Med Inform Assoc, 13(2), 138-147.*

Thank you!

alissa.russ@va.gov

