Iron-Phosphate Glasses for Immobilization of Radioactive Technetium

Prepared for the U.S. Department of Energy Assistant Secretary for Environmental Management

P.O. Box 450 Richland, Washington 99352

> Approved for Public Release; Further Dissemination Unlimited

Iron-Phosphate Glasses for Immobilization of Radioactive Technetium

K. Xu POSTEC

J. Heo POSTEC

P. R. Hrma Pacific Northwest National Laboratory

Date Published March 2012

To be Presented at WasteManagement'12

WM Symposia Phoenix, Arizona

26 February - 1 March 2012

Prepared for the U.S. Department of Energy Assistant Secretary for Environmental Management

P.O. Box 450 Richland, Washington 99352

Copyright License

By acceptance of this article, the publisher and/or recipient acknowledges the U.S. Government's right to retain a non exclusive, royalty-free license in an to any copyright covering this paper.

APPROVED	
By J. D. Aardal at 9:37 am, Mar 19, 2012	J

Release Approval

Date

Approved for Public Release; Further Dissemination Unlimited

A. A. Kruger Department of Energy - Office of River Protection W. Um POSTEC

LEGAL DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herin to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Unites States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced from the best available copy.

Printed in the United States of America

Student Presentation

February 26 - March 1, 2012 Phoenix, Arizona

Iron-Phosphate Glasses for Immobilization of Radioactive Technetium

Abstract 12216

Kai Xu and Jong Heo

Department of Materials Science and Engineering and Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), S. Korea

Wooyong Um and Pavel Hrma

Division of Advanced Nuclear Engineering, POSTECH, S. Korea, and Pacific Northwest National Laboratory, USA

Outline

Introduction

- Concern on Technetium (Tc)-99
- Proposed waste-forms for Tc-99
- Iron-phosphate glasses

Experimental Procedures

Morphology, structure characterization
 Chemical analysis

Summary

Concerns on Tc-99

TcO₄⁻:
1) High solubility in water and acids;
2) High mobility;
3) Easy transport through the environment (cannot be adsorbed on sediments).

3/25

Vitrification of Tc using borosilicate glasses

Metallic alloys

1) Stainless steel-15Zr (wt%) as the matrix;

2) High T (~1600 °C) under argon atmosphere (Tc metal as source);

3) Tc goes into ferrite phase (Max. Tc loading: <2 wt%).

5/25

D. D. Keiser Jr et al., J. Nucl. Mater., 277 (2000) 333.

Chemically bonded ceramic forms

Low temperature (<150 °C)

MgO+KH₂PO₄+5H₂O=MgKPO₄·6H₂O;
 Max. Tc loading: ~900 ppm.

6/25

D. Singh et al., J. Nucl. Mater., 348, (2006) 272.

Iron-containing minerals

$Tc(VII)O_{4}^{-} + 3Fe^{2+} + (n+7)H_{2}O =$ $Tc(IV)O_{2} nH_{2}O_{(s)} + 3Fe(OH)_{3(s)} + 5H^{+}$

Tc (IV) enters into Fe(II)-goethite (or magnetite) structure;
 Low Tc release;
 Max. Tc loading: <1000 ppm.

7/25

W. Um et al., Environ. Sci. Technol. 45 (2011) 4904

Iron-phosphate glasses

Fe-P glass structure

Low melting *T*: ~900-1100 °C;
 High waste loading;
 Chemically durable P-O-Fe bonds in glass structure.

8/25

X. Yu et al., J. Non-Cryst. Solids 215, (1997) 21.

Iron-phosphate glasses

Fe-P glasses as waste-forms

Other volatile elements

Immobilize low-activity wastes

	S	Cs	Re*
Contents in	~1.8	~0.12	~0.03
glasses (wt%)			

*:Re as a surrogate for Tc-99.

D. E. Day et al., US DOE Report, June 30, 2011.

The content of Re in Fe-P glasses was very low, and release of Re was unavailable.

Investigate the vitrification of Tc into Fe-P glasses.

Increase the incorporation of Tc into Fe-P glasses.

Examine the chemical durability of Tc-containing Fe-P glasses.

3. Experimental Procedures

4. Results & Discussion

Batch and analyzed (XRF) XRD patterns of glass frits composition of glass frits and Re-containing waste forms **Glass** frits Oxide 600 **Glass** frits (wt%) XRF* Batch **Re-containing** waste-forms 500 P_2O_5 45.5 47.0 ntensit 400 12.2 Na₂O 11.8 30.8 Fe₃O₄ 31.8 300 AI_2O_3 4.6 3.9 200-CaO 4.2 4.3 100 20 F 2.7 0.530 40 50 60 2 Theta ($^{\circ}$) 100.0 99.3 Total

*:Average values.

