

BNL Seminar

First T2K Neutrino Oscillation Results

Clark McGrew Stony Brook Univ. For the T2K Collaboration

- Background
- Experiment
 - → Accelerator
 - → Near Detectors
 - → Far Detector (SK)
- > Results
 - v_{μ} Disappearance Measurement
 - $\rightarrow v_e$ Appearance Search

The Earthquake

- As you might expect, the situation after the March 11 quake is changing rapidly
- No T2K collaborators or JPARC staff were injured
 - Most foreign collaborators left Japan following the quake
- Preliminary inspections are being carried out by on-site collaborators
 - ➤ No "significant" damage found
- KEK and JPARC are beginning to open for visitors
- Power is still limited
- > No official word on when the next T2K run will start

T2K Goals

- > Search for $v_{\mu} \rightarrow v_{e}$ (v_{e} appearance) consistent with $|\Delta m_{13}^{2}|$
 - → Observation will indicate non-zero θ_{13}
 - > But, sensitive to admixture of θ_{13} and δ_{CP}
 - First direct observation of v_e , v_{μ} or v_{τ} appearance
- > Precision measurement of $v_{\mu} \rightarrow v_{\mu} (v_{\mu} \text{ disappearance})$
 - → Measure $|\Delta m_{13}^2|$ and θ_{23}
- > Neutrino properties at $E_v \sim 700 \text{ MeV}$
 - → Narrow band off axis neutrino beam.

Neutrino Oscillation Redux

The T2K Collaboration

 ~ 500

Institutions

KEK/JAEA

ICRR

Members

T2K Overview

- ≻ Beam
 - → 30 GeV proton beam on 90 cm graphite target
 - 3 magnetic horns focus positively charged hadrons
- Beam Monitoring
 - Primary proton beam intensity, position, profile
 - Muon monitors after beam dump: secondary beam intensity/direction
- Near Detector at 280 m
 - → INGRID on-axis: v beam direction/intensity
 - ➤ ND280 off-axis: v beam flavor/flux/spectrum and cross-section
- ➢ Far Detector at 295 km @ 2.5 degree off-axis
 - ➤ Super-Kamiokande: v flavor/flux/spectrum

T2K Off Axis Neutrino Beam

- Pseudo-monochromatic off axis neutrino beam (ref. BNL E899)
 - v_{μ} beam doesn't go directly toward far detector.
 - → T2K off axis angle is <u>2.504°</u>
- > Set peak of (flux x σ_{CC}) near oscillation max.
 - Minimize the high energy neutrino flux to reduce the background events.

McGrew -- BNL Seminar

J-PARC facility (KEK/JAEA)

J-PARC v Beam Line

Beam Dump Main Ring Horns Decay Volume Target ay Volume Beam Extraction point

Optical Transition Radiation (OTR) Profile monitor

Super-conducting combined-function magnets

Corrector coils installed in beam line

7 April 2011

Beam Monitoring

7 April 2011

Delivered Protons

Near Detector (a) 280 m From Target

ND280 Off-axis Detector

Fine grain detectors in the UA1/NOMAD magnet (0.2 T) at ~2.5° off-axis

- Normalization for v_{μ} disappearance
 - CC v_{μ} (Spectrum and normalization)
- Background prediction for v_e appearance
 - Beam related CC v_{a}
 - NC π° production
- General neutrino interaction properties.

ND280 On-axis (INGRID)

Iron-Scintillator tracking detectors

Measures

- Beam profile
- Neutrino beam normalization (on axis)

ND280 On-axis v Beam Monitor (INGRID)

7 by 7 cross + 2 off-cross + 1 proton modules

- → Alternating scintillator & iron layers
 - ➤ 7 ton per module
 - Scintillator + WLS + MPPC
- → Surrounding veto
- \rightarrow 10 x 10 m² coverage
- → 1400 interactions/day/100 kW

7 April 2011

McGrew -- BNL Seminar

Typical Selected Neutrino Candidate

INGRID v Beam Measurements

Beam Center

- → Horiz: $+0.2 \pm 1.4$ (stat) ± 9.2 (sys) cm
- Vert: $-6.6 \pm 1.5 \text{ (stat)} \pm 10.4 \text{ (sys)} \text{ cm}$
- → Off-axis angle: 2.519 ± 0.021°
 > i.e. ± 0.37 mrad
- Event Rate
 - > Data/MC: 1.073 ± 0.001 (stat) ± 0.040 (sys)

