The New Neutron Electric Dipole Moment Experiment at PSI

Martin Fertl on behalf of the nEDM collaboration nedm.web.psi.ch

and on behalf of the UCN Project team

The neutron EDM collaboration

M. Burghoff, S. Knappe-Grüneberg, A. Schnabel, L. Trahms	Physikalisch Technische Bundesanstalt, Berlin	
G. Ban, Th. Lefort, Y. Lemiere, <mark>E. Pierre,</mark> G. Quéméner	Laboratoire de Physique Corpusculaire, Caen	
K. Bodek, St. Kistryn, J. Zejma	Institute of Physics, Jagiellonian University, Cracow	
A. Kozela	Henryk Niedwodniczanski Inst. Of Nucl. Physics, Cracow	
N. Khomutov	Joint Institute of Nuclear Reasearch, Dubna	
P. Knowles, A.S. Pazgalev, A. Weis	Département de physique, Université de Fribourg, Fribourg	
P. Fierlinger, B. Franke ¹ , M. Horras ¹ , F. Kuchler, G. Petzoldt	Excellence Cluster Universe, Garching	
D. Rebreyend , G. Pignol	Laboratoire de Physique Subatomique et de Cosmologie, Grenoble	
G. Bison	Biomagnetisches Zentrum, Jena	
S. Roccia, N. Severijns	Katholieke Universiteit, Leuven	
G. Hampel, J.V. Kratz, T. Lauer, C. Plonka-Spehr, N. Wiehl, J. Zenner ¹	Inst. für Kernchemie, Johannes-Gutenberg-Universität, Mainz	
W. Heil, A. Kraft, Yu. Sobolev ²	Inst. für Physik, Johannes-Gutenberg-Universität, Mainz	
I. Altarev, E. Gutsmiedl, S. Paul, R. Stoepler	Technische Universität, München	
Z. Chowdhuri, M. Daum, M. Fertl, R. Henneck, J. Krempel, B. Lauss, A. Mtchedlishvili, P. Schmidt-Wellenburg, G. Zsigmond	Paul Scherrer Institut, Villigen	
<u>K. Kirch¹, F. Piegsa</u>	Eidgenössische Technische Hochschule, Zürich	

also at: ¹Paul Scherrer Institut, ²PNPI Gatchina

÷

PB

R CAEN PhD students

PAUL SCHERRER INSTITUT

UNIVERSITAT

Paul Scherrer Institut

Nuclear and renewable energy

Nuclear safety

Structural biology, chemistry

Proton cycolotron: 600 MeV, 2.2 mA, 1.3 MW

muons, pions and neutrons for fundamental and applied research

New project: SwissFEL

New UCN source

Proton therapy

Swiss Light Source (SLS) synchrotron radiation

What caused the Baryon asymmetry ?

Observed (Cobe + WMAP, 2003) : $\frac{n_B - n_{\bar{B}}}{n_{\gamma}} = (6.1 \pm ^{0.3}_{0.2}) \cdot 10^{-10}$ SM expectation

$$rac{n_B-n_{ar{B}}}{\dot{n}_{\gamma}}pprox 10^{-18}$$

Andrei Sakharov 1967: B-violation C & CP-violation thermal non-equilibrium [JETP Lett. 5 (1967) 24]

EDMs and symmetries

Thus a nonzero electric dipole moment violates P, T symmetry and, assuming CPT conservation, also CP.

Purcell and Ramsey, Phys. Rev. 78, 807 (1950) Landau, Nucl. Phys. 3, 127 (1958) Ramsey, Phys. Rev. 109, 225 (1958)

Origin of EDMs

The strong CP problem

The SUSY CP problem

History of nEDM searches

Ultracold neutrons

ultracold neutrons (UCN) are storable neutrons: E_{kin} < 330 neV, v < 8 m/s, $\lambda \approx 500$ Å, T \approx 3 mK

Simulation of a neutron bottle with confining forces:

- Gravity: potential energy 100 neV/m
- Material optical potential: < 330 neV E. Fermi, 1946 , Ya. B. Zeldovich Sov. Phys. JETP 9, 1389 (1959)

$$V_n$$

 $V_F = m v_C^2/2$

Magnetic field gradient: potential energy ± 60 neV/T

From cold to ultracold

cold neutron UCN

Chen-Yu Liu, University of Indiana

converter types:

- sD₂ (PSI, LANL, NCSU, FRM2,...)
- sfHe (CryoEDM, SNS, ILL, PNPI,...)

The PSI UCN source

towards muon and pion beams

Proton cyclotron: 600 MeV, 2.2 mA, 1.3 MW

- UCN Source commissioning started fall 2009
- Expect 1000 UCN/cm³ in typical experiments (compare to currently 30 UCN/cm³ at ILL)
- nEDM setting up since middle of 2009

nEDM

LEUVEN

Beam dump

The PSI UCN Source

Martin Fertl

The PSI UCN Source

The PSI UCN Source

The PSI UCN source

Ramsey technique for nEDM

Measurement principle

try to detect a change of the Larmor precession frequency Δv for parallel and anti-parallel B (~1 μ T) and E fields (~10 kV/cm)

$$d_{n} = \frac{h\Delta\nu - 2\mu_{n}\left(B_{\uparrow\uparrow} - B_{\uparrow\downarrow}\right)}{2\left(E_{\uparrow\uparrow} + E_{\uparrow\downarrow}\right)}$$

statistical sensitivity only limited by the uncertainty principle:

$$\sigma \left(d_{\mathsf{n}} \right) = \frac{\hbar}{2\alpha\mathsf{ET}\sqrt{\mathsf{N}}}$$

- α Visibility of resonance
- E Electric field
- T Time of free precession
- N Number of neutrons

flying nEDM experiment

FERENDERS SHEER HEAR.

