# Neutron EDM and Dressed Spin

Pinghan Chu University of Illinois at Urbana-Champaign

Brookhaven National Lab Mar. 10, 2011

Ι

## Outline

- History of neutron EDM search
- Review of neutron EDM technique
- Neutron EDM experiment at SNS at ORNL
- Measurement of dressed spin
- Theory of dressed spin
- Simulation of dressed spin and neutron EDM experiment

#### Neutron electric dipole moment

$$\vec{d_n} = \int dx^3 \rho \vec{x} = d_n \hat{S}$$

J



- Electric dipole moment (EDM) is the first moment of the charge distribution (ρ).
- The EDM (vector) is parallel to the Spin (axial vector) direction.
- A non-zero neutron EDM violates the parity symmetry.

#### Pioneers of neutron electric dipole moment



Purcell Ramsey

- Purcell and Ramsey emphasized the possibility of a non-zero neutron EDM and the need to check it experimentally.
- They set an upper limit of 3x10<sup>-18</sup> e cm from the neutron-nucleus scattering data (1950).
- They carried out a pioneering measurement of the upper limit of 5x10<sup>-20</sup> e cm by using the separated oscillatory field at Oak Ridge (1950) (later slides).
- The parity violation was suggested by Lee and Yang(1956) and discovered by Wu, et al.(1957).

4

• Still no neutron EDM was observed.



### EDM and CP violation



- Landau showed that particles cannot possess EDM from time-reversal invariance (1957).
- T violation implies CP violation if CPT holds.
- No neutron EDM experiments during 1957-1964.
- CP violation was discovered in neutral Kaons decay by Cronin and Fitch(1964).

## Baryon asymmetry of Universe and CP violation



- Sakharov

#### Kobayashi



Maskawa

- Baryon asymmetry of universe (BAU) : baryon/photon~10<sup>-10</sup>.
- Sakharov proposed CP violation as one of necessary ingredients(1967).
- CP violation has only been observed in Kaon and B meson decays, which can be explained by Kobayashi-Maskawa mechanism (CKM matrix) in SM(baryon/photon~10<sup>-18</sup>).
- Require CP violation beyond the SM.

### Neutron EDM in Standard Model

- Upper limit of neutron EDM (d<sub>n</sub>)~3x10<sup>-26</sup> e cm.
- Neutron EDM in Standard Model
  - Strong interaction:  $d_n \sim \theta \ge 10^{-15}$  e cm, where  $\theta$  specifies the magnitude of CP violation in the QCD Lagrangian ( $\theta < 10^{-10}$ ).
  - Weak interaction: Phase in CKM matrix: d<sub>n</sub> ~ 10<sup>-31</sup> e cm
- •Neutron EDM provides a strong constraint for new theories predicting CP violation.
- The neutron EDM searches can explore physics beyond SM complementary to LHC.

#### History of neutron EDM search



Current neutron EDM upper limit: < 2.9 x 10<sup>-26</sup> e cm (90% C.L.)
Still no evidence for neutron EDM.

#### How to measure neutron EDM?



- Measure the precession frequency of neutron in B<sub>0</sub> and E<sub>0</sub>.
- Flip E<sub>0</sub>, get nEDM from precession frequency difference.

$$H = -(\vec{\mu}_n \cdot \vec{B}_0 + \vec{d}_n \cdot \vec{E}_0)$$
$$\vec{\mu}_n = \gamma_n \vec{S}, \quad \vec{d}_n = d_n \hat{S}$$
$$\rightarrow \omega = \gamma_n B_0 \pm 2d_n E_0 / \hbar$$
$$\rightarrow \Delta \omega = 4d_n E_0 / \hbar$$

#### How to measure neutron EDM?



- Measure the precession frequency of neutron in B<sub>0</sub> and E<sub>0</sub>.
- Flip E<sub>0</sub>, get nEDM from precession frequency difference.

$$H = -(\vec{\mu}_n \cdot \vec{B}_0 + \vec{d}_n \cdot \vec{E}_0)$$
$$\vec{\mu}_n = \gamma_n \vec{S}, \quad \vec{d}_n = d_n \hat{S}$$
$$\rightarrow \omega = \gamma_n B_0 \pm 2d_n E_0 / \hbar$$
$$\rightarrow \Delta \omega = 4d_n E_0 / \hbar$$

#### Purcell and Ramsey's experiment



| RF | off                                             | on                                                                                               | off                               | on                                                                                               |
|----|-------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------|
|    | neutron spin is<br>parallel to<br>holding field | first $\pi/2$ pulse<br>is applied; spin<br>is rotated to be<br>perpendicular<br>to holding field | neutrons<br>precess in B<br>and E | second π/2<br>pulse is<br>applied; spin is<br>rotated to be<br>anti-parallel to<br>holding field |

#### Purcell and Ramsey's experiment

•The peak location determines the precession frequency.

•Limitations:

1.**Short duration** for observing the precession (~1 ms) due to short transit time of cold neutron beam in this region

2.Systematic error due to **motional magnetic field (v x E)** 

 Both can be improved by using ultracold neutrons (UCN) due to their slow velocities (~5 m/s)





# Ultracold neutron (UCN)

- Fermi suggested that neutrons with very low energy can be stored in a bottle(1936).
- Many materials provide repulsive Fermi potential U<sub>F</sub> around order of 200 neV for neutrons.
- If neutron energy is *less* than the Fermi potential U<sub>F</sub>, neutrons can be stored in a bottle.
- U<sub>F</sub> ~ 200 neV, UCNs have velocities of order of 5 m/sec, wavelengths of order 500 °A and an effective temperature of order 2 mK.
- Long storage time, low velocity.
- Many experiments with UCN, like neutron life time measurement, **neutron EDM**, gravitational interactions of neutrons,etc.



13



Fermi

### UCN production in superfluid <sup>4</sup>He

- UCN was extracted from the low-energy tail of the Maxwell-Boltzmann distribution of cold neutrons(~5 UCN/cm<sup>3</sup>).
- A method was suggested by Golub and Pendlebury. Cold neutron with momentum of 0.7 A<sup>-1</sup> (10<sup>-3</sup> eV) can excite a phonon in superfluid <sup>4</sup>He and become an UCN via down-scattering process.

=>Much larger UCN density than conventional UCN sources



# The new neutron EDM experiment (based on UCN production in superfluid <sup>4</sup>He)



(Based on the idea originated by R. Golub and S. Lamoreaux in 1994)

Collaboration:

Arizona State, Berkeley, Brown, Boston, Caltech, Duke, Indiana, Illinois, Kentucky, LANL, Maryland, MIT, Mississippi State, NCSU, ORNL, Simon-Fraser, Tennessee, Virginia, Valparaiso, Yale

#### How to measure the precession of UCN in superfluid <sup>4</sup>He?

• Use polarized <sup>3</sup>He in the bottle as a spin analyzer.

$$n + {}^{3}He \rightarrow p + {}^{3}H + 764KeV$$

• n – <sup>3</sup>He absorption is strongly spin-dependent.



