
P. Gorla BNL - May 20 2011

Macrobolometers for rare 
events physics: the 1000 
crystals challenge and the 
fight for zero background

Paolo Gorla
INFN Roma Tor Vergata



P. Gorla BNL - May 20 2011

Outline
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• Macrobolometer: what is that and how does it 
work?

• Operation principles

• Rare events physic applications: advantages and 
disadvantages

• The 1000 detector challenge

• The fight against background and the zero 
background dream

• A scintillation approach for non scintillating  
macrobolometers.
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βoλòςRadiation detector (from ancient greek            : ray).

It is detector designed to be an ideal calorimeter in which 
100% of the released energy is measured.

The basic idea is to measure the energy deposited by a 
particle after it has been converted into heat with a T 
sensor.
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Introducing Bolometers (I)

1) What does “bolometer” mean?

2) What is a bolometer? 

3) How does it works? 
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Usually is composed by a solid in which the radiation 
interacts producing a T increase and by a sensor that 
reads this T increase. 

4) How is a bolometer built? 

Introducing Bolometers (II)

Bolometers provide better energy resolution (~few per 
mil). Moreover a wide range of materials can be used for 
the absorber.

Bolometer with a mass in the 100 g -1 kg scale.
5) What is a Macrobolometer? 

6) Which are the advantages? 
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The response is very slow: tens of msec or slower (the 
bigger the detector, the slower the response).

Ideal applications in rare events particle physics in which 
the rate of events is very low but a very good energy 
resolution is needed. 
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Bolometers are Phonon-Mediated particle detectors
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•  ε: energy to produce an elementary excitation
•  N = E/ε: number of elementary excitation
•  ΔE = ε ΔN = ε (N)1/2 = (εE)1/2

     (RMS energy resolution due to Poisson fluctuations)

Advantages of Bolometers over conventional 
devices for radiation spectroscopy

Intrinsic Energy resolution
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Bolometers are Phonon-Mediated particle detectors

6

•  ε: energy to produce an elementary excitation
•  N = E/ε: number of elementary excitation
•  ΔE = ε ΔN = ε (N)1/2 = (εE)1/2

     (RMS energy resolution due to Poisson fluctuations)

Advantages of Bolometers over conventional 
devices for radiation spectroscopy

Intrinsic Energy resolution

ΔERMS∝ (ε)1/2

Moreover in a bolometer all the deposited energy is converted into phonons while in 
conventional devices the fraction of total energy that is converted in signal is small 
(30% in semiconductors, 15% scintillators,...)
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Perfect calorimeter

•   The only relevant parameter for the energy absorber is the heat capacity C.
•   The thermal conductance to the bath G enables the temperature recover.

Absorber (C)

Impinging 
radiation (E)

Thermometer
(phonon sensor)

Heat sink
T ≅ 10 - 100 mK

Thermal coupling (G)

ΔT = E/C τ = C/G
Signal amplitude Relaxation time
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Perfect calorimeter

•   The only relevant parameter for the energy absorber is the heat capacity C.
•   The thermal conductance to the bath G enables the temperature recover.

Absorber (C)

Impinging 
radiation (E)

Thermometer
(phonon sensor)

Heat sink
T ≅ 10 - 100 mK

Thermal coupling (G)

ΔT = E/C τ = C/G
Signal amplitude Relaxation time

•  Dielectric diamagnetic materials are preferred

 C  ∝  (T/ΘD)3  (Debye Law)

Wide choice of materials!
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A phonon sensor is a device that collects phonons and generates or modulates an electrical signal, 
proportional to the energy contained in the collected phonons. If the PMD is operated as a perfect 
calorimeter, the phonon sensor works as a thermometer.

Phonon sensor

In practical devices, there are two classes of phonon sensors extensively employed:

There are in addition other devices that can be used as 
phonon/temperature sensors: Kinetic Inductance 
Detectors (KID),   Superconductive Tunnel Junctions 
(STJ), Magnetic Micro-Calorimeters (MMC), ...

