New Results on Muon Neutrino to Electron Neutrino Oscillations in MINOS

Lisa Whitehead Brookhaven National Laboratory

On behalf of the MINOS Collaboration

BNL Particle Physics Seminar, August 11, 2011

Outline

- Formalism
- Description of MINOS
- Electron neutrino identification in MINOS
- Background prediction
- FD data distributions
- Results

Neutrino Mixing

if the flavor ($v_e^{}, v_{\mu}^{}, v_{\tau}^{}$) eigenstates of the neutrinos are not the same as the mass eigenstates ...

 \rightarrow each flavor state is a mixture of the different mass states

$$\begin{pmatrix} \boldsymbol{\nu}_{\alpha} \\ \boldsymbol{\nu}_{\beta} \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \boldsymbol{\nu}_{1} \\ \boldsymbol{\nu}_{2} \end{pmatrix} \qquad \begin{array}{c} \alpha, \beta = \text{flavor states} \\ 1,2 = \text{mass states} \end{array}$$

The mixture changes as neutrinos propagate $|\nu_{\alpha}(L)\rangle = \cos\theta \exp \frac{-im_{1}^{2}L}{2E}|\nu_{1}\rangle + \sin\theta \exp \frac{-im_{2}^{2}L}{2E}|\nu_{2}\rangle$

 $t \approx L$, the distance traveled

Natural units $f_1 = c = 1$

August 11, 2011

Neutrino Oscillations

$$P(\nu_{\alpha} \rightarrow \nu_{\alpha}) = 1 - \sin^2(2\theta) \sin^2(1.27\Delta m^2 L/E)$$

1.27 in units of (GeVc⁴)/(eV²km)

 θ = mixing angle L = flight distance E = neutrino energy $\Delta m^2 = m_2^2 - m_1^2$

Thus a neutrino created in one flavor state can be observed some time later in a different flavor state

The Full Picture

Mixing can generally be represented by 3 mixing angles $(\theta_{12}, \theta_{23}, \theta_{13})$ and one phase (δ) * (same as standard parameterization of the CKM matrix)

3 neutrinos \rightarrow 2 independent mass squared differences: Δm_{21}^2 , Δm_{32}^2 $\Delta m_{ij}^2 = m_i^2 - m_j^2$

*If neutrinos are Majorana particles, there are two more phases, but they don't affect neutrino oscillations.

L. Whitehead, BNL

Experimental Status

from solar/reactor v (Kamland, SNO) $\Delta m_{sol}^2 = 8 \times 10^{-5} eV^2$ $\theta_{12} \approx 34^\circ$ from atmospheric/ accelerator v (Super-Kamiokande, MINOS) $\left|\Delta m_{atm}^{2}\right| = 2.3 \times 10^{-3} eV^{2}$

 $\theta_{23} \approx 45^{\circ}$

Measuring θ_{13} with reactor v's

Measuring θ_{13} with accelerator v's

appearance of
$$v_e$$
 in a v_μ beam
 $P(v_\mu \rightarrow v_e) \approx \sin^2(2\theta_{13}) \sin^2\theta_{23} \sin^2(\frac{\Delta m_{atm}^2 L}{4 E})$ (Dominant term)

Measuring θ_{13} with accelerator v's

 $\begin{array}{ll} \mathsf{P}(v_{\mu} \rightarrow v_{e}) & \text{has higher order terms that depend on} \\ & \delta \text{ and the mass hierarchy} \\ & \delta \text{ dependence} & \text{mass hierarchy dependence} \end{array}$

Measuring θ_{13} with accelerator v's

The MINOS Experiment

SFERMILAB #98-765D

MINOS detectors

alternating layers of steel plates and scintillator strips in a ${\sim}1.3~\text{T}$ toroidal magnetic field

MO

735 km from the target
5.4 kilotons
8 m tall planes
486 planes (30 m)
700 m underground
Few v interactions/day

1 km from the target 1 kiloton ~4 m tall planes 282 planes (15 m) 100 m underground Few v interactions/spill