J=1, σ ~ 0

J=0,  $\sigma_{abs} \sim 4.8 \times 10^6$  barns for v=5 m/s



Fill L<sup>4</sup>He with polarized <sup>3</sup>He



Produce polarized UCNs with polarized cold neutron beam

E

B

#### T = 1100 s



# Flip neutron and <sup>3</sup>He spins by a $\pi/2$ RF coil

EB



• Detect scintillation light from the reaction n + <sup>3</sup>He -> p + t (and from other sources, including neutron beta decays)  $d\phi(t) = \frac{1}{M_{e} - \Gamma_{tot}t} \int_{t_{e}}^{t_{e}} \frac{1}{M_{e}} \frac$ 

dt

•  $\theta_{n3}$  is the relative angle between neutron and <sup>3</sup>He.

$$= N_0 e^{-\Gamma_{tot}t} \left[\frac{1}{\tau_{\beta}} + \frac{1}{\tau_3} (1 - P_3 P_n \cos(\theta_{n3}))\right]$$

#### T = 1610 - 1710 s



21

#### Two oscillatory signals

- Scintillation light from  $n+{}^{3}\text{He} \rightarrow p + t$  with  $\omega_{\gamma} = (\gamma_{n} \gamma_{3})B_{0} \pm 2d_{n}E_{0}/\hbar$ where the relative angle  $\theta_{n3} = \omega_{\gamma}t$ .
- SQUID signal from the precession of <sup>3</sup>He with  $\omega_3 = \gamma_3 B_0$ .
- comagnetometer:

• Thus, the precession of neutron can be known well.

reduce the error caused by  $B_o$  instability between measurements



#### Application of comagnetometer

- The idea is to add **a polarized atomic species** to precess with neutrons.
- The drift of the holding field can be monitored by measuring the precession of the comagnetometer.
- <sup>199</sup>Hg was applied as a comagnetometer in ILL experiment (Phys.Rev.Lett. 97 (2006) 131801:  $d_n < 2.9 \times 10^{-26}$  e cm). But it *cannot* be used in liquid <sup>4</sup>He.
- <sup>3</sup>He will be used for the new neutron EDM experiment in liquid
   <sup>4</sup>He at the SNS.



#### Dressed spin in nEDM

 Neutrons and <sup>3</sup>He naturally precess at different frequencies (different g factors)

• Applying a RF field (dressing field),  $B_d cos(\omega_d t)$ , perpendicular to the constant  $B_0$  field, the effective g factors of neutrons and <sup>3</sup>He will be **modified** (dressed spin effect)

• At a **critical dressing field**, the effective g factors of neutrons and <sup>3</sup>He can be made **identical!** 

$$\omega_{\gamma} = (\gamma_n - \gamma_3)B_0 \pm 2d_n E_0/\hbar \to \pm 2d_n E_0/\hbar$$

#### Critical dressing of neutron and <sup>3</sup>He

- The Larmor frequency is given as  $\omega_{Larmor} = \omega_0 = \gamma B_0$
- $\gamma$  is modified by the dressing field at the high frequency limit as  $\gamma' = \gamma J_0(x)$
- The critical dressing is  $\gamma'_n = \gamma'_3$
- Thus  $J_0(x_c) = a J_0(a x_c)$
- $a = \gamma_3 / \gamma_n \approx 1.1$
- The proposal value is  $B_0 = 10 \ mG,$  x = 1.189,y = 0.01.

The goal of the UIUC measurement is to explore the dressed spin effect of polarized <sup>3</sup>He as a function of  $B_0$ ,  $B_d$  and  $\omega_d$  in a cell.

$$x_{c}=1.189$$

$$y = \gamma_{n}B_{0}/\omega_{d} \rightarrow 0$$

$$y = \gamma_{n}B_{0}/\omega_{d}$$

$$y = \gamma_{n}B_{0}/\omega_{d}$$

$$y = \gamma_{n}B_{0}/\omega_{d}$$

 $x \equiv \frac{\gamma_n B_d}{\omega_d}$ 

 $y \equiv \frac{\gamma_n B_0}{2}$ 









#### Experimental steps

- Polarize <sup>3</sup>He nuclear spins. (Metastability exchange with optical pumping) (by Laser and B<sub>0</sub>)
- $\pi/2$  pulse to rotate the spin to x-y plane. (by  $B_{\pi/2}Cos(\omega_0 t)$ )
- Apply a dressing field, B<sub>d</sub>Cos(ω<sub>d</sub>t), and measure precession frequency by the pickup coils and Lock-in amplifier.



#### Polarize <sup>3</sup>He with metastability exchange



1)Transfer angular momentum of photon to atomic electrons

2) produce nuclear polarization via metastability exchange



## Pickup coils signal





#### Precession frequency measurement by using Lock-in amplifier



# The effective precession frequency for different dressing field configuration for $y < 1(\omega_0 < \omega_d)$

(The proposal value is at y=0.01)



34

# The effective precession frequency for different dressing field configuration for y>1 ( $\omega_0 > \omega_d$ )



**Precession speeds up!** 

# Quantum mechanical approach

| $H = H_M + H_{RF} + H_{int} = \hbar\omega_0 S_z + \hbar\omega_d a^{\dagger} a + \lambda S_x (a + a^{\dagger})$ |          |                                |                   |                   |                             |                   |                   |  |  |  |
|----------------------------------------------------------------------------------------------------------------|----------|--------------------------------|-------------------|-------------------|-----------------------------|-------------------|-------------------|--|--|--|
| $\lambda = \hbar \gamma B_d / 2\bar{n}^{1/2}$                                                                  |          |                                |                   |                   | Jaynes-Cummings Hamiltonian |                   |                   |  |  |  |
| $Y = \frac{\gamma B_0}{\omega_d}$                                                                              |          |                                |                   |                   |                             |                   |                   |  |  |  |
| $X = \frac{\gamma B_d}{\omega_d}$                                                                              |          | $\left[n+1+\frac{Y}{2}\right]$ | 0                 | 0                 | $\frac{X}{4}$               | 0                 | 0                 |  |  |  |
| n = number of ph                                                                                               | otons    | 0                              | $n+1-\frac{Y}{2}$ | $\frac{X}{4}$     | 0                           | 0                 | 0                 |  |  |  |
|                                                                                                                | hou      | 0                              | $\frac{X}{4}$     | $n + \frac{Y}{2}$ | 0                           | 0                 | $\frac{X}{4}$     |  |  |  |
|                                                                                                                | $1100_d$ | $\frac{X}{4}$                  | 0                 | 0                 | $n-\frac{Y}{2}$             | $\frac{X}{4}$     | 0                 |  |  |  |
| 6x6                                                                                                            |          | 0                              | 0                 | 0                 | $\frac{X}{4}$               | $n-1+\frac{Y}{2}$ | 0                 |  |  |  |
| 46x46                                                                                                          |          | 0                              | 0                 | $\frac{X}{4}$     | 0                           | 0                 | $n-1-\frac{Y}{2}$ |  |  |  |
|                                                                                                                |          |                                |                   |                   |                             |                   |                   |  |  |  |
# Dependence of effective $\gamma$ in dressing field without dressing field



# Dependence of effective $\gamma$ in dressing field with dressing field





# The effective precession frequency for different dressing field configuration for y<1 ( $\omega_0 < \omega_d$ )



39

# The effective precession frequency for different dressing field configuration for y>1 ( $\omega_0 > \omega_d$ )



40

# Critical dressing for other y's(lower dressing frequencies)



•Other choices for the critical dressing?

