Measuring high pT single electrons from open heavy flavor in pp collisions at sqrt(s) = 200GeV using the PHENIX detector

Why do we study heavy quarks?

- RHIC was built to produce and study the Quark Gluon Plasma
 - Medium is small 1000fm³
 - Short lived 100 fm/c
 - Must be probed with particles produced in collision
- Hard Probe
 - Charm and especially Bottom, will only be created at beginning
 - Will propagate through and be modified by the medium

Open Charm (Bottom)

 $\pi^+ \overline{D}^0$

moman

- Dominant production mechanism is gluon fusion (LO)
 - possibility of studying gluon density as a function of system density
- Modification of transverse momentum spectra
 - energy loss ->look for suppression
 - Azimuthal anisotropy or flow
 - di leptons
- Cold and Hot nuclear matter
- J/ψ regeneration
- To make the best measurement of these things you need a pp reference in the same detector

 π^{-}

Х

PHENIX Detector

- High Rate, High Multiplicity Spectrometer
- Central arms
 - cover π in azimuth
 - |η|<0.35
 - central solenoidal field
 - carefully managed material budget
- Writing events at 6+ kHz

Beam Beam Counter

- Provide minimum bias trigger
- Determine z of collision vertex
- Set t₀ for all of PHENIX

- Two arrays of hexagonal Cerenkov radiators
- Phototubes have intrinsic resolution of 50ps
- 1.44m from center, 3.1<η<4.0

$$t_0^{BBC} = \frac{(t_N^{BBC} + t_S^{BBC})}{2}$$
$$z_{vtx}^{BBC} = \frac{(t_N^{BBC} - t_S^{BBC})}{2c}$$

 $\sigma^{pp} \approx 1.2 cm$ Harry Themann Stony^zBrook

5

Drift Chamber

Plotted at 04.11.59 on 14/01/03 with

Garfield version 6.34

Drift Chamber

- Accurate determination of charged track transverse momentum p_T .
- Measure, in concert together with PC1 and BBC, z at the DC and, consequently, the angle of a particle track w.r.t. beam axis, .
- Determine the tracks of charged particles though PHENIX.

FYI
$$p_T = 92/\alpha$$

Pad Chambers

- Reinforce the tracking of charged particles in r-θ plane
- In particular, PC1 provides z coordinate at the DC
- $\sigma_z = 1.7 \text{mm} (\text{PC1})$

Ring Imaging CHerenkov

- Primary electron identification subsystem
- Threshold Cherenkov
- π's begin to emit Cherenkov light at 4.2 GeV

RICH Variables

- n₀ & n₁ are both number of phototubes fired
- There are variables that use pulse height
- n₁ was chosen
 - alignment issue
 - easier to simulate

ElectroMagnetic Calorimeter

- PbGl
 - Better Energy Resolution
 - Better Granularity
 - Proven system (WA98)

- PbSc
 - Better Timing Resolution
 - Better Linearity
 - response to hadrons better understood (in principle)

Data Analysis

- Selection Cuts
- Run QA
- Trigger efficiency
- Acceptance Efficiency Correction
- Final Inclusive Spectrum
- Cocktail
- Background subtraction

Selection Cuts

- z vertex, |z|<20cm
- Quality X1/X2 unambiguous
 - 31 PC1 found/ambiguous, UV found
 - 51 PC1 found/unique, UV not found
 - 63 PC1 found/unique, UV found/unique
- EMC
 - matching -> Track to energy cluster
 - shower shape -> EM showers narrower than Hadronic
- RICH, $n_1 \ge 5$
- E/p
 - Centered about one, fixed window
 - Basis of new technique
- Fiducial Cuts -> fine tune matching of simulation to real detector

E/p

RunQA

- Data consists of two sets,
 - Min Bias
 - Triggered E > 1.4GeV
- For MB data
 - plot electron candidate yield per event vs run number
 - remove outliers
 - look for variations indicating changes in detector performance
- Make list of matching ERT runs
- Merge sets

Run QA

•3σ

e⁺ + e⁻ (scaled raw inclusive)(n1>=5) all emc Run6pp200

Acceptance Efficiency Correction

- Correct for
 - cut efficiencies
 - acceptance limitations
 - resolution effects -> Steeply falling spectra
- PHENIX Integrated Simulation Application (PISA)
- Generate simulated electrons and propagate through PHENIX with all cuts
- Divide what you get out by what you put in