ND280 Off-axis Detector

ND280 Off-axis Event Gallery

P0D/TPC event with shower

Fine grained scintillation detectors with TPC for momentum measurement

Sand Muon & FGD interaction

ND280 Off-axis Performance

Far Detector @ 295 km Super-Kamiokande

- 50kt Water Cherenkov detector (Fiducial 22.5kt)
- 11,129 20' ID PMTs: 40% photo coverage and 1885 8' OD PMT
- New readout electronics and deadtime free DAQ
 - ➤ Improved decay electron tagging
- > 1st oscillation maximum near $Ev \sim 600 \text{ MeV}$
- Good performance for sub-GeV v detection
 - Very efficient e / μ separation (~99% at 600 MeV)
 - Energy reconstruction: $\Delta E/E \sim 10\%$ (\leftarrow 2-body kinematics)

CICRR Univ of Tokyo

7 April 2011

McGrew -- BNL Seminar

2010 Analysis Strategy

- Neutrino Flux Prediction
 - → Proton Beam Data
 - Hadron Production Data

- ND280 Detector Measurements
 - $\rightarrow v_{\mu}$ CC Inclusive Rate
 - Measure ratio of Data to MC $R_{data/mc} = N^{Data}_{cc} / N^{MC}_{cc}$

Neutrino Cross-Sections

- → External Data
- → Interaction Models
 - Parameter variation over allowed ranges

- SK Detector Measurements
 - Data reduction and classification
- Extract Oscillation Parameters
 - Evaluation of Systematic Errors
 - Signal and Background Expectation

$$N_{sig}^{MC} = \int dE_{\nu} \Phi(E_{\nu}) \times \sigma(E_{\nu}) \times \varepsilon(E_{\nu}) \\ \times P(\nu_{\mu} \rightarrow \nu_{e}; E_{\nu}; \theta_{13}, \Delta m_{13}^{2})$$

➤ Normalization to ND280

$$N_{SK}^{\exp} = R_{Data/MC} \times \left(N_{signal}^{MC} + N_{bkg}^{MC} \right)$$

In the current analysis, we don't use the measured near detector spectrum, or the far/near ratio

7 April 2011

2010 Analysis Strategy

- Proton Beam Data
- Hadron Production Data

SK Detector Measurements

→ Data reduction and classification

- > ND280 Detector Measurements
 - $\rightarrow v_{\mu}$ CC Inclusive Rate
 - Measure ratio of Data to MC P - NIData / NIMC

 $> R_{data/mc} = N^{Data}_{cc} / N^{MC}_{cc}$

Neutrino Cross-Sections

- → External Data
- → Interaction Models
 - Parameter variation over allowed ranges

- Extract Oscillation Parameters
 - Evaluation of Systematic Errors
 - Signal and Background Expectation

$$N_{sig}^{MC} = \int dE_{\nu} \Phi(E_{\nu}) \times \sigma(E_{\nu}) \times \varepsilon(E_{\nu}) \\ \times P(\nu_{\mu} \rightarrow \nu_{e}; E_{\nu}; \theta_{13}, \Delta m_{13}^{2})$$

➤ Normalization to ND280

$$N_{SK}^{\exp} = R_{Datal MC} \times \left(N_{signal}^{MC} + N_{bkg}^{MC} \right)$$

In the current analysis, we don't use the measured near detector spectrum, or the far/near ratio

7 April 2011

Beam MC Flux Prediction

(1) Hadron production by p+C interaction and secondary interaction in target is simulated using FULKA framework.

* Pion production cross section is corrected using NA61 data \rightarrow next page.

* Measured proton parameters is assumed.

(2) Propagation of produces hadrons (π , K, etc) including Horn focusing is simulated using GEANT3 framework.

* Secondary interaction cross section is corrected using existing data by other experiments.

(3) v producing decay is simulated.
Geometrical acceptance is calculated.
→ v flux obtained at ND & SK, respectively

SHINE/NA61

- The SHINE experiment (CERN NA61) \geq
 - Data was taken in 2007 and 2009 →
 - \rightarrow p (30GeV) + C (target thin:2cm / thick: 90cm)
 - π^{\pm} production model in T2K-MC is corrected by the NA61 preliminary results released in Dec. 2009.
 - → Systematic uncertainty
 - > 10% : Inelastic p + C cross section
 - ➢ 20%: Pion multiplicity

MC(T2K): π^+ produce ν_{μ} @ SK

NA61 2007 data: π^+

14

9 10 Momentum (GeV/c)

SHINE

Tuned Neutrino Fluxes

Hadron Production Weighting Factors Applied to Beam MC (FLUKA)

7 April 2011

McGrew -- BNL Seminar

SK/ND Neutrino Flux Uncertainty

of events at SK (MC) / # of events at ND280 (MC)