Doped semiconductors close to the Metal to Insulator 
Transition (MIT).
At low temperatures (< ~10 K), the resistivity is given 
by:

TES is a superconductive film kept around TC.
It exploits the steep temperature dependence of the 
resistance in these conditions

  Neutron Transmutation Doped 
(NTD) Ge thermistors
  Si-implanted thermistors;

ρ(T) = ρ0 exp [(T0/T)1/2]

T0 depends on the doping level → it fixes ρ0  and the 
sensitivity

Low impedance thermistors  ⇒ SQUID readout

 Semiconductor Thermistors (ST)  Transition Edge Sensors (TES)

  Much higher S/N ratio with respect to ST

(Variable Range Hopping with Coulomb gap conduction 
regime)

• Semiconductor Thermistors (ST)
• Transition Edge Sensors (TES)

W transition
at ∼ 11 mK

9

if we define the sensitivity as
A  ≡  d logR/dlogT

A≅10 for ST
A≅1000 for TES
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Summary

• Very good energy resolution

• Wide choice of materials for the energy absorber

• Possibility of building big detectors (~kg scale)

• Very slow signal (50 msec - 2 sec)

• Need to work at low temperature

• No radiation identification (?)

Advantages:

Disadvantages:

10
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Macrobolometers for rare events 
physics
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For many rare events physics applications, such as Neutrinoless Double 
Beta Decay (0νDBD), for which the slowness of the detector response is 
not a problem the very good energy resolutions guarantees the 
possibility of identifying the expected peak from the background.

Moreover the possibility of choosing different isotopes for the absorber 
crystal is a good opportunity both for source=detector experiments 
(0νDBD, ...) and for source≠detector (Dark Matter search...)

CUORE

CRESSTCDMS
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The use of bolometers for single radiation 
detection was proposed in the 80s by E. 
Fiorini and T.O. Niinikoski

E. Fiorini and T.O. Niinikoski: Nucl. Instr. Meth. 224 (1984) 83
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Pulse TubePulse Tube

14

CUORE: Cryogenic Underground 
Observatory for Rare Events

Array of 988 detectors. 19 CUORICINO-like 
towers M = 0.741 ton of TeO2 (200 kg 130Te) 
to measure 0ν-DBD of 130Te with bolometric 
detectors at Laboratori Nazionali del Gran 
Sasso.  

Pulse Tube
Pulse Tube

Dilution unit

Pb

CUORE 
detector

Sensitivity (5 y): T1/2= 2.1·1026y

mν = 35 - 82 meV
NME from F.Simkovic et al.  Phys.Rev. C77 - J.Suhonen et al. Int.Jou.Mod.Phys. E17 - 

J.Menendez et al. Nucl. Phys. A818 - J.Barea et al. Phys. Rev. C79
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2ν-DBD:   (A,Z)  → (A,Z+2) + 2e- + 2ν 

• Extremely rare second order process allowed by SM

• Observed for several nuclei
• Process: τ0ν ~ 1019-1021 y

2ν-DBD (M.Goeppert-Mayer, 1935) is an extremely rare second order process allowed 
by SM. It take place when both the parent and the daughter nuclei are more bound than 
the intermediate one (or the transition on the intermediate one is strongly suppressed). 
Because of the pairing term, such a condition is fulfilled in nature for a number of even-
even nuclei.

Double Beta Decay (I)

15
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• 0ν-DBD is an extremely rare
• process: τ0ν > 1024-1025 y

• β radiation

Double Beta Decay (II)

implies physics beyond SM0ν-DBD:   (A,Z)  → (A,Z+2) + 2e-

If 0ν-DBD is observed: neutrino is a 
Majorana particle and mν is measured

2ν spectrum

0ν peak

0ν-DBD (W.H.Furry, 1939) is a lepton number violating (ΔL=2), not 
allowed by the Standard Model. The 0νDBD can occur only if two 
requirements are satisfied: i) the neutrino has to be a Majorana particle, 
and ii) the neutrino has to have a non-vanishing mass.  