Steeply Falling Spectrum

Acceptance Efficiency Correction

- dN/dphi plot
 - all eID cuts
 - 0.6<p_T<4.0GeV straight tracks below pion threshold
- check to make sure PISA version of PHENIX is the same as the real version

Acceptance Efficiency Correction

acc eff Run6pp200 0.3 $p_0 + p_1^* p_1 + p_2^* p_1^2$ 1 + exp χ^2 /ndf = 2.5060 = 0.21 0.00080 0.1 .00029 0.01666 = 0.38224 0.05 0<u>`</u>0 12 14 p_{_} [GeV/c] 2 6 8 10 4

Final Inclusive Spectrum

Pions in the EMC

- Most are MIPs, some shower
- Hadronic shower

•smaller cross sections •much larger fluctuation of energy deposit in active medium •EMC <1 λ => never get to shower max •30% of any shower are π^{0} 's N $\int_{---}^{---} 21 \text{cm Pb} --->}$

Assert that the energy distribution, scaled by the momentum, is the same for any p_T bin

The Principle

IEEE paper

Fig. 7 Top: EMCal response to 1 GeV/c π 's, p's and electrons.

The PHENIX Lead-Scintillator Electromagnetic Calorimeter: Test Beam and Construction Experience ¹

G.David, Y.Goto², E.Kistenev, S.Stoll, S.White, C.Woody Brookhaven National Laboratory, Upton, New York

A.Bazilevsky, S.Belikov, S.Chernichenkov, A.Denisov, V.Kochetkov, Y.Melnikov, V.Onuchin, V.Semenov, V.Shelikhov, A.Soldatov, A.Usachev Institute for High Energy Physics, Protvino, Russia

7/7/2011

Harry Themann Stony Brook

Background Function

- Ke3, Pions & Electrons
 - Generate Ke3 OSCAR files with modified EXODUS
 - propagate through PISA
 - Plot E/p p_T bin by p_T bin, fit with a function
- The resulting function is a sum of all three, the fit to data will have all parameters fixed except the three normalization constants.
- Use the resulting fits to;
 - Show π 's are the only background
 - Demonstrate that MC accurately models π 's
- As part of this process
 - wrote a "FastMC" to model π 's in the RICH
 - wrote a recalibrator for energy and momentum for PISA
- Final
 - incorporate FastMC result and recalibrator into PISA
 - weight all species in PISA with fits to real data
 - extract R_{π} from PISA

Final Fit

Does PISA produce R_{π} Accurately?

Does PISA produce $R\pi$ Accurately?

32

Cocktail of Electrons

Primary ingredient is π data

$$E\frac{d^{3}\sigma}{dp^{3}} = f_{-}c\left(e^{-(f_{-}ap_{T}+f_{-}bp_{T}^{2})} + p_{T}/p_{0}\right)^{-f_{-}}$$

$$\sqrt{(p_T/c)^2 - m_{\pi^0}^2 + m_h^2},$$

Cocktail of Electrons

7/7/2011

Final Spectrum

- Re bin & Bin shift correct
 - inclusive
 - cocktail
 - $-R_{\pi}$
- Subtract Cocktail & Background
- Calculate Systematic Errors

Comparison to Published PHENIX Data

Conclusion

- Successfully demonstrated a new technique for subtraction of hadron contamination
- Significantly extended the PHENIX pp reference for single electrons from open heavy flavor
- Hope to add Run5 and Run8 statistics
- SVTX and displaced vertex -> check my work

Problem with PISA

PbSc Only

Harry Themann Stony Brook

backup

Overall Systematic Error

- Cocktail
- R_π -> +/- 25%
- Acc/eff -> +/- 10%
- Three separate final spectra are created and added in quadrature to get final error boxes

Systematic Error in Cocktail

- Pions
 - Move pion data points up(down) by their sys errors
 - re fit hagedorn, feed parameters into EXODUS
 - calculate fractional change in total
- Other Elements
 - change weights by their fractional uncertainties
 - put into EXODUS
 - calculate fractional change in total