•It may help the design of the dressing coils so that we don't need to run at the high dressing frequency condition.

#### Simulation of the dressed spin

•Simulation of the dressed spin dynamics is underway.

•Bloch equation simulation with the 4th order of the Runge-Kutta method is used to simulate the dressed spin,

$$\frac{dS(t)}{dt} = \vec{S}(t) \times \gamma \vec{B}(t)$$
$$\vec{B}(t) = B_0 \hat{z} + B_d \cos \omega_d t \hat{x}$$

•The time dependence of  $Cos\theta_{n3}$ , the relative angle between <sup>3</sup>He and neutron spins, is derived in Physics Report 237, 1-62(1994) as:

$$\cos \theta_{n3} = \frac{1}{2} [1 + J_0(x_n - x_3)] \cos[(\omega_n - \omega_3)t] + \frac{1}{2} [1 - J_0(x_n - x_3)] \cos[(\omega_n + \omega_3)t]$$
$$x_n = \frac{\gamma_n B_d}{\omega_d}, \ x_3 = \frac{\gamma_3 B_d}{\omega_d}, \ \omega_n = \gamma_n B_0 J_0(x_n), \ \omega_3 = \gamma_3 B_0 J_0(x_3)$$

•The first term of the analytical expression is a constant close to 1 at the critical dressing where  $\omega_n = \omega_3$ . The second term has an oscillatory pattern.

#### Simulation of the dressed spin



•Use the proposal values at y=0.01, x=1.189,  $B_0$ =10 mG,  $B_d$  =1189 mG,  $f_d$ =-2916.46954Hz, which is very close to the critical dressing.

•The black is the Bloch equation simulation. The red is the analytical expression, which is consistent with the time average of the simulation.

•The simulation also shows an additional oscillatory pattern at the dressing frequency and visualize the spin dynamics.

# http://www.youtube.com/watch?v=xBL\_jDjtojc

#### Idea of the feedback



•If the dressing field deviates from the critical dressing,  $\cos\theta_{n3}$  will have time dependence which will mix with the EDM signal.

•Apply a **feedback** to compensate the offset, initially proposed by Golub and Lamoreaux in 1994.

•Add a modulation to vary the angle between neutron and <sup>3</sup>He. Any difference between modulation angles in opposite directions (the scintillation light) will be the input to the feedback.



•Add a modulation on the dressing field so that  $\ \ x_c 
ightarrow x_c \pm x_m$ 

•The relative angle between neutron and <sup>3</sup>He is varied between  $\theta_{max}^+$  and  $\theta_{max}^-$ .  $\theta_{max}^+ = \theta_{max}^-$  at the critical dressing.

•Any offset will cause difference in  $\theta_{max}^+$  and  $\theta_{max}^-$ .

Measure the scintillation light difference in opposite modulation directions.



#### Monte Carlo for the feedback loop





- $Cos\theta_{n3}$  is kept at a constant.
- The signal is kept at the critical dressing.
- Relate the EDM effective field to Bd, fit.
- The feedback can be only applied in a single measurement cell in the SNS experiment(since both two cells share the same dressing coils).
- Many parameters remain to be optimized

# Parameters for dressing/modulation/feedback

• Several parameters should be considered and optimized.

•x and y are discussed in the dressed spin study. There are critical points for different y's.

• Modulation amplitude  $B_m$  and period  $\tau_m$  should be carefully determined since it is related to the input signal.

- The feedback parameters α and β are important for the feedback loop to succeed.
- The optimization is still ongoing.







# Summary

- Neutron EDM is a powerful tool searching for physics beyond SM.
- The goal of next generation experiments is to reach the sensitivity at 10<sup>-28</sup> e cm.
- A new neutron EDM experiment uses ultracold neutron produced in superfluid <sup>4</sup>He, with <sup>3</sup>He as a spin analyzer and a comagnetometer. The dressed spin technique will be applied to reduce the systematic uncertainty.
- The dressed spin phenomena have been studied over a broad range of dressing field configuration in UIUC. The observed effects are compared with calculations based on quantum optics formalism
- The optimal implementation of the dressed spin technique for the neutron EDM experiment is still ongoing.

# Back-up slides

#### Monte Carlo for the feedback loop



• Apply an electric field in different direction for different runs. Assume  $\omega_e$ =100µHz.

- The correction field B<sub>c</sub> = B<sub>d,fit</sub>-B<sub>d,0</sub> for Run1-10 is -0.3467mG and for Run 11-20 is -03514mG, which include both the offset and the EDM effective field. Thus ΔB<sub>c</sub> =0.0047 mG.
- Use the relation between the correction field and the EDM effective field:

$$\begin{aligned} \Delta \omega_{\gamma} &= \omega_0 [J_0(x_c + \Delta x) - \gamma_3 / \gamma_n J_0(\gamma_3 / \gamma_n (x_c + \Delta x))] \\ &= 0.156077 \omega_n \Delta x = 0.156077 \omega_n \frac{\gamma_n B_c}{\omega_d} = -0.0286007 B_c = \omega_e J_0(x_c) \\ \omega_e &= -0.0422713 B_c \end{aligned}$$
$$\begin{aligned} \Delta \omega_e &= -198.675 \mu Hz \end{aligned}$$

#### Sensitivity of the feedback method



- The RMS for 20 runs is 0.0028884 mG.
- Thus, the sensitivity for the EDM is  $\sigma_{fe} = 19.4323 \mu Hz$ .
- Comparing with the case without the dressing field which is around 2.7µHz, the feedback method still needs optimization(x and y, modulation parameters, feedback parameters, etc.).

# Modulation signal

The distribution function =  $(d\phi/dt)/N_0$ depends on  $1-\cos\theta_{n3}$ .



- The counts in the first half and the second half of a modulation cycle should be identical at the critical dressing.
- The difference in the counts will be the input to the feedback.