This is the crucial process for neutrino physics since can 
solve the puzzle of the Majorana nature of the neutrino

For 2e- sum energy, expected 
signature is a peak with E ≡ Qββ

Schetcher,  Valle  Phys. Rev. D25 2951 1982   

16
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|<mν>| = |  m1 |Ue1 |2 + m2 |Ue2 |2 eiα + m3 |Ue3 |2 eiβ  |

Parameterizing

)m(f|m| ν 1=><

Majorana phases

Double Beta Decay (III)

(T 0ν
1/2)

−1 = G(z,Q)|M |2�mν�2

Atomic physic:
phase space term
O(Q5)

Nuclear physic:
nuclear matrix elements
(big uncertainties!)

Particle physics:
neutrino mass 
(neutrino propagator)
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Present strategies

〈
M
ββ
〉

 [e
V

]

HM-KK evidence (best 
value 0.32)

Phase I: scrutinize 
HM-KK evidence

 confirmed

Phase II: cross 
confirm with 

observation in several 
different nuclei

  not 
confirmed

Phase II: explore the 
Inverted Hierarchy 

(IH) option

e.g.: ~ 1027 atoms of isotope, 5 keV 
resolution, 5y, <0.01 c/keV kg y 

GERDA-I
CUORE-0

CUORE
GERDA
EXO...

18
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TeO2 bolometers designed for 130Te 0νDBD search:

TeO2 bolometers (I)
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19
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19

TeO2 bolometers designed for 130Te 0νDBD search:

Heat sink 
(8-10 mK)

Thermometer

Incident
radiation (E)

Absorber
Crystal (C)

ΔT = E
C

TeO2 bolometers (I)

τ = C
G

Weak 
Thermal 
coupling 

19
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In CUORICINO and CUORE experiments we use TeO2 

because it contains 130Te, but why 130Te?

• high natural isotopic abundance (33.87 %)

• high transition energy (Q=2530 keV) Transition energy (MeV)

48Ca 76Ge 82Se 96Zr 100Mo 116Cd 130Te 136Xe 150Nd

2

3

4

5

Isotopic abundance (%)

48Ca 76Ge 82Se 96Zr 100Mo 116Cd 130Te 136Xe 150Nd

0

20

40

   C 

E

2382

2530

2615

 TeO2 bolometers (II)

The choice of  TeO2 guaranties good mechanical properties 
and low radioactive contaminations.

20
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  TeO2 bolometers (III)
Performances: 5x5x5 cm3 TeO2 (790 g) showed to have very good 
energy resolution (≤‰).

best 780 g detector:
	
 1.4 keV FWHM @ 0.351 MeV
    	
 2.1 keV FWHM @ 0.911 MeV
    	
 2.6 keV FWHM @ 2.615 MeV
    	
 3.2 keV FWHM @ 5.407 MeV 

Best alpha measurement ever performed

Energy [keV]

C
ou

nt
s

210Po α line

Nevertheless resolution is far from intrinsic 
limit: dominated by different phenomena

             A.Alessandrello et al, NIM A440 (2000) 397-402

21
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Sensitivity (I)
Half-life corresponding to the maximum signal nB that could be hidden by the 
background fluctuations at a given statistical C.L.

S0ν ∝ i.a. ·
�

M · T

Γ · b

22
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Half-life corresponding to the maximum signal nB that could be hidden by the 
background fluctuations at a given statistical C.L.

S0ν ∝ i.a. ·
�

M · T

Γ · b

Live t ime: 5-10 y. 
Limited by scientists 
live time 

Mass: actually in the 10-40 
kg range; next generation in 
1-ton scale

Background: currently 
this is the ONLY tunable 
parameter to push 
sensitivities of order of 
magnitudes.

