9.6 Relations to Other Functions9.8 Modulus and Phase

§9.7 Asymptotic Expansions

Contents

§9.7(i) Notation

Here \delta denotes an arbitrary small positive constant and

9.7.1\zeta=\tfrac{2}{3}z^{{\ifrac{3}{2}}}.

Also u_{0}=v_{0}=1 and for k=1,2,\ldots,

9.7.2
u_{k}=\frac{(2k+1)(2k+3)(2k+5)\cdots(6k-1)}{(216)^{k}(k)!},
v_{k}=\frac{6k+1}{1-6k}u_{k}.

Lastly,

9.7.3\chi(n)=\pi^{{\ifrac{1}{2}}}\mathop{\Gamma\/}\nolimits\!\left(\tfrac{1}{2}n+1\right)/\mathop{\Gamma\/}\nolimits\!\left(\tfrac{1}{2}n+\tfrac{1}{2}\right).

Numerical values of this function are given in Table 9.7.1 for n=1(1)20 to 2D. For large n,

9.7.4\chi(n)\sim(\tfrac{1}{2}\pi n)^{{\ifrac{1}{2}}}.
Table 9.7.1: \chi(n).
n \chi(n) n \chi(n) n \chi(n) n \chi(n)
1 1.57 6 3.20 11 4.25 16 5.09
2 2.00 7 3.44 12 4.43 17 5.24
3 2.36 8 3.66 13 4.61 18 5.39
4 2.67 9 3.87 14 4.77 19 5.54
5 2.95 10 4.06 15 4.94 20 5.68

§9.7(ii) Poincaré-Type Expansions

9.7.13\mathop{\mathrm{Bi}\/}\nolimits\!\left(ze^{{\pm\pi i/3}}\right)\mathrel{\sim}\sqrt{\frac{2}{\pi}}\frac{e^{{\pm\pi i/6}}}{z^{{1/4}}}\*\left(\mathop{\cos\/}\nolimits\!\left(\zeta-\tfrac{1}{4}\pi\mp\tfrac{1}{2}i\mathop{\ln\/}\nolimits 2\right)\sum _{{k=0}}^{{\infty}}(-1)^{k}\frac{u_{{2k}}}{\zeta^{{2k}}}+\mathop{\sin\/}\nolimits\!\left(\zeta-\tfrac{1}{4}\pi\mp\tfrac{1}{2}i\mathop{\ln\/}\nolimits 2\right)\sum _{{k=0}}^{{\infty}}(-1)^{k}\frac{u_{{2k+1}}}{\zeta^{{2k+1}}}\right),|\mathop{\mathrm{ph}\/}\nolimits z|\leq\tfrac{2}{3}\pi-\delta,
9.7.14{\mathop{\mathrm{Bi}\/}\nolimits^{{\prime}}}\!\left(ze^{{\pm\pi i/3}}\right)\mathrel{\sim}\sqrt{\frac{2}{\pi}}e^{{\mp\pi i/6}}z^{{1/4}}\*\left(-\mathop{\sin\/}\nolimits\!\left(\zeta-\tfrac{1}{4}\pi\mp\tfrac{1}{2}i\mathop{\ln\/}\nolimits 2\right)\sum _{{k=0}}^{{\infty}}(-1)^{k}\frac{v_{{2k}}}{\zeta^{{2k}}}+\mathop{\cos\/}\nolimits\!\left(\zeta-\tfrac{1}{4}\pi\mp\tfrac{1}{2}i\mathop{\ln\/}\nolimits 2\right)\sum _{{k=0}}^{{\infty}}(-1)^{k}\frac{v_{{2k+1}}}{\zeta^{{2k+1}}}\right),|\mathop{\mathrm{ph}\/}\nolimits z|\leq\tfrac{2}{3}\pi-\delta.

§9.7(iii) Error Bounds for Real Variables

In (9.7.5) and (9.7.6) the nth error term, that is, the error on truncating the expansion at n terms, is bounded in magnitude by the first neglected term and has the same sign, provided that the following term is of opposite sign, that is, if n\geq 0 for (9.7.5) and n\geq 1 for (9.7.6).

In (9.7.7) and (9.7.8) the nth error term is bounded in magnitude by the first neglected term multiplied by 2\chi(n)\mathop{\exp\/}\nolimits\left(\sigma\pi/(72\zeta)\right) where \sigma=5 for (9.7.7) and \sigma=7 for (9.7.8), provided that n\geq 1 in both cases.

In (9.7.9)–(9.7.12) the nth error term in each infinite series is bounded in magnitude by the first neglected term and has the same sign, provided that the following term in the series is of opposite sign.

§9.7(iv) Error Bounds for Complex Variables

When n\geq 1 the nth error term in (9.7.5) and (9.7.6) is bounded in magnitude by the first neglected term multiplied by

9.7.17
2\mathop{\exp\/}\nolimits\!\left(\frac{\sigma}{36|\zeta|}\right),
2\chi(n)\mathop{\exp\/}\nolimits\!\left(\frac{\sigma\pi}{72|\zeta|}\right)or
\frac{4\chi(n)}{|\mathop{\cos\/}\nolimits\!\left(\mathop{\mathrm{ph}\/}\nolimits\zeta\right)|^{n}}\mathop{\exp\/}\nolimits\!\left(\frac{\sigma\pi}{36|\Re\zeta|}\right),

according as |\mathop{\mathrm{ph}\/}\nolimits z|\leq\tfrac{1}{3}\pi, \tfrac{1}{3}\pi\leq|\mathop{\mathrm{ph}\/}\nolimits z|\leq\tfrac{2}{3}\pi, or \tfrac{2}{3}\pi\leq|\mathop{\mathrm{ph}\/}\nolimits z|\leq\pi. Here \sigma=5 for (9.7.5) and \sigma=7 for (9.7.6).

Corresponding bounds for the errors in (9.7.7) to (9.7.14) may be obtained by use of these results and those of §9.2(v) and their differentiated forms.

For other error bounds see Boyd (1993).

§9.7(v) Exponentially-Improved Expansions

In (9.7.5) and (9.7.6) let

with n=\left\lfloor 2|\zeta|\right\rfloor. Then

where

9.7.22G_{p}(z)=\frac{e^{z}}{2\pi}\mathop{\Gamma\/}\nolimits\!\left(p\right)\mathop{\Gamma\/}\nolimits\!\left(1-p,z\right).

(For the notation see §8.2(i).) And as z\rightarrow\infty with m fixed

9.7.23R_{{m,n}}(z),S_{{m,n}}(z)=\mathop{O\/}\nolimits\!\left(e^{{-2|\zeta|}}\zeta^{{-m}}\right),|\mathop{\mathrm{ph}\/}\nolimits z|\leq\tfrac{2}{3}\pi.

For re-expansions of the remainder terms in (9.7.7)–(9.7.14) combine the results of this section with those of §9.2(v) and their differentiated forms, as in §9.7(iv).

For higher re-expansions of the remainder terms see Olde Daalhuis (1995, 1996), and Olde Daalhuis and Olver (1995a).