 $N_{\rm SK}^{\rm expected} = \left(N_{\rm ND}^{\rm DATA} / N_{\rm ND}^{\rm MC}\right) \times \left(N_{\rm SK}^{\rm MC} + N_{\rm bkg}^{\rm MC}\right)$

Source	(ve Sig.)/ND	(ve Bkg.)/ND	(ve Tot.)/ND
Pion Multiplicity	10.7%	5.6%	9.1%
Kaon Multiplicity	9.6%	7.2%	7.9%
Prod. Cross Sections	4.0%	0.7%	2.8%
Proton Beam	1.1%	2.1%	1.4%
v Beam Direction	0.6%	0.6%	0.6%
Target Alignment	0.3%	0.2%	0.3%
Horn Alignment	0.2%	0.1%	0.2%
Horn Current	0.8%	0.2%	0.6%
Total	15.0%	9.4%	12.5%

(*a*) $\Delta m_{23}^2 = 2.4 \times 10^{-3} \text{ eV}^2$, $\sin^2 2\theta_{23} = 1.0$, $\sin^2 2\theta_{13} = 0$ for $1 \nu_{\mu}$ signal, $\sin^2 2\theta_{13} = 0.1$ for ν_e signal

2010 Analysis Strategy

In the current analysis, we don't use the measured near detector spectrum, or the far/near ratio

7 April 2011

Uncertainties from v Interactions

 $N_{\rm SK}^{\rm expected} = \left(N_{\rm ND}^{\rm DATA} / N_{\rm ND}^{\rm MC}\right) \times \left(N_{\rm SK}^{\rm MC} + N_{\rm bkg}^{\rm MC}\right)$

Comparison of NEUT/GENIE to external data to determine effect of cross section parameter and FSI variations on event rate and efficiencies.

2010 Analysis Strategy

In the current analysis, we don't use the measured near detector spectrum, or the far/near ratio

7 April 2011

ND280 Inclusive CC v_{μ} Sample

TPC PID for particles from neutrino interactions

- Selection
 - → If no tracks in the first TPC
 - At least one track in second TPC starting in first FGD fiducial volume
 - p>50 MeV/c
 - For highest momentum track
 - Require muon-like TPC dE/dx
 - → If no tracks in second TPC
 - Apply selection to third TPC and second FGD fiducial volume
- Analysis only uses low level reconstruction objects
- Sample Purity
 - $\rightarrow 90\%$ CC ν_{μ}
 - → 50% CC QE

ND280 CC v_{μ} Normalization ($R_{data/mc}$)

$$N_{\rm SK}^{\rm expected} = (N_{\rm ND}^{\rm DATA} / N_{\rm ND}^{\rm MC}) \times (N_{\rm SK}^{\rm MC} + N_{\rm bkg}^{\rm MC})$$

 $R_{Data/MC} = 1.061 \pm 0.028 (\text{stat.})^{+0.044}_{-0.038} (\text{det. sys.}) \pm 0.039 (\text{phys. model})$

2010 Analysis Strategy

7 April 2011

Super-K Fully Contained Events

Super-K Ring Counting and PID

7 April 2011

TZK

Final v_{μ} Selection

33

$v_{\rm op}$ Oscillation Expectation μ

8 Single Ring µ-Like Events Selected

Final v_{e} Appearance Selection

T2K-SK Events	Data	Background (∆m2=0.0024)	Signal (sin2θ13 = 0.1)
FC, Fiducial Volume Evis > 30 MeV	23	15.6	1.24
Single Ring e-like Pe > 100 MeV/c	2	1.22	1.1
No Decay Electron	1	0.94	0.95
Mγγ < 105 MeV/c2	1	0.39	0.87
Reconstructed Ev < 1250 MeV	1	0.28	0.85

Signal selection efficiency: 65.9%

T2K

35

TZK Super-K Reconstruction Systematics

Parameter	Error source	Signal	Background
f^{SKnorm}	Normalization	1.4	1.4
f^{Energy}	Energy scale	0.3	0.5
$f^{N_{ring}}$	Ring counting	3.9	8.4
$f^{PID\mu}$	Muon PID	0.0	1.0
f^{PIDe}	Electron PID	3.8	8.1
f^{POLfit}	POLfit mass cut	5.1	8.7
$f^{N_{dcy}}$	Decay electron finding	0.1	0.3
$f^{\pi^0 eff}$	π^0 rejection	0.0	5.9

Total Uncertainty	
Signal:	7.6%
Background:	15.8%

Super-Kamiokande atmospheric neutrinos and "hybrid π° events" used as control samples. Systematic error estimates benefit from SK atmospheric neutrino experience.