Resolut ion: detector 
dependent.   Not big 
improvements expected 

Isotopic abundance: for most 
candidates enrichment is needed
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Sensitivity (II): discovery potential

Yu.G. Zdesenko, F.A. Danevich and V.I. Tretyak 
J.Phys. G: Nucl. Part. Phys. 30 (2004) 971

2νDBD is an unavoidable background for any 
0νDBD (neutrino tagging?). 

Energy resolution is a crucial parameter for any 
experiment aiming to measure 0νDBD and not 
just increasing the sensitivity on the not 
observed process.
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A starting point: the CUORICINO prototype

11 modules, 4 detector each
Crystals: 5x5x5 cm3, 790 g 

2 modules, 9 detector each
Crystals: 3x3x6 cm3, 330 g
2 enriched in 128Te (82.3%)
2 enriched in 130Te (75%)

20 cm low-
background 

lead 

10 cm 
roman lead 
 (<4mBq/kg 

210Pb)

1.2 cm 
roman lead 
 (<4mBq/kg 

210Pb)

Dilution 
unit

Neutron 
shielding (10 
cm borated 

PET)

Cold finger
~10 mK

Nitrogen 
overpresure

The largest bolometric experiment up to now, 
operated from March 2003 to June 2008.
CUORICINO is a tower 62 TeO2 bolometers with 
a total mass 40.7  kg  of  TeO2 (11.34  kg  130Te)

24



P. Gorla BNL - May 20 2011

CUORICINO @ LNGS
Installed in the Laboratori 
Nazionali del Gran Sasso 
INFN (Italy) undrground 
location

R&D facility for CUORE (hall C)

Cuoricino

CUORE
 (hall A)
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CUORICINO results

Qββ = 2527 keV

 τ1/2 >2.8x1024 year @ 90% C.L.

60Co sum peak
2505 keV

~ 3 FWHM from 
DBD Q-value

130Te
0νββ

19.75 kg · y of 130Te total 
exposure

So far no evidence of 
0νDBD was found

26

UPPER LIMITS ON mν (meV): 
• 300-570 (QRPA)
	
 	
 F. Simkovic et al., Phys. Rev. C 77, 	
 045503 (2008)

• 360-580 (QRPA)
	
 	
 O. Civitarese and J. Suhonen, J. Phys.: Conf. Ser. 173,(2009)

• 570-610 (SM)
	
 	
 J. Menendez et al., Nucl. Phys. A 818, 139-151 (2009)

• 350-370 (IBM)
	
 	
 J. Barea and F. Iachello, Phys. Rev. C 79, 044301 (2009) 
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CUORICINO background

Bkg @ 0νDBD region = 0.18±0.01 c/keV/kg/y
(ainticoincidence spectrum, 5x5x5 cm3 crystals)

30 ± 5 % 232Th in cryostat (γ)

20 ± 5 %  TeO2 surface (α)

50 ± 10 %  Cu surface (α)

γ + 
γ 
60Co

Q0νββ
(2527keV)

In the 0νDBD region:

Flat background in the energy region above the 208Tl 
2615 keV line: contribution to the counting rate in the 
0νDBD region: ~ 70% . Origin:  degraded alpha particles.

28
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214Bi

60Co 

208Tl

A wel l know bkg source in DBD 
experiments are degraded α particles:

Detector

α produced near the surface will loose part 
of its energy in the material an part on the 
detector

→ Continuum of events at all energies

Non active surface:
holder, shield, etc.

Degraded alpha background
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CUORE R&D

• TeO2 crystals surface cleaning

• Cu surface cleaning

• Resolution

• Reproducibility

30

• Detector behavior improvement: 

• Degraded alpha background reduction:
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Detector behavior

31
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Detector behavior improvement

32

In CUORICINO the resolution 
(FWHM) is ~7.5 keV @ 2500 keV

Energy of the mediator (phonon) ~ 
0.01 eV.  We are far from intrinsic 
resolution. The broadening of the 
peak is dominated by other 
phenomena: thermal noise.