#### Monte Carlo for the feedback loop



•Example of the simulation for the scintillation events with modulation/ feedback scheme.

many parameters remain to be optimized

#### Critical dressing for other y's(lower dressing frequencies)



•Other choices for the critical dressing. Consider the possibility once we realize the dressed spin technique. It may help to the design of the dressing coils so that we don't need to run at the high dressing frequency condition.

# Apply a modulation

•At the critical dressing, no signal from the <sup>3</sup>He capture. Add a modulation.

•The relative precession frequency between neutron and <sup>3</sup>He at the critical dressing is

 $\omega_{\gamma} = \omega_0 [J_0(x_c) - a J_0(a(x_c))] = 0$ 

•Apply a **cos square modulation** onto the dressing field such as

$$B_d(t) = [B_{d,c} + B_m Sign(\cos(\omega_m t))] \cos \omega_d t$$
$$x = x_c \pm x_m$$

•The relative precession frequency becomes

$$\omega_{\gamma}^{\pm} = \omega_0 [J_0(x_c \pm x_m) - a J_0(a(x_c \pm x_m))]$$

•The maximum relative angle becomes

$$\theta_{max}^{\pm} = \omega_{\gamma}^{\pm} \tau_m / 4$$

•The result can be also simulated by using Bloch equation.





# Apply the feedback loop

• The scintillation light is

$$\frac{d\phi(t)}{dt} = N_0 e^{-\Gamma_{tot}t} \left[\frac{1}{\tau_\beta} + \frac{1}{\tau_3} (1 - P_3 P_n \cos(\theta_{n3}))\right]$$

- The total light in the first half and the second half modulation should be identical at the critical dressing.
- The difference of the light in two periods will be the input of the feedback loop.
- The difference may come from the offset of the dressing field or the EDM effective field.
- The correction field can compensate the offset or the EDM effective field. Thus, the EDM can be obtained from the correction field in different runs.



The distribution function =  $(d\phi/dt)/N_0$  depends on  $1-\cos\theta_{n3}$ .

# Simulation of modulation/feedback



- One example without fluctuation with different  $\alpha$  and  $\beta$ . Set x=1.189, B<sub>m</sub>/B<sub>d</sub> = 0.05 and f<sub>m</sub>=1 Hz.
- $\cos\theta_{n3}$  can be tuned to be a constant.
- The system can be tuned to be the critical dressing.
- The feedback can be only applied in a single measurement cell in the SNS experiment(since both two cells share the same dressing coils).

#### Monte Carlo for the feedback loop



- One example with fluctuation with different α and β. Set x=1.189, B<sub>m</sub>/B<sub>d</sub> = 0.05 and f<sub>m</sub>=1 sec.
- $Cos\theta_{n3}$  is (roughly) kept at a constant.
- Fit the dressing field *within* the final range. We use the time window t=100-500 sec.
- Relate the EDM effective field to B<sub>d, fit</sub>.

# Simulation for the feedback loop



- One example without fluctuation with  $\alpha$ =0.001 and  $\beta$ =0.01. Set x=1.189, B<sub>d</sub> = 1189 mG, B<sub>m</sub>/B<sub>d</sub> = 0.05 and f<sub>m</sub>=1 Hz.
- $\cos\theta_{n3}$  can be tuned to be a constant.
- The system can be tuned to be the critical dressing.
- The feedback can be only applied in a single measurement cell in the SNS experiment(since both two cells share the same dressing coils).

#### Monte Carlo for the feedback loop



- One example with fluctuation with different  $\alpha$  and  $\beta$ . Set x=1.189, B<sub>m</sub>/B<sub>d</sub> = 0.05 and f<sub>m</sub>=1 sec.
- $Cos\theta_{n3}$  is (roughly) kept at a constant.
- Fit the dressing field within the final range. We use the time window t=100-500 sec.
- Relate the EDM effective field to B<sub>d, fit</sub>.

#### Simulation of the dressed spin

•The simulation result is consistent with the analytic solution.

•The simulation can be applied in any magnetic fields and spin dynamics. It will be used for **the feedback loop study** (proposed by Golub and Lamoreaux in 1994).

- It can be also used for
  - •Optimization of  $\pi/2$  pulse for both neutron and 3He,
  - •the systematic effect of the pseudomagnetic field, and
  - •the systematic effect of the initial polarization and the relative angle.

•Together with Monte Carlo, we have a tool to study the statistic error and systematic error of the dressed spin technique.





2. For given  $B_{d,i}$ , simulate  $n+{}^{3}$ He interaction. Use the Bloch equation to calculate  $\cos \theta_{n3}$  within the time window  $t = [t_i, t_i + \tau_m]$ , corresponding to one modulation cycle.











7. Run the feedback loop process and obtain the modified dressing field.

• Low Pass Integrator:  $B_{c,0,\alpha} = B_{d,0}, B_{c,i,\alpha} = B_{c,i-1,\alpha} - \alpha \Delta N_i.$ 

• Amplifier: 
$$B_{c,i,\beta} = -\beta \times \Delta N_i$$
. 69



8. Modified field:  $B_{d,i+1} = B_{c,i,\alpha} + B_{c,i,\beta}$ .



# Approach of the feedback method

- •The feedback method is under investigation. Several factors should be considered.
- The modulation amplitude and period cannot be too short since there will not be enough events for the feedback loop.
- The modulation amplitude cannot be too large since the Bessel function is not symmetric at the critical point if the modulation is too large.
- The modulation period cannot be too long either since the decay effect will be involved and there is no enough time to correct the dressing field.
- One dominate factor is the decay which can affect the sensitivity a factor of 5 from the Monte Carlo study.
- Correction factors for  $\alpha$  and  $\beta$  are necessary to compensate the decay effect.
- The feedback method can only be applied to a **single cell** since two cells have the same dressing coils.
- Although the feedback loop can self-correct, different kinds of systematic error, including the pseudomagnetic field, the polarization of neutron and <sup>3</sup>He, the neutron and <sup>3</sup>He density,etc., should be studied.
#### Summary

- The dressed spin measurement is consistent with the prediction. We can apply the theory to estimate the critical dressing at different magnetic field setups.
- It may help to the design of the dressing coils since we may not need to run at the high dressing frequency condition.
- It will be of interest to extend the measurement to higher x range.
- The Bloch equation simulation can simulate the spin dynamics in any magnetic fields. It can be used in many subjects of the nEDM, like the π/2 optimization, the pseudomagnetic field.
- The Monte Carlo study can help to study the statistic sensitivity of the feedback loop. It will be done in months.

#### Pseudomagnetic field

- The pseudomagnetic moment, which is originated from the real part of n-<sup>3</sup>He scattering length (spin-dependent), like magnetic dipole moment, can produce the pseudomagnetic field, along the <sup>3</sup>He spin direction.
- Ref : Nuclear Magnetism:order and disorder, A. Abragam and M. Goldman and Physics Report(1994)
- B<sub>a</sub> is around 1000 times larger than the <sup>3</sup>He magnetization.
- $B_a$  is proportional to  $P_3$ , which is time dependent.