MINOS detectors

Steel thickness: 2.54 cm (~1.4 radiation lengths)

Strip width: 4.1cm Moliere radius (radius of 90% containment of EM showers) ~3.7cm

Strips in adjacent planes are oriented orthogonally enabling 3D reconstruction

Each strip is read out by a wavelength shifting fiber connected to a multi-anode photomultiplier tube

beam

U/V strips oriented ±45° from vertical

NuMI Beam

Protons Delivered to Target

Total NuMI protons to 00:00 Monday 20 June 2011

Today's result

Only data from our standard low energy beam is used for the result. (only the green)

Neutrino Interactions at MINOS

Neutrino Interactions at MINOS

Neutrino Interactions at MINOS

Short event, with compact shower profile

v_appearance in MINOS

MINOS measures v_{μ} disappearance:

The probability for those missing v_{μ} 's to become v_{e} 's is at most a few percent!

Searching for v_{e} appearance

- 1) Determine selection criteria for v_{a} candidate events
- 2) Use ND data to make a background prediction for the FD
- 3) Is there an excess of $\nu_{\rm e}^{}$ -like events over the predicted background in the FD?

Projected Sensitivity

Sensitivity =

90% CL upper limit we would set if we observed exactly the background prediction.

Since 2010 result: Phys. Rev. D 82, 051102

- 1.2x10²⁰ POT (17%) more data
- Improved event selection variable: 15% sensitivity gain

Shape fit:
12% sensitivity gain

- 1) Determine selection criteria for v_{a} candidate events
- 2) Use ND data to make a background prediction for the FD
- 3) Is there an excess of $\nu_{\rm e}^{}\text{-like}$ events over the predicted background in the FD?

Selecting v_e -like events

Preselection cuts to remove events that are obviously not signal:

- No long tracks
- At least one well-formed shower
- With visible energy 1-8 GeV

After these cuts, background consists mostly of NC

August 11, 2011

Library Event Matching (LEM)

New selection variable!

Find best matches from a library of MC events

Judge how signal-like an event is based on those best matches.

Matching is done using only strip info (location and charge)

No dependence on high level reconstructed quantities

Compute value of discriminant from information of N best matches

Matching

Info from best matches

Library Event Matching (LEM)

3 variables + reconstructed energy used as inputs to a neural net

Output of neural net is the LEM selection variable

- 1) Determine selection criteria for v_{a} candidate events
- 2) Use ND data to make a background prediction for the FD
- 3) Is there an excess of $\nu_{\rm e}^{}\text{-like}$ events over the predicted background in the FD?

Selected Near Detector Data

Apply the v_e selection criteria to the ND data:

• Red shaded area is the systematic uncertainty on the MC simulation – dominated by uncertainties in modeling hadron production in v interactions

• Having a near detector is essential – no need to rely solely on MC to predict the background in the far detector!

Background Extrapolation

Use ND measurement of NC, v_{μ} CC, and beam v_{e} CC backgrounds to predict FD background.

$$F_{\alpha,i} = N_{\alpha,i} \times R_{\alpha,i}^{F/N}$$

FD prediction for component α in bin *i*

ND data for component α in bin *i* Far/Near ratio: Ratio of selected events for component α in bin *i* using MC

Far/Near Ratio

Far/Near Ratio

MC Far/Near ratio:

- Flux
- Fiducial volume
- energy smearing
- v_{μ} disappearance
- detector effects

Error bars are systematic.

Near Detector Background

Oscillations affect each background component differently!

Need to know how much of each component in the ND data:

- neutral current
- charged current v_"
- charged current v_{e} (from beam contamination)

Extract it from the data – don't rely on the simulation

Due to the flexibility of our beam, we can use near detector data taken with different beam configurations to do this...

Different Beam Configurations

Data-Driven Background Separation

Use these 3 data sets to measure the 3 background components in the standard sample...