Thermal noise (Thermo-phononic noise): baseline 
fluctuation due to thermal energy (phonons) 
dissipations in the detector.  Main source: 
mechanical vibrations converted in to heat via 
friction.

Sensitivity to noise: [resolution broadening]/
[vibration intensity]

Goal: reduce sensitivity to noise

Intrinsic Thermal effects (ballistic phonons? 
position effects?)

+
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A new design
Studying the thermal contraction of the different 
materials and their elasticity (Young module) a 
new prototype of copper and PTFE supports was 
designed to minimize the possibility of relative 
movements of the different parts (friction).
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Results 

ΔEave           = 5.7  +/- 1.0 keV

ΔECUORICINO =  7.5 +/- 2.8 keV

A three floor tower was projected and designed, in 
a way that at least 1 floor is in a tower-like situation.  

This result was confirmed in other 4 12-detectors 
tests and the new setup was adopted by the 
collaboration
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Background reduction

35
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Estimation method
Measuring very low background in the 0νDBD region (100 keV) will 
need extremely long measurements: to measure 0.01 c/keV/kg/y 
with an accuracy of 10% it will take years. Since the continuous 
background is the same above 2615 keV we can estimate it in that 
wider region

2500 3500 4500 keV

co
un

ts

0νDBD 
region

2615 keV  208Tl 
γ peak

A big background reduction in this region will confirm our 
capability to reduce the background in the DBD0ν region 

Cuoricino: 0.12 +/- 
0.01 c/keV/kg/y (5x5x5)

3-4 MeV

~ 3 counts/day on 10 
Kg detector for the 
CUORICINO bkg, 
b u t we wan t t o 
measure 10 times 
less
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Crystal cleaning





Two different approaches:

Crystal etching with ultra pure Nitric acid: the acid remove the 
contaminants but leave a layer of molecules that generates a thermal 
interface between crystal and thermistor. → Irreproducible pulse 
shapes, bad behavior. 

Lapping crystals with 2μ SiO2 radio-pure powder does not leave 
material on the surface, but mechanically acting part of the 
contaminants are re-implanted in the crystal (a few μ).

Combining the two approaches we obtained clean 
crystal without thermal conduction limitations.
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A final test: the three towers

38

In June 2008, after the shut down of 
CUORICINO, the collaboration decided to 
prepare a large mass detector to test the Cu 
contaminations in 3 different configurations 
inside the same crysotat (some background 
and operation conditions).
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T1 T2 T3 
Polyethylene Chemical New Plasma cleaning

Cleaning:
• Soap
• H2O2 + H2O + 
Citric acid 

Polyethylene:
7 layers

Complete coverage

Cleaning:
• Soap
• Electro erosion: 85% 
phosphoric acid, 5% butanol, 
10% H2O
• Etching: Nitric acid
•Passivation: H2O2 + H2O + 
Citric acid

Chemical and 
electrochemical

+
plasma cleaning

39

The three towers (I)
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T3T is a Rn suppressed 
test
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T3T is a Rn suppressed 
test

Total air exposure:
less than 2 days

41

  The three towers (III)
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• 8 months full time activity (30 scientist)

• complete disassembling of CUORICINO 

• 3 independent tower built 

• 36 bolometers built

• complete reprocessing of all CUORICINO 

crystals according to CUORE standards

• 72 thermistor + 36 heaters glued
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CUORE prospects
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CUORE prospects

S0ν ∝
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M · T

Γ · b
Γ = Γ/2

CUORE Tl line bkg = < 10-3 c/keV/kg/y 

232Th in cryostat: reduced with selected matherials 
and better shielding

TeO2 surface: proper surface treatments

Hall C measured contamination < 3 10-3 c/keV/kg/y

Surfaces facing detectors: work ongoing

TTT measured contamination ~ 3-4 10-2 c/keV/kg/
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Background?
bCUORICINO = 0.18 c/keV/kg/y
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CUORE prospects