#### $\pi/2$ Pulse

- Apply a linear oscillatory RF magnetic field along the x-axis.
- The frequency is expected at the Larmor frequencies of neutron ( $\omega_n$ ).

 $B_{RF}(t) = 2B_1 \cos \omega_n t \hat{x} = B_1 (\cos(\omega_n t) \hat{x} - \sin(\omega_n t) \hat{y}) + B_1 (\cos(\omega_n t) \hat{x} + \sin(\omega_n t) \hat{y})$ 

 In the rotating frame, only a constant B<sub>1</sub> along the x-axis and another high frequency field. Ignore the high frequency term. The constant B<sub>1</sub> field can rotate the spin from the z-axis to the x-y plane within a period of time.



#### Purcell and Ramsey's Experiment



#### Pseudomagnetic field

- The pseudomagnetic moment, which is originated from the real part of n-<sup>3</sup>He scattering length (spin-dependent), like magnetic dipole moment, can produce the pseudomagnetic field, along the <sup>3</sup>He spin direction.
- Ref : Nuclear Magnetism:order and disorder, A. Abragam and M. Goldman and Physics Report(1994)
- B<sub>a</sub> is around 1000 times larger than the <sup>3</sup>He magnetization.
- B<sub>a</sub> is proportional to P<sub>3</sub>, which is time dependent. The pseudomagnetic field is along the spin direction of <sup>3</sup>He. In the <sup>3</sup>He Larmor frequency rotating frame, the magnetic field is



#### Dressing field plus pseudomagnetic field

- At the critical dressing(g'<sub>3</sub>=g'<sub>n</sub>), the constant field becomes very small in the rotating frame.
- The neutrons spin direction will be confined in a small cone around the <sup>3</sup>He spin direction.
- The EDM signal will be reduced by the pseudomagnetic field.
- Modulation and feedback of the dressing field are proposed to overcome this problem (discussed in the Physics Report).



# The schematic plot for the feedback loop(by Golub and Lamoreaux)

R. Golub and S.K. Lamoreaux, Neutron electric-dipole moment, ultracold neutrons and polarized <sup>3</sup>He

40



Fig. 7. Schematic of a feedback system following standard phaselock techniques.  $\omega_z$  represents the total magnetic field seen by the UCN.

#### Generate Monte Carlo for the feedback loop

- 1. The initial value of  $B_d$  is  $B_{d,0}$ .
- 2. For given  $B_{d,i}$ , use the Bloch equation to calculate  $\cos \theta_{n3}$  within the time window  $t = [t_i, t_i + \tau_m]$ , corresponding to one modulation cycle.
- 3. Insert  $\cos \theta_{n3}$  into the distribution function,  $\frac{d\Phi}{dt}$ .
- 4. Calculate:

$$\Phi_{+,i} = \int_{t_i}^{t_i + \tau_m/2} \frac{d\Phi}{dt} dt,$$
$$\Phi_{-,i} = \int_{t_i + \tau_m/2}^{t_i + \tau_m} \frac{d\Phi}{dt} dt,$$

- 5. Generate Monte Carlo  $N_{+,i} = Poisson(\Phi_{+,i})$  and  $N_{-,i} = Poisson(\Phi_{-,i})$
- 6. Calculate  $\Delta N_i = N_{+,i} N_{-,i}$ .
- 7. Run the feedback loop process and obtain the modified dressing field.
  - Low Pass Integrator:  $B_{c,0,\alpha} = B_{d,0}, B_{c,i,\alpha} = B_{c,i-1,\alpha} \alpha \Delta N_i.$

80

- Amplifier:  $B_{c,i,\beta} = -\beta \times \Delta N_i$ .
- Modified field:  $B_{d,i+1} = B_{c,i,\alpha} + B_{c,i,\beta}$ .
- 8. Go to 2 and repeat the loop.

 $\alpha$ , $\beta$  are feedback parameters.

#### History of neutron EDM search



•Current neutron EDM upper limit: <  $2.9 \times 10^{-26}$  e cm (90% C.L.)

•Still no evidence for neutron EDM.

### Neutron electric dipole moment (Early history)



Dirac

- Electric dipole moment (EDM) is the first moment of the charge distribution (ρ).
- Dirac's magnetic monopole can generate an EDM (1948).
- The EDM (vector) is parallel to the Spin (axial vector) direction.
- EDM is **Parity-odd** but spin is **Parity-even**.



Fig. 8. Response of the system when  $\tau_L$  is rather long and with no UCN loss. The modulation period  $\tau = 0.1$  s. The interesting feature is that  $\omega_s \neq 0$ , which implies that there is an error in the correction signal, after the system has reached equilibrium.

4





Fig. 10. Simulation including spin-dependent losses with  $\omega_s = \pm 1 \times 10^{-4}$ , reversed every 50 s. The loop is initially underdamped but becomes overdamped due to the gain reduction from neutron losses. The sin  $\alpha/\alpha$  reduction factor is shown to indicate the loss of sensitivity expected when feedback is not used; such a reduction is absent from the correction signal  $\omega_c$ . Also, the component of  $\sigma_a$  due to the finite loop response time decays faster than  $\sigma_a$ ; this is due to spin-dependent losses.

85

### UCN Production in superfluid 4He

#### Magnetic Trapping of UCN at NIST (Nature 403 (2000) 62)



560 ± 160 UCNs trapped per cycle (observed)
480 ± 100 UCNs trapped per cycle (predicted)

The experiment helps to approve the neutron EDM proposal.



## Why permanent EDMs exist without violating P and T?

- Consider a diatomic polar molecule. The only possible orientation of the EDM is along the molecular axis, but the rotation (spin) is directed perpendicular to the axis.
- For polyatomic molecules (like  $NH_3$ ), the +k and -k (k is the spin projection) are degenerate states with opposite sign of EDM. The superposition of these two states would give zero EDM.



#### **Electroweak Process**

a) Contributions from single quark's EDM:

b) Contributions from diquark interactions:



$$d_n \approx \frac{1}{3}d_u - \frac{4}{3}d_d$$

One and two-loop contributions are zero. Three-loop contribution is ~10<sup>-34</sup> e•cm



$$d_{n} = \frac{38}{9\pi^{3}} (G_{F} m_{N}^{2})^{2} \frac{m_{t}^{2}}{m_{s}^{2}} \frac{m_{N}^{2}}{m_{W}^{2}} \frac{\Lambda}{m_{N}^{4}} \frac{e}{m_{N}} (\text{Im}V)$$
$$\text{Im}V = c_{1} s_{1}^{2} c_{2} s_{2} c_{3} s_{3} \sin(\delta)$$

ImV

#### Strong Interaction

• Θ term in the QCD Lagrangian :

$$L_{\theta} = \frac{\theta g_s^2}{32\pi^2} G_{\mu\nu} \widetilde{G}^{\mu\nu}$$

$$d_n = \frac{e}{m_p} \frac{g_{\pi NN} \overline{g}_{\pi NN}}{4\pi^2} \ln \frac{m_p}{m_{\pi}}$$

• $\Theta$  term's contribution to the neutron EDM :

$$\overline{g}_{\pi NN} = -\theta \frac{m_u m_d}{m_u + m_d} \frac{\sqrt{2}}{f_{\pi}} \frac{M_{\Xi} - M_{\Sigma}}{m_s}$$

$$d_n < 10^{-25} e \cdot cm \rightarrow |\theta| < 3 \times 10^{-10}$$

•Spontaneously broken Pecci-Quinn symmetry? No evidence of a pseudoscalar axion!