(*a*)
$$\Delta m_{23}^2 = 2.4 \times 10^{-3} \text{ eV}^2$$
, $\sin^2 2\theta_{23} = 1.0$, $\delta_{CP} = 0$, $\sin^2 2\theta_{13} = 0.1$ for ν_e signal

7 April 2011

The v_{e} Candidate

7 April 2011

E_v

2010 Analysis Strategy

In the current analysis, we don't use the measured near detector spectrum, or the far/near ratio

7 April 2011

T2K v_e Appearance Analysis Systematic Uncertainty

Error source	N_{SK}^{sig}	N_{SK}^{bkg}	N_{SK}^{s+b}	N_{ND}	N_{SK}^{bkg}/N_{ND}	N_{SK}^{s+b}/N_{ND}
SK Efficiency	\pm 7.60	\pm 15.81	\pm 9.47	± 0.0	\pm 15.81	$\pm \ 9.47$
Cross section	\pm 9.66	\pm 13.90	\pm 9.88	\pm 8.37	\pm 14.17	$\pm \ 10.61$
Beam Flux	$\pm \ 21.97$	\pm 18.12	\pm 20.49	\pm 19.83	$\pm \ 9.17$	\pm 11.88
ND Efficiency	± 0.00	± 0.00	$\pm \ 0.00$	$^{+5.60}_{-5.16}$	$+5.60 \\ -5.16$	$+5.60 \\ -5.16$
Overall Norm.	± 0.00	± 0.00	$\pm \ 0.00$	± 0.00	± 2.70	± 2.70
Total	\pm 25.17	\pm 27.77	\pm 24.64	$+22.23 \\ -22.13$	+23.95 -23.85	$^{+19.55}_{-19.43}$

(a) $\Delta m_{23}^2 = 2.4 \times 10^{-3} \text{ eV}^2$, $\sin^2 2\theta_{23} = 1.0$, $\delta_{CP} = 0$, $\sin^2 2\theta_{13} = 0.1$ for v_e signal

Constrained by ND280 Normalization

Total Systematic Error (Approxi	imate)
Background Only:	~24%
Signal and Background	~20%

Effect of input systematic errors re-estimated for each set of oscillation parameters.

Source	Estimated Background
Beam v_{μ} (CC + NC)	0.13
Beam $\overline{\nu}_{\mu}$ (CC + NC)	0.01
Beam v_{e} (CC)	0.16
Total	$\boldsymbol{0.30\pm0.07}$

(*a*) $\Delta m_{23}^2 = 2.4 \times 10^{-3} \text{ eV}^2$, $\sin^2 2\theta_{23} = 1.0$, $\delta_{CP} = 0$

7 April 2011

McGrew -- BNL Seminar

$r_{\mu} \rightarrow v_{e}$ Oscillation Limits

- Neyman confidence intervals are calculated in two ways
 - → Feldman-Cousins
 - Single-sided Poissonian

Feldman-Cousins

Hierarchy	Upper Limit	Sensitivity
Normal $(\Delta m_{23}^2 > 0)$	0.50	0.35
Inverted $(\Delta m_{23}^2 < 0)$	0.59	0.42

Single-sided Poissonian

Hierarchy	Upper Limit	Sensitivity
Normal $(\Delta m_{23}^2 > 0)$	0.44	0.32
Inverted $(\Delta m_{23}^2 < 0)$	0.53	0.39

Prospects for Updated Results

- Exposure collected this year:
 - → 1.45 x 10²⁰ P.O.T.
 - (includes 2010a)
 - → 4¹/₂ times 2010a analysis
 - This is $73 \text{kW} \ge 10^7 \text{s}$
 - ➤ Original goal: 150kW x 10⁷s
 - → Will likely be first reported using 2010a analysis technique
 > Still statistics limited
 - Still statistics limited.
- Planned Analysis improvements
 - → New NA61 results
 - Spectral information from ND280 and near/far ratio to reduce model dependence
 - → NC π^{o} and beam- v_{e} measurements from ND280

Conclusions

- > T2K is the first off-axis long baseline neutrino oscillation experiment
 - Searching for v_e appearance (θ_{13})
 - Precision measurement of $v_{\mu} \rightarrow v_{x}$ (atmospheric oscillation) parameters
 - → Data collected from January 2010
- > First oscillation results reported based on 3.23 x 10^{19} protons on target
 - → Observed 1 v_e candidate
 - > Expected background is 0.3 ± 0.07 events ($\theta_{13} = 0$)
 - > Upper limit of $\sin^2 2\theta_{13} < 0.50$ for normal hierarchy (< 0.59 inverted).
 - Observed 8 v_{μ} candidates
 - Consistent with SK, K2K and MINOS oscillation parameters.
- > Total integrated proton intensity collected is 1.45×10^{20} p.o.t.
 - Analysis method is being improved
 - Expect improve on current CHOOZ limit
- Full impact of the earthquake on T2K is unknown