S0ν ∝
�

M · T

Γ · b
Γ = Γ/2

CUORE Tl line bkg = < 10-3 c/keV/kg/y 

232Th in cryostat: reduced with selected matherials 
and better shielding

TeO2 surface: proper surface treatments

Hall C measured contamination < 3 10-3 c/keV/kg/y

Surfaces facing detectors: work ongoing

TTT measured contamination ~ 3-4 10-2 c/keV/kg/
y. 

Background?
bCUORICINO = 0.18 c/keV/kg/y

M = 20 · MCUORICINO

Tmeas = 5 · tCUORICINO

    Background                                    Sensitivity                   Effective Majorana Mass
0.01 c/keV/kg/y (realistic)                 T1/20ν = 2.1 · 1026 y                    19-100 meV
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Status of the CUORE 
experiment
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CUORE status 

CUORE has a dedicated site in LNGS: building and clean 
room completed.

Dec 2011: start the assembly of all the 
CUORE detectors

Late 2011: cryostat commissioning.

Summer 2011: first CUORE tower assembled 
in Gran Sasso (CUORE-0 prototype)
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Beyond 1 ton?

〈
M
ββ
〉

 [e
V

]

Phase I: scrutinize 
HM-KK evidence

  not 
confirmed

Phase II: explore the 
Inverted Hierarchy 

(IH) option

If mν is in the 100-50 
meV region

A lot of evidences to 
come in next 10 years!

No evidence

The golden experiment (enriched scintillating CUORE, 
high resolution Ba+ tagging EXO, ...): a ton scale enriched 

experiment with “0 background”and good energy 
resolution→exclude the IH region
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The zero background challenge
“Zero background” (0B) experiments: 
experiments in which the background level B is so low that the expected number of background 

events in the region of interest along the experiment life is of order of unity: b⋅M⋅T⋅Γ ≃ O(1)In 

this case the sensitivity equation assumes a simplified form in which the finale square root is 

substituted by MT/nL where nL is a constant depending on the chosen CL and on the actual 

number of observed events. 

S0ν ∝ i.a. · � · M · T

In a CUORE like experiment I need to push b from ~0.01 
to > 10-3-10-4 counts/keV/kg/y
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• Degraded alpha is our nightmare

• IF our understanding is correct removing/tagging surface 
events will convert 0.001 dream to reality

CUORE background
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TeO2TeO2

copper

Possibilities

• alpha/beta

• surface event

Active discrimination techniques (I)

Degraded alpha particles
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Surface 
Sensitive Bolometers

weak thermal coupling

heat bath

temperature sensor

scintillating bolometer

light detector
temperature sensor

alpha decay

reflective foil

Cerenkov

weak thermal coupling

heat bath

temperature sensor

TeO2

light detector
temperature sensor

alpha decay

reflective foil

gamma

Surface event tagging

NbSi deposition

alpha/beta discrimination

Active discrimination techniques (II)

Scintillating Bolometer

52



Scintillating Bolometer for 0ν-DBD search 
Radiation

Light detector

Light

AS in many DM experiments the use of 
combined detectors (scint i l lat ing 
bolometer) allows background rejection. 
Measuring the different light emission for 
different radiation allows background 
rejection. Main crystal



Scintillating Bolometer for 0ν-DBD search 
Radiation

Light detector

Light

Bolometer:
•   Good energy resolution
• Many DBD emitters 
available (48Ca,100Mo,116Cd,
96Zr,...)