PAR SPARARS

- 75

1 Gabr

alles mays

nEDM apparatus

$$d_{n} = \frac{h\Delta\nu - 2\mu_{n}\left(B_{\uparrow\uparrow} - B_{\uparrow\downarrow}\right)}{2\left(E_{\uparrow\uparrow} + E_{\uparrow\downarrow}\right)} \Rightarrow d_{n} = \frac{h\Delta\nu}{4E}$$

only if

$$2\mu_{n}\left(\boldsymbol{B}_{\uparrow\downarrow}-\boldsymbol{B}_{\uparrow\uparrow}\right)\ll\boldsymbol{h}\Delta\nu=4\boldsymbol{E}\boldsymbol{d}_{n}\rightarrow\boldsymbol{\sigma}\left(\Delta\boldsymbol{B}\right)\ll\frac{2\boldsymbol{E}\boldsymbol{\sigma}\left(\boldsymbol{d}_{n}\right)}{\mu_{n}}$$

statistical sensitivity goal:

$$\sigma \left(d_{\rm n} \right) = \frac{\hbar}{2\alpha {\rm ET} \sqrt{{\rm N}}} = 4 \cdot 10^{-25} {\rm e\,cm}$$

α Visibility of resonance (0.75)
E Electric field strength (12 kV/cm)
T Time of free precession (150 s)
N Number of neutrons (350000)

B field requirement: $\sigma(B) = 100$ fT per one Ramsey cycle (~500s)

magnetometers and SFC

6 current coils for active sourrounding field compensation (SFC)

¹⁹⁹Hg comagnetometer

- polarized ¹⁹⁹Hg atoms sample magnetic field inside the UCN precession chamber at the same time as the UCN (cohabiting)
- optical readout of free spin precession with light from ²⁰⁴Hg lamp
- performance: $\sigma(B) \sim 40$ fT per 100 s run

SFC performance

6 rectangular coils to actively stabilize the surrounding magnetic field

systematic error contributions

No.	Effect	Shift (Ref. [26]) [10 ⁻²⁷ ecm]	σ (Ref. [26]) [10 ⁻²⁷ ecm]	σ (Phase II) [$10^{-27} e cm$]
1.	Door cavity dipole	-5.60	2.00	0.10
2.	Other dipole fields	0.00	6.00	0.40
3.	Quadrupole difference	-1.30	2.00	0.60
4.	$\mathbf{v} \times \mathbf{E}$ translational	0.00	0.03	0.04
5.	$\mathbf{v} \times \mathbf{E}$ rotational	0.00	1.00	0.10
6.	Second-order $\mathbf{v} \times \mathbf{E}$	0.00	0.02	0.01
7.	$v_{\rm Hg}$ light shift (geo phase)	3.50	0.80	0.40
8.	$v_{\rm Hg}$ light shift (direct)	0.00	0.20	0.20
9.	Uncompensated <i>B</i> drift	0.00	2.40	0.90
10.	Hg atom EDM	-0.40	0.30	0.06
11.	Electric forces	0.00	0.40	0.40
12.	Leakage currents	0.00	0.10	0.10
13.	ac fields	0.00	0.01	0.01
	Total	-3.80	7.19	1.31

Cs magnetometer array

magnetic field gradients (geometric phase effect)

magnetic field requirements II

spatial magnetic field gradients \rightarrow UCN depolarization (center of mass effect) geometric phase effect

33 individual trim coils outside the vacuum tank to shape the magnetic field

Top, bottom, and Helmholtz

Left & right side coils

magnetic field mapping

Figure 46: Magnetic field after degaussing at r = 40 cm circle (z = 0) inside OILL without vacuum tank. (a) A maximum of 59 nT is caused by a magnetic nut on the left inside the shield. (b) Magnetic field after removal of the nut and degaussing again. The field is now about ten times smaller. The scale is in nT.

Martin Fertl

magnetic field mapping

magnetic field mapping

map magnetic field in UCN precession chamber with all subsystems installed

Magnetic screening

large pieces are magnetically screened with SQUID array at PTB Berlin BMSR2

Magnetic screening

Magnetic screening

gradiometer setup to magnetically screen small parts before implementation

Further developments

several further improvements have been developed in the collaboration and will be used in the new nEDM measurement:

- new high count rate UCN detectors (~10⁵ cts/s each, 9 detectors)
- new spin analyzing foil (single crystal iron foil)
- thermal stabilization of Mu-metal shield
- new degaussing system for the Mu-metal shield
- new bipolar HV power supply
- replace massive metal pieces with metal coated plastics

Summary and outlook

- nEDM experiment successfully transferred to PSI
- PSI UCN source at the end of commissioning \rightarrow cool down in November 2010
- Design of n2EDM experiment has started to improve sensitivity to 5 x 10⁻²⁸ ecm (2012+).

Thank you!