Satisfactory agreement.

Crystals were not detectable with XRD.

Glass with 1.5 KReO₄ addition

Photo

Optical Microscope

Tiny crystals containing, but less than 2 wt%.

13/25

Different KReO₄ addition

Visible gray crystals, less than 5 wt%.

4: Visible gray and white crystals;
6: Isolated white crystals.

Photos

Different KReO₄ addition

Optical microscopes

Crystal content: <5 wt%.

Tiny and small crystals exist in the glasses.

15/25

Crystal phases identification

Re distribution in glasses

EDX mapping of Re

Uniform distribution, no Re-rich phase.

Re content in Glasses

Analyzed (ICP-MS) Re retained in Fe-P glasses

KReO ₄ (wt%)	Re addition (wt%)	Retained Re (wt%)	Retention (%)	
1.5	0.97	0.50	52	
2	1.29	0.65	50	
3	1.93	0.88	46	
4*	2.57	1.12	44	
6*	3.86	1.13	29	

*: Glasses separated with KReO₄

~50 % of Re can be retained in glasses.
 ~1 % Re loading in Fe-P glasses;

18/25

Re volatility in Fe-P glasses

Re retention in glasses with 2 wt% KReO₄ addition.

Re retention decreased with increasing melting time or *T*.
 Re volatility is sensitive with melting conditions.

Chemical durability test

Normalized results

r_i (g/cm³) for different Re addition (PCT-7days)

KReO ₄	r _{Re}	r _{Na}	r _P	r _{Fe}	r _{AI}	r _{Ca}
1.5	8.4×10 ⁻²	0.15	4.3×10 ⁻²	<10 ⁻⁴	1.9×10 ⁻²	1.5×10 ⁻³
2	6.3×10 ⁻²	0.19	3.8×10 ⁻²	<10 ⁻⁴	5.8×10 ⁻³	3.7×10 ⁻³
3	6.4×10 ⁻²	0.17	5.1×10 ⁻²	<10 ⁻⁴	1.5×10 ⁻²	2.8×10 ⁻³
4	6.8×10 ⁻²	0.19	5.8×10 ⁻²	<10 ⁻⁴	9.4×10 ⁻³	3.7×10 ⁻³

r_i (g/cm³) for PCT-7, 14 and 21 days (2 wt% addition)

Days	r _{Re}	r _{Na}	r _P	r _{Fe}	r _{Al}	r _{Ca}
7	6.3×10 ⁻²	0.19	3.8×10 ⁻²	~10 ⁻⁴	5.8×10 ⁻³	3.7×10⁻³
14	7.2×10 ⁻²	0.23	4.6×10 ⁻²	~10 ⁻⁴	8.3×10 ⁻³	3.7×10 ⁻³
21	9.4×10 ⁻²	0.27	5.5×10 ⁻²	~10 ⁻⁴	1.1×10 ⁻²	3.9×10 ⁻³

Normalized Re release was in the level of $\sim 10^{-2}$.

Plot of r_i

Semi log plot of Re, Na and P releases.

Comparison

Different waste-forms comparison

	Fe-P glass	BS glass	MKP ceramics	Fe-containing minerals	Metallic alloys
Tc (Re) release (g/m²)	~10 ⁻²	>10 ⁻²	~10 ⁻¹	~10 ⁻³	<10 ⁻²
Loading (ppm)	~1×10 ⁴	~2000	~900	<1000	<2×10 ⁴
Retention (wt%)	~50	<10	>95	>95	No data (?)
Processing	Easy	Easy	Complex	Complex	Complex

Fe-P glasses is a promising candidate for immobilizing Tc-99

5. Summary

Fe-P glass of 42P₂O₅-25Na₂O-5Al₂O₃-10CaF₂-18Fe₃O₄ (mol%) was investigated to immobilize Tc.

Two-step method was used to prepare Re-containing Fe-P glasses. (1050°C for 30 min+1000°C for 10 min.)

Re loading in Fe-P glass was as high as~1wt%, and its volatilization was as low as ~50%.

Normalized Re and other elements release of PCT-7 was satisfied DOE limitation.

Fe-P glass can be as a candidate for immobilizing Tc.

Supported by World Class University program through the National Research Foundation of Korea

Thanks for your attention and comments!

February 26 - March 1, 2012 Phoenix, Arizona

25/25