### Physics beyond SM



There are many new CP sources generating observable EDMs.
Observed EDMs are a combination of different CP-violating sources.
To evaluate the strong CP violation or the new CP sources, it is needed to be a strong CP violation.

•To explain the strong CP violation or the new CP sources, it is needed to check the relation between different systems.

#### One example of minimum supersymmetry model



•LHC can only test one branch of parameter phase space of MSSM for the correct baryon asymmetry.

•Neutron EDM can be applied to exam the other region of the phase space.

# Superthermal Method--UCN production in superfluid 4He

- UCN was extracted from the low-energy tail of the Maxwell-Boltzmann distribution of cold neutrons(~5 UCN/cm<sup>3</sup>).
- A new method suggested by Golub and Pendlebury. Cold neutron with momentum of 0.7 A<sup>-1</sup> (10<sup>-3</sup> eV) can excite a phonon in <sup>4</sup>He and become an UCN via down-scattering process.

=>100 times larger UCN density than conventional UCN sources



UCN

Phonon

(Sound wave)



#### 3He Distributions in Superfluid 4He



•The experiment shows neutrons distribute uniformly in the superfluid 4He. The result confirms the availability of 3He as a comagnetometer.

#### Production of UCN in superfluid 4He

 $\vec{Q} = \vec{k}_i - \vec{k}_f,$  $\frac{\hbar^2 k_i^2}{2m} = \frac{\hbar^2 k_f^2}{2m} + E(Q),$ 

E(Q) is the phonon dispersion relation





For 1 mev neutron beam,  $\sigma(UCN)/\sigma(tot) \sim 10^{-3}$  for 200 nev wall potential

Mono-energetic cold neutron beam with  $\Delta Ki/Ki - 2\%$ 

#### Polarized 3He Atomic Beam Source



•Produce polarized 3He with 99.5% polarization at a flux of 2×1014/sec and a mean velocity of 100 m/sec

#### Los Alamos Polarized 3He Source



### Mapping the dressing field



# Spin-flip coils and dressing coils used inside the solenoid.

#### Experiment result



Esler, Peng, Lamoreaux, et al. Nucl-ex/0703029 (2007)

#### 3He relaxation test



- •T1 > 3000 seconds in 1.9K superfluid 4He
- •Acrylic cell coated with dTPB
- •H. Gao, R. McKeown, et al, arXiv:Physics/0603176
- •Test has also been done at 600 mK at UIUC

### High voltage test



#### •Goal is 50 kV/cm

•200 liter LHe. Voltage is amplified with a variable capacitor •90 kV/cm is reached for normal state helium. 30 kV/cm is reached below the  $\lambda$ -point

•J. Long et al., arXiv:physics/0603231

#### Heat flash

•The helium extracted from gas contains  ${}^{3}\text{He}/{}^{4}\text{He} = 10^{-7}$ .

The heat flash technique can purify the helium to <sup>3</sup>He/<sup>4</sup>He = 10<sup>-12</sup>.
<sup>3</sup>He atoms in He II form part of the normal fluid component and tend to move to colder end of the apparatus.
The normal fluid component, flowing away from the heater, will tend to carry with any 3He atoms and to prevent others from entering.
The isotopically pure superfluid component can be drawn off in the opposite direction.

# Continuous flow apparatus for preparing isotopically pure <sup>4</sup>He

#### P.C. Hendry and P.V.E. McClintock

Department of Physics, University of Lancaster, Lancaster LA1 4YB, UK

Received 20 November 1986

A <sup>4</sup>He isotopic purification cryostat has been developed, capable of sustained operation in continuous flow. Starting from a feedstock of helium of the natural isotopic ratio, <sup>3</sup>He/<sup>4</sup>He =  $x_3 \approx 10^{-7}$ , it yields a purified product for which  $x_3 < 5 \times 10^{-13}$  at a production rate of 3.3 STP m<sup>3</sup> h<sup>-1</sup>. The isotopically purified <sup>4</sup>He is being used for a variety of applications, including quantum evaporation experiments, studies of ion motion at the He II/vacuum interface, downscattering and containment of ultra-cold neutrons, and investigations of the breakdown of superfluidity in <sup>4</sup>He.



#### Geometric phase

- The false EDM can arise from geometric phases.
- The effect between vxE and a vertical gradient in the magnetic field.
- Gives a radial field

$$B_r = -\frac{r}{2} \cdot \frac{\partial B}{\partial z}$$

- The radial field as well as to the sideways vxE component, yielding a diagonal resultant.
- The net effect that the additional effective field continues to rotate in the same direction.
- The shift in frequency is proportional to E, mimicking an EDM signal.



#### Neutron EDM collabration

R. Alarcon, S. Balascuta, L. Baron-Palos Arizona State University, Tempe, AZ, 85287, USA

D. Budker, A. Park University of California at Berkeley, Berkeley, CA 94720, USA

> G. Seidel Brown University, Providence, RI 02912, USA

A. Kokarkar, E. Hazen, E. Leggett, V. Logashenko, J. Miller, L. Roberts Boston University, Boston, MA 02215, USA

J. Boissevain, R. Carr, B. Filippone, M. Mendenhall, A. Perez Galvan, R. Schmid California Institute of Technology, Pasadena, CA 91125, USA

M. Ahmed, M. Busch, P. Cao, H. Gao, X. Qian, G. Swift, Q. Ye, W.Z. Zheng Duke University, Durham NC 27708, USA

> C.-Y. Liu, J. Long, H.-O. Meyer, M. Snow Indiana University, Bloomington, IN 47405, USA

L. Bartoszek, D. Beck, P. Chu, C. Daurer, J.-C. Peng, S. Williamson, J. Yoder University of Illinois, Urbana-Champaign, IL 61801, USA

C. Crawford, T. Gorringe, W. Korsch, E. Martin, S. Malkowski, B. Plaster, H. Yan University of Kentucky, Lexington KY 40506, USA