Using:

- Total measured rate in each beam configuration
- Relative interaction rates for each background component from the MC simulation

Can fit for the background components in the standard sample

Data-Driven Background Separation

Reconstructed Energy (GeV)

Far Detector Prediction

For 8.2x10 ²⁰ POT	Component	# Events	
Signal-enhanced	NC	34	_
(LEM>0.7)	ν _μ CC	7	-
δ=0	beam $v_{e}^{}$ CC	6	-
$\Delta m^2 = 2.32 \times 10^{-3} eV^2$ $\theta_{-1} = \pi/4$	$\frac{1}{\tau} \frac{\nu_{\tau} CC}{\tau}$	2	- -
$\sin^2 2\theta_{13} = 0.16$	Total Bkgd	49	Predicted background
	v_{e} CC signal	30	and signal at
Note bkgd prediction is dependent on θ_{13}	PRELIMINARY		

Background Systematics

- 1) How well we know the composition of the near detector background (small)
- 2) How well we know the Far/Near ratio
- Calibration relative energy calibration, gains, absolute energy calibration, etc
- Relative Far/Near normalization
- Hadronization model hadrons produced in the neutrino interaction
- etc

Systematic Uncertainty 5.4%

On the background prediction in the signalenhanced region (LEM>0.7) 1) Determine selection criteria for v_{a} candidate events

2) Use ND data to make a background prediction for the FD

3) Is there an excess of $v_{\rm e}^{}$ -like events over the predicted background in the FD?

Sideband: Outside the Signal Region

Good test of entire analysis chain - background prediction and extrapolation to far detector.

FD Vertex Distribution

FD Vertex Distributions

FD Vertex Distributions

Event Time / Rate Vs Time

FD Energy Spectrum

 2.7σ (stat.) excess in the 5-6 GeV region

Possible sources?

- statistical fluctuation
- Hot strips, etc
- misclassified events
- actual appearance of shower like events

Investigation:

- Event scanning
- Distributions of basic variables
- Considered cosmics, rock neutrons
- is excess nue-like?

FD Energy Spectrum

Conclusion: excess is likely a statistical fluctuation.

Initially planned to fit for θ_{13} to the LEM shape, integrated in energy

Official result is 2D fit in both energy and LEM shape

- Oscillations are an energy-dependent model: don't want a fluctuation to introduce a false signal
- BUT we don't want to cut data simply because it is statistically unlikely.

Data in the signal region....

FD Preselected Data

FD Preselected Data

Event Count

In signal-enhanced region (LEM>0.7):

Expected background ($\theta_{13}=0$): 49.6 +- 2.7 (syst) +- 7.0 (stat)

Observed data: 62

Example of a Selected Event

Fitting to Oscillations

Best Fit

Allowed Regions

Assuming: $\delta=0, \theta_{23} = \pi/4$ normal (inverted) hierarchy

$$\sin^2(2\theta_{13}) < 0.12(0.20)$$

90% CL

$$sin^{2}(2\theta_{13}) = 0.04(0.08)$$

Best Fit

We exclude $\sin^2 2\theta_{13} = 0$ at 89% CL

Feldman-Cousins contours

Uncertainties in the other oscillation parameters are included

L. Whitehead, BNL

Comparison to T2K Results

What does our signal prediction look like at T2K's best fit? $(sin^2 2\theta_{13} = 0.11)$

Comparison to T2K Results

L. Whitehead, BNL

August 11, 2011

Summary

- MINOS has updated our electron neutrino appearance search with more data and improved analysis techniques: overall 30% gain in sensitivity
- \bullet In the signal region, we observe 62 events with an expectation of ${\sim}50$

• Assuming $\delta = 0$, $\theta_{23} = \pi/4$, normal (inverted) hierarchy, we set a 90% CL upper limit of $\sin^2(2\theta_{13}) < 0.12$ (0.20) and a best fit value of $\sin^2(2\theta_{13}) = 0.04$ (0.08) and exclude $\sin^2(2\theta_{13}) = 0$ @ 89% CL