AS in many DM experiments the use of 
combined detectors (scint i l lat ing 
bolometer) allows background rejection. 
Measuring the different light emission for 
different radiation allows background 
rejection. Main crystal



Scintillating Bolometer for 0ν-DBD search 
Radiation

Light detector

Light

Bolometer:
•   Good energy resolution
• Many DBD emitters 
available (48Ca,100Mo,116Cd,
96Zr,...)

Bolometer (as in DM 
experiments):
•  Must work at few mK
• Easy operable , low 
radioactive contaminations

AS in many DM experiments the use of 
combined detectors (scint i l lat ing 
bolometer) allows background rejection. 
Measuring the different light emission for 
different radiation allows background 
rejection. Main crystal



Scintillating Bolometer for 0ν-DBD search 
Radiation

Light detector

Light

Bolometer:
•   Good energy resolution
• Many DBD emitters 
available (48Ca,100Mo,116Cd,
96Zr,...)

Bolometer (as in DM 
experiments):
•  Must work at few mK
• Easy operable , low 
radioactive contaminations

AS in many DM experiments the use of 
combined detectors (scint i l lat ing 
bolometer) allows background rejection. 
Measuring the different light emission for 
different radiation allows background 
rejection. Main crystal

63 mm diam. 1 mm 
thick pure Ge disk 

3x3x2 cm3 CdWO4 
(140 g) crystal

Sensors: NTD 
Ge thermistors
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Scintillating Bolometer for 0ν-DBD search (II)
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β/γ

α

Scintillating Bolometer for 0ν-DBD search (II)
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β/γ

α
Qββ(116Cd) 
= 2805 keV

440 h live time 
measurement

Scintillating Bolometer for 0ν-DBD search (II)
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Scintillating bolometer vs Cerenkov

55

• The setup is the same

• The big advantage of Cerenkov is that works also on TeO2 !!

• The big problem is the extremely good light detector needed

• about 350 eV EMITTED as Cerenkov photons

• taking into account self-absorption, total reflection and light collection a light 
threshold better than 100 eV is needed: extremely challenging!

• Bolux (DBD-R&D) light detector has something between 250 and 500 eV

• CRESST has about 50 eV
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Proposed Technique
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weak thermal coupling

heat bath

temperature sensor

TeO2

light detector
temperature sensor

alpha decay

reflective-scintillating foil
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• From 55Fe calibration of the light detectors we derive that an alpha of 5.3 
MeV produce about 1 keV of photons

• We need to tag alpha which release 2.5 MeV on the TeO2 crystal

• The alpha decay with lower energy belonging to natural chains is the 
232Th that have a Q-value of 4.01 MeV

• We need to detect down to 1.5 MeV alphas

• Plastic scintillators are extremely non linear for alpha particles

How much light?
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Proposed Technique (upgraded)
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weak thermal coupling

heat bath

NTD thermistor

light detector

TeO crystal2

NTD thermistor

alpha decay

reflective foil

scintillator foil

A proper plastic 
scintillators should 
guarantee about 10 
times more light
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• Applies also on TeO2

• Does not need a extremely low threshold light detector

• Alphas coming from copper are fully stopped by the foil

• The foil contaminations are tagged as well

• Next Step: Test!

Summary



P. Gorla BNL - May 20 2011

Conclusions
• In the past 20 years bolometers became a actual alternative to conventional 

radiation detectors for rare events applications.

• CUORE is a neutrinoless Double Beta Decay experiment that aims to start 
exploring for the first time the inverted hierarchy mass region.

• CUORICINO  has operated @ LNGS from March 2003 to June 2008 with 
excellent performances, demonstrating the feasibility of a large scale 
bolometric detector.

• The R&D results confirm the feasibility of an high sensitivity 0νDBD 
experiment.

• CUORE is the only second generation 0νDBD experiment in construction 
phase.  The first data is expected in 2012. 

• The future of the technique is in composite detectors: adding a scintillator 
around TeO2 crystals we can put together the advantage of the CUORE 
detectors with a powerful bkg reduction technique.

• The race for a zero bkg experiment is started!
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