S. Clayton, M. Cooper, M. Espy, C. Griffith, R. Hennings-Yeoman, T. Ito, M. Makela, A. Matlachov, E. Olivas, J. Ramsey, I. Savukov, W. Sondheim, S. Stanislaus, S. Tajima, J. Torgerson, P. Volegov Los Alamos National Laboratory, Los Alamos, NM 87545, USA E. Beise, H. Breuer University of Maryland, College Park, MD 20742, USA

K. Dow, D. Hasell, E. Ihloff, J. Kelsey, R. Milner, R. Redwine, J. Seele, E. Tsentalovich, C. Vidal Massachusetts Institute of Technology, Cambridge, MA 02139, USA

> D. Dutta Mississippi State University, Starkville, MS 39762, USA

R. Golub, C. Gould, D. Haase, A. Hawari, P. Huffman, D. Kendellen, E. Korobkina, C. Swank, A. Young North Carolina State University, Raleigh, NC 27695, USA

R. Allen, V. Cianciolo, P. Mueller, S. Penttila, W. Yao, Oak Ridge National Laboratory, Oak Ridge, TN 3 7831, USA

M. Hayden Simon-Fraser University, Burnaby, BC, Canada V5A 1S6

G. Greene The University of Tennessee, Knoxville, TN 37996, USA

Stefan Baeβler The University of Virginia, Charlottesville, VA 22904, USA

S. Stanislaus Valparaiso University, Valparaiso, IN 46383, USA

S. Lamoreaux, D. McKinsey, A. Sushkov Yale University, New Haven, CT 06520, USA

#### Grad students Engineers

# 1.4 MW Spallation Source (1GeV proton, 1.4mA)





FNPB construction underway

Cold beam available ~2007

UCN line via LHe ~2009 Fundamental Neutron Physics Facility at the SNS. Beamline 13

PERSONAL PROPERTY

 Cold Polarized neutron experimental area on main beamline

> UCN experimental area in external building. 8.9 Å beamline extracted via double-crystal monochromator

> > 67

Double monochrometer Selects 8.9 neutrons for UCN via LHe

#### History of neutron EDM experimetns

| Ex. Type         | <v>(m/cm)</v> | E (kV/cm)        | B (Gauss) | Coh. Time (s)     | EDM (e.cm)                 | year |
|------------------|---------------|------------------|-----------|-------------------|----------------------------|------|
| Scattering       | 2200          | 10 <sup>25</sup> |           | IO <sup>-20</sup> | < 3 x 10 <sup>-18</sup>    | 1950 |
| Beam Mag. Res.   | 2050          | 71.6             | 150       | 0.00077           | < 4x 10 <sup>-20</sup>     | 1957 |
| Beam Mag. Res.   | 60            | 140              | 9         | 0.014             | $< 7 \text{ x 10}^{-22}$   | 1967 |
| Bragg Reflection | 2200          | 109              |           | 10 <sup>-7</sup>  | < 8 x 10 <sup>-22</sup>    | 1967 |
| Beam Mag. Res.   | 130           | 140              | 9         | 0.00625           | $< 3 \times 10^{-22}$      | 1968 |
| Beam Mag. Res.   | 2200          | 50               | 1.5       | 0.0009            | < I X IO <sup>-2I</sup>    | 1969 |
| Beam Mag. Res.   | 115           | 120              | 17        | 0.015             | $< 5 \text{ x 10}^{-23}$   | 1969 |
| Beam Mag. Res.   | 154           | 120              | 14        | 0.012             | < I X 10 <sup>-23</sup>    | 1973 |
| Beam Mag. Res.   | 154           | 100              | 17        | 0.0125            | $< 3 \times 10^{-24}$      | 1977 |
| UCN Mag. Res.    | <6.9          | 25               | 0.028     | 5                 | < 1.6 x 10 <sup>-24</sup>  | 1980 |
| UCN Mag. Res.    | <6.9          | 20               | 0.025     | 5                 | < 6 x 10 <sup>-25</sup>    | 1981 |
| UCN Mag. Res.    | <6.9          | IO               | 0.01      | 60-80             | < 8 x 10 <sup>-25</sup>    | 1984 |
| UCN Mag. Res.    | <6.9          | 12-15            | 0.025     | 50-55             | $< 2.6 \text{ x 10}^{-25}$ | 1986 |
| UCN Mag. Res.    | <6.9          | 16               | 0.01      | 70                | $< 12 \times 10^{-26}$     | 1990 |
| UCN Mag. Res.    | <6.9          | 12-15            | 0.018     | 70-100            | < 9.7 X 10 <sup>-26</sup>  | 1992 |
| UCN Mag. Res.    | <6.9          | 4.5              | 0.01      | 120-150           | < 6.3 x 10 <sup>-26</sup>  | 1999 |

•B = ImG => 3 Hz neutron precession freq. •d = 10<sup>-26</sup> e•cm, E = 10 KV/cm => 10<sup>-7</sup> Hz shift in precession freq.

#### nEDM statistical sensitivity

•300 live days over 3 years (due to accelerator/experiment uptime) •Optimal projected sensitivity (@ 90% CL) : d = 7.8 x 10^-28 e cm •Width of neutron capture signal given by number of photoelectrons •Capture light is partially quenched compared to  $\beta$ -decay electrons • $\sigma_d$  depends on  $\sigma_f$ 


#### nEDM systematic uncertainty

•Pseudomagnetic field

(Brad Filippone)

•Due to spin-dependence of n-3He scattering length – gives frequency shift as σn•σ3 varies

•Gives frequency noise if  $\pi/2$  pulse varies

•Precision spin flip needed anyway if we want to fix the phase

•10<sup>-3</sup> reproducibility with both cells < 5% different is sufficient for 10<sup>-28</sup> e cm

•Gravitational effects

•10<sup>-29</sup> e cm if leakage - 1 nA for - 10 cm cell

•Thermal offsets could give larger effects

•Quadratic vxE effect •< 10-28 e cm if E-field reversal is good to 1%

Geometric Phase – linear vxE effect
From Golub, Swank & Lamoreaux
Probably biggest potential systematic issue

#### nEDM systematic uncertainty

(Brad Filippone)

•Significantly different effects for neutron vs 3He

•Neutron has  $\omega_0 >> \omega_L$  ( $\omega_L$  is cell traversal frequency) and is largely independent of cell geometry.