Fit to Latest π Data

Ratio

m_T Scaling

invariant cross section of some hadrons

Additional Normalization Constant

Final Fit

dN/dy

 $E\frac{d^{3}\sigma}{dp^{3}} = \frac{1}{2\pi}\frac{1}{p_{T}}\sigma_{inel}\frac{dN}{dy}\frac{dN}{dp_{T}} = Hagedorn$

assume dN/dy is constant y<|0.5|

- 1.01653 dN/dy π
- 0.107884 η
- 0.0161826 η'
- $\frac{dN}{dy} = \frac{2\pi}{\sigma_{incl}} \int_0^\infty p_T Hagedorn(p_T)$ • 0.08953762 $\rho \rightarrow \sigma_{\rho} / \sigma_{\omega} = 1.15$
- **0.0778588** ω
- 0.00946404 φ
- 0.0000170768 J/ψ
- $0.00000111960 \text{ Y} \rightarrow d\sigma_{\text{Y}}/dy / \text{Bd}\sigma_{\text{J/w}}/dy = 0.006556291$
- $0.0000025 \psi' \rightarrow \sigma_{\psi'} / \sigma_{J/\psi} = 0.14$
- 0.0262 Direct Photon
- 0.00162 Ke3

Systematic Error in Cocktail

Systematic Error in Cocktail

- Pions
 - Move pion data points up(down) by their sys errors
 - re fit hagedorn, feed parameters into EXODUS
 - calculate fractional change in total
- Mesons
 - change meson/pion ratio by fractional uncertainty in normalization factor
 - put into EXODUS
 - calculate fractional change in total
- Conversions
 - change convprob +/- 10%
 - convprob is ratio of pi/pi dalitz
- Direct Photons
 - sys error from AN goes from 20-10% pT dependent
 - for now using 15%

Yield Fraction

7/7/2011

Model The Background

From data

To Calculate

$$N_{\pi} / N_{e} = \frac{\pi}{e} \frac{\int_{0.8}^{1.2} E/p(\pi)}{\int_{0.0}^{2.0} E/p(\pi)} \frac{frac \pi_{n_{1}} >= 5}{frac e_{n_{1}} >= 5}$$

Harry Themann Stony Brook

Terms

- π/e
 - Got most recent π^0 data from AN567 K. Boyle, A. Bazilevsky, A. Deshpande, Y. Fukao
 - Fit with Hagedorn function
 - For electrons got FONLL function from ppg065
 - Divided two functions (plots)
- Fraction in E/p window
 - Integrals done on MC π E/p distributions

Model The RICH

 $\frac{frac_\pi_n_1 \ge 5}{frac_e_n_1 \ge 5}$

Cerenkov Turn On -> Frank-Tamm

$$\frac{dE}{dx} = \frac{q^2}{4\pi} \int_{v > c/n(\omega)} \mu(\omega) \omega \left(1 - \frac{c^2}{v^2 n^2(\omega)}\right) d\omega'$$

photons350 - 500nm = 390 * sin² θ_c * n_{CO_2} * path _ length

n₁ turn on

- Normalize Cerenkov curve to asymptotic electron n₁ mean
- Generate a π with random p_T
- Determine n₁ mean for pion from the Cerenkov curve
- Generate pion n₁ from poisson distribution with this mean
- dN/dp_T vs p_T normalized to one is the turn on
- Close but not good enough (plot)
- Then used reconstructed p_T
- Think of a better way to model RICH
 - n1 is number of PMT's not PE's

Toy MC

- Generate track
 - Cerenkov angle
 - # photons from poisson with mean from Cerenkov <u>curve</u>
 - Distribute randomly in 2pi azimuth
- Propagate the resulting ring to an array of phototubes

7/7/2011

Harry Themann Stony Brook

Match Toy to Data by Varying the Asymptotic Value of the Number of Cerenkov Photons in Curve for e+/-

Harry Themann Stony Brook

Money Plot

Before

Then The Miracle Occurs

$$\sqrt{2} \frac{\delta m}{m} = \frac{\delta p}{p}$$

$$J/\Psi \to \frac{\delta m}{m} = \frac{51.1}{3082} = 1.66\% \to \frac{\delta p}{p} = 2.34\%$$

$$\phi \to \frac{\delta m}{m} = \frac{9.59}{1012} = 0.95\% \to \frac{\delta p}{p} = 1.34\%$$

$$\left(\frac{\delta p}{p}\right)^2 = C_1^2 + C_2^2 p^2$$

$$J/\Psi \to 2.34^2 = C_1^2 + C_2^2 (1.774)^2$$

$$\phi \to 1.34^2 = C_1^2 + C_2^2 (0.650)^2$$

$$C_2^2 = \frac{(2.34^2 - 1.34^2)}{(1.774^2 - 0.650^2)}$$

$$C_2 = 1.16\% \text{ and } \Rightarrow C_1 = 1.1\%$$

7/7/2011

After

7/7/2011