
Error correcting codes

In our daily activity we routinely send and receive,
i.e. exchange, information. Our reliability require-
ments can vary but often it becomes especially im-
portant to keep the transmitted information uncor-
rupted, prone to errors. A long time ago people got
the idea of redundancy: reduce the probability of er-
ror by transmitting more information than actually
needed. For example, if one wants to spell the word
“code” via phone he/she may say “Charlie, Oscar,
Delta, Echo”, so it is fairly easy to guess the 1st in-
formative letters even if the connection is not perfect.

In 1948 Claude Shannon put the ancient idea on
the solid mathematical footing proving that error-free
communication in the noisy environment is possi-
ble in principle. In digital world the information is
usually sent as a sequence of bits — 0s and 1s. In-
stead of transmitting L information bits one first pre-
converts them into N coded bits with N � L redundant
bits helping to correct transmission errors at the other
end of communication line. The simplest example is
given by the famous Shannon code: 0 is encoded as
000, 1 is encoded as 111. The receiver decodes the
message by voting between 0s and 1s. If 0 (coded as
000) is sent, then the error is detected only if the mes-
sage corrupted in the result of transmission becomes
011, 101, 110, or 111, i.e. if more then two bits are
flipped. If the communication channel is good, one
flip is rare and the simultaneous flip of two bits is
even less probable.

Optimal decoding corresponds to funding preim-
age (code word) that is most probable given the de-
tected (i.e. corrupted by noise) signal. This Max-
imal Likelihood method is optimal (one cannot do
better then that) but expensive as it requires subse-
quent comparison of 2L code words, i.e. the com-
putational complexity grows exponentially with the
code length.

In 1961 Robert Gallager invented Low Density
Parity Check (LDPC) codes, that are codes with
the so-called parity check matrix being sparse.
For LDPC decoding Gallager suggested to use
approximate (thus suboptimal) but computa-
tionally efficient method of iterative decoding.
These remarkable codes and iterative decod-
ing scheme were soon forgotten for nearly 30
years, to become reinvented in mid-90’s. Now,
LDPC codes are believed to be one of the best

performing long codes ever invented (see, e.g.,
http://www.flarion.com/products/vector.asp).

Figure 1: Parity check 240 � 120 matrix of Margulis
code with p � 5.

The idea of the heuristic decoding proposed by
Gallager is simple: For any detected bit check how
many parity checks connected to the bit are satisfied.
If the number of “unhappy” checks exceeds the num-
ber of “happy” ones, flip the bit. The process contin-
ues till a code word is recovered (no error) or the al-
gorithm is stuck (unrecoverable error). The iterative
procedure just explained allows useful generalization
to the “soft” case, when detected signal is a real num-
ber, rather then 0 or 1 “hard” integer. Soft decoding
is known to perform better.

Bit-Error-Rate (BER) measuring relative number
of errors per transmitted sequence is the major char-
acteristics of an error-correction scheme (e.g. iter-
ative decoding of an LDPC code) performance. At
low values of the Signal-to-Noise-Ratio (SNR) BER
of an LDPC code can be analyzed numerically via
Monte Carlo simulations. It can also be shown that
in the low SNR range the performance of the itera-
tive decoding is close to the Maximum Likelihood
optimum.

The domain of higher SNR, lower BER is much
less explored/understood. However, it is well known
that performance of the iterative decoding becomes
seriously polluted with the SNR increase. The tran-
sition from good to bad regimes (in the iterative de-
coding performance) is often called the waterfall to
error-floor transition in the coding theory literature.

The main difficulty in the error floor analysis
stems from the fact that to access the challenging
domain of low errors one actually needs to analyze
very rare a-typical events. Actually, this difficulty
is not uncommon. In many problems of disordered
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and/or nonequilibrium statistical mechanics the chal-
lenge may also be in accessing rare a-typical events.
Moreover, there exist a special method, called opti-
mum fluctuation, instanton method, that is designed
specifically to attack the difficult task of rare event
analysis.

Our recent paper [1] adopts the generic instanton
method for calculation of BER of LDPC codes de-
tected iteratively. Brief description of the method
idea is as follows. Typical noise configuration is
small and the error probability falls down exponen-
tially with the noise amplitude (level) increase. The
instanton method is about finding such a special (op-
timal) configuration of the noise that makes the ma-
jor contribution into BER. The optimal configuration
has a very specific code-dependent shape. BER is
sharply picked at the optimum configuration: minor
distortion of the optimum configuration costs an es-
sential fall off in the error probability. Therefore, at
large SNR only optimal configuration and its minor
vicinity contribute BER.
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Figure 2: Optimal noise configuration as a function
of SNR. The code is represented by a tree-like Tanner
graph.

We found that for low SNR the optimal noise
configuration is localized in some finite vicinity of
the tested bit (that is the bit where BER is mea-
sured). With the SNR increase bits start to com-
municate with each other through adjusted parity
checks, leading to essential delocalization of the op-
timal configuration in the bit-space. The process of
the noise delocalization may go through some num-
ber of steps/transitions. Eventually (at large SNR)
the delocalized configuration becomes sensitive to
such global features of the LDPC code as loops on
the Tanner graph characterizing the code.

Furthermore, we discovered that in the case of it-
erative decoding BER at the largest values of SNR

SNR � 0 � 6 SNR � 0 � 824

Figure 3: Optimal noise configuration: tree-like
phase vs. loopy phase. The number of iterations in
iterative decoding is 8.

is fully explained by the code-specific instanton con-
figuration sensitive to some global characteristics of
the code [2]. This analysis offers comprehensive (i.e.
both qualitative and quantitative) explanation of the
error-floor phenomenon.
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Figure 4: Probability of error as function of SNR for
Margulis code with p � 5. Monte Carlo simulation
for 8 iterations (black line) and 32 iterations (blue
line) of iterative decoding, and optimal fluctuation
method prediction (green line).
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