Backup Slides

Current Global Best Fit

- hepex-1103.0743v1: Thomas Schwetz, Miriam Tortola, J.W.F.Valle
 - → Dated: 3 March 2011
- Parameters important for T2K
 - → $\Delta m_{31}^2 = 0.00245 \pm 0.00009$ (NH) or -0.00234 ± 0.0001 (IH)
 - → $\sin^2 2 \theta_{23} > 0.98$ (at 1σ)
 - $\rightarrow \sin^2 2 \theta_{13}$
 - > Best fit:

$\sin^2 2 \theta_{13} = 0.07$

> 3σ upper limit:

 $\sin^2 2 \theta_{13} < 0.17$

parameter	best fit $\pm 1\sigma$	2σ	3σ
$\Delta m_{21}^2 [10^{-5} \mathrm{eV}^2]$	$7.64_{-0.18}^{+0.19}$	7.27 - 8.03	7.12 - 8.23
$\Delta m_{31}^2 \left[10^{-3} \mathrm{eV}^2 \right]$	$\begin{array}{c} 2.45 \pm 0.09 \\ -(2.34^{+0.10}_{-0.09}) \end{array}$	2.28 - 2.64 -(2.17 - 2.54)	2.18 - 2.73 -(2.08 - 2.64)
$\sin^2 \theta_{12}$	0.316 ± 0.016	0.29 - 0.35	0.27 – 0.37
$\sin^2 \theta_{23}$	0.51 ± 0.06 0.52 ± 0.06	0.41 – 0.61 0.42 – 0.61	0.39 – 0.64
$\sin^2 \theta_{13}$	$\begin{array}{c} 0.017\substack{+0.007\\-0.009}\\ 0.020\substack{+0.008\\-0.009} \end{array}$	$ \leq 0.031 \\ \leq 0.036 $	$ \leq 0.040 \\ \leq 0.044 $

Neutrino Oscillations

T2K Sensitivity vs δ_{CP}

- > T2K sensitivity to θ_{13} at the 90% confidence level as a function of δ_{CP} .
- Beam is assumed to be running at 750kW for 5 years, using the 22.5 kton SK fiducial volume.
- The following oscillation parameters are assumed:
 - → $\sin^2 2 \theta_{12} = 0.8704$,
 - → $\sin^2 2 \theta_{23} = 1.0$,
 - → $\Delta m_{12}^2 = 7.6 \text{ x } 10^{-5} \text{ eV}^2$,
 - → $\Delta m_{13}^2 = 2.4 \text{ x } 10^{-3} \text{ eV}^2$,
 - → Normal hierarchy.

T2K Sensitivity vs Δm^2_{13}

> T2K sensitivity to θ_{13} at the 90% confidence level as a function of Δm_{13}^2 .

- Beam is assumed to be running at 750kW for 5 years, using the 22.5 kton SK fiducial volume.
- The following oscillation parameters are assumed:
 - → $\sin^2 2 \theta_{12} = 0.8704$,
 - → $\sin^2 2 \theta_{23} = 1.0$,

→
$$\Delta m_{12}^2 = 7.6 \text{ x } 10^{-5} \text{ eV}^2$$
,

➤ Normal hierarchy.

Neutrino Flux Uncertainty

- Dominant Uncertainties
 - Pion Multiplicity at low E_v
 - Kaon Multiplicity at high E_v
- Expect improvement with final SHINE/NA61 Data

T2K Scintillator Det. Technology (ECAL, FGD, INGRID, POD, SMRD)

Active material of detector is plastic scintillator bars with WLS fibres in central channels to photosensors.

✓ Well proven & economical: Similar technology used by K2K, MINOS, MINERvA, SciBooNE...

T2K uses an innovative readout: <u>M</u>ulti-<u>P</u>ixel <u>P</u>hoton <u>C</u>ounters:

667 pixels, each acts as an avalanche photodiode in Gieger mode. Impervious to magnetic field. Operating voltage is \sim 70 V.

Pixels are read out by a single anode. Charge is proportional to number of photons observed

T2K uses about 60,000 MPPCs in the ND280 scintillator detectors.

The ND280 Hall (Hole)