•Can use previous analysis of geometric phase

•3He has  $\omega_{\circ} \ll \omega_{L}$  and is sensitive to cell geometry

- •Depends on diffusion time to walls (geometry & temperature)
- •False EDM in rectangular geometry: Golub,Swank & Lamoreaux arXiv:0810.5378

•Effect depends on Magnetic Field gradients (Bo along x-direction)

## nEDM systematic uncertainty

| Error Source                    | Systematic                | Comments                      |
|---------------------------------|---------------------------|-------------------------------|
| Linear vxE                      | < 2 x 10 <sup>-28</sup>   | Uniformity of B0 field        |
| (geometric phase)               |                           |                               |
| Quadratic vxE                   | < 0.5 x 10 <sup>-28</sup> | E-field reversal to <1%       |
| Pseudomagnetic Field<br>Effects | < 1 x 10 <sup>-28</sup>   | pi/2 pulse, comparing 2 cells |
| Gravitational offset            | < 0.1 x 10 <sup>-28</sup> | With 1 nA leakage currents    |
| Leakage currents                | < 1 x 10 <sup>-28</sup>   | < 1 nA                        |
| vxE rotational n flow           | < 1 x 10 <sup>-28</sup>   | E-field uniformity < 0.5%     |
| E-field stability               | < 1 x 10 <sup>-28</sup>   | ∆E/E < 0.1%                   |
| Miscellaneous                   | < 1 x 10 <sup>-28</sup>   | Other vxE, wall losses        |

## Possible upgrade paths

#### (Brad Filippone)

Once experiment demonstrates that it's sensitivity is limited by neutron flux (first phyiscs result) ...

- Could "move" experiment to cold beam at FNPB (or vice versa)
  - Choppers instead of monochromator could increase 8.9 Å flux by ~ 6x ( $d_n < 4 \ge 10^{-28} \text{ e-cm}$ )
- Could "move" experiment to planned 2<sup>nd</sup> target station at SNS
  - 1 MW, optimized for long wavelength neutrons
  - Could increase 8.9 Å flux by > 20 ( $d_n < 2 \ge 10^{-28} \text{ e-cm}$ )



#### **CD0 – 1/09**

# Also NIST or PULSTAR possible

## Active worldwide effort to improve neutron EDM sensitivity

|                |                                          |                 | (Brad Filippone)                                                                          |                                |  |
|----------------|------------------------------------------|-----------------|-------------------------------------------------------------------------------------------|--------------------------------|--|
| Exp UCN source |                                          | cell            | Measurement<br>techniques                                                                 | ∽d<br>(10 <sup>-28</sup> e-cm) |  |
| ILL<br>CryoEDM | Superfluid <sup>4</sup> He               | <sup>4</sup> He | Ramsey technique for ω<br>External SQUID magnetometers                                    | Phase1 ~ 50<br>Phase2 < 5      |  |
| PNPI – I LL    | ILL turbine<br>PNPI/Solid D <sub>2</sub> | Vac.            | Ramsey technique for ω<br>E=0 cell for magnetometer                                       | Phase1<100<br>< 10             |  |
| ILL Crystal    | Cold n Beam                              |                 | Crystal Diffraction                                                                       | < 100                          |  |
| PSI EDM        | Solid D <sub>2</sub>                     | Vac.            | Ramsey technique for ω<br>External Cs & 3He magnetometers<br>Hg co-mag for P1, Xe for P2? | Phase1 ~ 50<br>Phase2 ~ 5      |  |
| SNS EDM        | A Superfluid <sup>4</sup> He             |                 | <sup>3</sup> He capture for ω<br><sup>3</sup> He comagnetometer<br>SQUIDS & Dressed spins | ~ 8                            |  |
| TRIUMF/JPARC   | Superfluid <sup>4</sup> He               | Vac.            | Under Development                                                                         | ?                              |  |

#### Comparison of worldwide

- Comparing sensitivities from different experiments is somewhat qualitative(depends on many assumptions)
- At present, ILL CryoEDM and PSI-nEDM appear to be the most competitive with SNS nEDM
- Both ILL-CryoEDM and PSI-nEDM have 2 phases of measurement with some construction between the data periods

#### PSI high flux UCN source

# PSI UCN area south



- Initial data will use original apparatus from ILL with magnetic upgrades
- New apparatus being designed for higher sensitivity



#### CryoEDM@ILL (Brad Filippone) superthermal UCN source



# superthermal UCN source Ramsey UCN storage cells superconducting magnetic shields

#### whole experiment in superfluid He at 0.5 K

- production of UCN
- storage & Larmor precession of UCN
- SQUID magnetometry
- detection of UCN

#### Ongoing nEDM experiments schedules and sensitivities

| Exp            | Status                                                          | Schedule           | Claimed Sensitivity<br>(e-cm)                      |  |  |
|----------------|-----------------------------------------------------------------|--------------------|----------------------------------------------------|--|--|
| ILL<br>CryoEDM | Phase 1 – underway<br>Phase 2 – new beamline                    | 2010-12<br>2012-15 | < $5 \times 10^{-27}$<br>< $5 \times 10^{-28}$     |  |  |
| PNPI-<br>EDM   | PNPI @ ILL<br>Move to PNPI UCN                                  | 2010<br>?          | ~ IO <sup>-26</sup><br>< IO <sup>-27</sup>         |  |  |
| PSI EDM        | Initial phase underway<br>(using old ILL apparatus)<br>New exp. | 2010-13<br>2015    | ~ 5 X 10 <sup>-27</sup><br>~ 5 X 10 <sup>-28</sup> |  |  |
| SNS EDM        | Preparing Baseline                                              | 2016<br>2018       | Commissioning<br>~ 8 x 10 <sup>-28</sup>           |  |  |

#### Other factors

- The "known" systematic effects are part of the experimental design
- Tackling the unknown effects requires unique handles in the experiment that can be varied
- The significance of a non-zero result requires multiple approaches to unforeseen systematics
- nEDM @ SNS is unique in its use of a polarized <sup>3</sup>He co-magnetometer, characterization of geometric phase effects via temperature variation, as well as the dressed spin capability

#### Comparison of capabilities

|                                                                  | ( E                                  | Brad                                 |                             | lipp                        | one                        |
|------------------------------------------------------------------|--------------------------------------|--------------------------------------|-----------------------------|-----------------------------|----------------------------|
| = included<br>= not included                                     | C<br>R<br>Y<br>O<br>E<br>D<br>M<br>1 | C<br>R<br>Y<br>O<br>E<br>D<br>M<br>2 | P<br>SI<br>E<br>D<br>M<br>1 | P<br>SI<br>E<br>D<br>M<br>2 | S<br>N<br>S<br>E<br>D<br>M |
| $\Delta \omega$ via accumulated phase in n polarization          |                                      |                                      |                             |                             |                            |
| $\Delta \omega$ via light oscillation in <sup>3</sup> He capture |                                      |                                      |                             |                             |                            |
| Co_magnetometer                                                  |                                      |                                      |                             | ?                           |                            |
| Superconducting B_shield                                         |                                      |                                      |                             |                             |                            |
| Dressed Spin Technique                                           |                                      |                                      |                             |                             |                            |
| Horizontal B_field                                               |                                      |                                      |                             |                             |                            |
| Multiple EDM cells                                               |                                      |                                      |                             |                             |                            |

Note that red vs green does not necessarily signify good vs bad. But understanding systematics requires mix of red & green.