Neutrino Induced Coherent NC(π⁰) Production in MINOS

 $v + Fe \rightarrow v + Fe + \pi^{0}$ $\downarrow \gamma \gamma$

Daniel Cherdack Tufts University High Energy Physics

<u>Nulnt11</u> Dehradun, India March 7th – March 11th, 2011

Outline

Introduction

- Phenomenology
- The beam and detector

Event selection

- Coherent NC(π^0) signal
- Background interactions
- Support vector machines
- The selected sample

- Fitting the background model
- Extracting the coherent $NC(\pi^0)$ event rate
- Systematic error studies
- Sensitivity studies
- Determination of cross sections

Coherent NC(π⁰) Scattering: Phenomenology

- No transfer of quantum numbers
- Small momentum transfer
- Nucleus remains in the ground state
- Single detectable final state reaction product

$$\frac{d^2 \sigma(\nu A \to \nu \pi A)}{dQ^2 dy d|t|} = \frac{G_F^2}{4\pi^2} \frac{(1-y)}{y} \left(\frac{m_A^2}{Q^2 + m_A^2}\right) f_\pi^2 \frac{d \sigma(\pi A \to \pi A)}{d|t|}$$

The NuMI Beam

- 120 GeV protons directed to the target
- Protons strike the graphite target; produce π's and K's
- Hadrons focused using magnetic horns
- Hadrons decay to μ 's and v_{μ} 's

The NuMI Beam

The MINOS Near Detector

Coherent NC(π⁰) Scattering in MINOS

7

Coherent NC(π⁰) Scattering in MINOS

- MC event rates (2.8x10²⁰ POT)
 - Roughly 13k
 coherent NC(π⁰)
 - About 1 in 500 events
 - 1044 selected events
- $\pi^0 \rightarrow \gamma \gamma \rightarrow single$ EM shower
 - Most of the energy goes to one γ
 - Two showers overlap (density of steel)

1,388,311 Fiducial Volume Events

780,960 Pre-selected Events

4,233 Selected Events 4,976,668 Fiducial Volume Events

930,761 Pre-selected Events

454 Selected Events

86,178 Fiducial Volume Events

68,967 Pre-selected Events

469 Selected Events 9

- No visible leptons
- EM shower dominated
- No additional visible particles

Neutral Current

Long μ tracks easily rejected
Short μ tracks can mimic NC topologies

Charged Current - v

 Electron produced EM shower
 QE - like topologies

Charged Current - v

$v + e^- \rightarrow v + e^-$ Scattering Backgrounds

- Neutrino electron scattering not included in the Monte Carlo
- Theoretical cross sections are well constrained

- Special MC samples used to estimate the $cos\theta\ensuremath{\mathsf{vs-E}_{vis}}$ distribution
- Subtracted prior to fitting to the data
- Not included in either fit MC or mock data studies still valid

Event Selection: Attribute Categories

- Shower Size
- Shower Shape
- Fits to the energy profiles
- Vertex Activity
- Energy Dispersion
- Track Length and Curvature

Support Vector Machines

- Multivariate classification algorithm
- Similar to:
 - Neural networks
 - k-Nearest neighbor
- Train based on MC
 - Plot events in attribute space
 - Draw borders between regions of signal and background
- Input: attributes for an event
- Output: distance to the nearest border
- Output used to select a sample of coherent NC(π^0) events

Event Selection: Signal Selection Parameter

Event Selection

Data and MC are in agreement in the unblinded region

Blinded

Event Selection

Signal purity increases with increases values of the SSP

Blind regions with $\rho > 20\%$

Signal purity (ρ):

For SSP bin *i*

High SSP/High ρ region

NC – largest bkg

The Selected Sample Relevant kinematic variables

 $\cos \theta_{shw}$

Events selected based on SSP values

The Selected Sample

 $\cos \theta_{shw}$

MC overestimates the data in the selected sample by 20-30%

cosθ-vs-E_{vis} Signal and Sideband Regions

The Fitting Procedure

- Fit MC to the data
- Fit the sideband regions
- Fit Parameters 5
 - Determined by systematics studies
 - Background template normalizations - 3
 - Background template shapes (systematics) - 2

- Signal = Data Backgrounds
- Apply acceptance corrections

COSθ-VS-E_{vis} Sideband Region: Projections

MC Sideband Projections

MC Sideband Projections (Sum)

Data and MC in the Sidebands

Sidebands: MC Fit to the Data

Fit Parameter $\Delta \chi^2 s$

Fit Parameter $\Delta \chi^2 s$

cosθ-vs-E_{vis} Extrapolate to the Signal Region

Best-Fit MC Backgrounds: Signal + Sideband

(Data) – (Best-Fit MC) = Signal

Measured Coherent NC(π⁰) Event Rate

Measured Coherent NC(π^{0}) Event Rate: $\eta \equiv E_{vis}(1-\cos\theta_{shw})$

Selected Coherent NC(π⁰) Event Rate: 1401±401 (29%)

Error Bars:

- Fit Errors Δχ²
 68% Confidence
 Interval
- Statistical Error on the data and MC

Excess seen at low values of η

Acceptance Corrected Coherent NC(π^{0}) Event Rate

Total Coherent NC(π⁰) Event Rate: 9241±2832 (29%)

Error Bars:

- Fit Errors Δχ²
 68% Confidence
 Interval
- Statistical Error on the data and MC
- Bin-by-bin Acceptance Correction Errors

No acceptance correction for events with E_{π} < 1.0 GeV

Accounting for Systematic Errors

Sources of

- Hadronization Model
- **Cross Section Models**
- Intranuclear **Rescattering Model**
- **Detector Calibration**
- NuMI v Flux

Single Systematic Systematic Error Mock Data (SSMD)

- Pupose:
 - Optimize fits
 - Understand systematics
- Method:
 - Use Reweighted MC as data
 - Fit using 3 norm. fit params.
 - Analyze fit results

Single Systematic Mock Data Studies: Two Extremes

 $\chi^{2}/ndf = 0.02$ $N_{fit} = 6696$ $N_{MC} = 7971$

Changes to $\cos\theta$ -vs-E_{vis} distributions accounted for by background template normalizations. χ^2 /ndf = 3.34 N_{fit} = 9645 N_{MC} = 7971 uses shape change

Causes shape changes to the $\cos\theta$ -vs-E_{vis} distributions requires additional fit parameter.

Single Systematic Mock Data Studies: Two Extremes

 $\chi^{2}/ndf = 0.02$ $N_{fit} = 6696$ $N_{MC} = 7971$

Changes to $\cos\theta$ -vs-E_{vis} distributions accounted for by background template normalizations.

 $\chi^{2}/ndf = 3.34$ $N_{fit} = 9645$ $N_{MC} = 7971$

Causes shape changes to the $\cos\theta$ -vs-E_{vis} distributions requires additional fit parameter.

Ш

 \leq

Measurement Sensitivity: Mock Data Studies

Random fluctuations of:

- The coherent NC(π⁰) event rate (N_{input})
- 22 systematic error sources
- Bin counts (Poisson statistics)

Measured number of coherent NC(π^0) events (N_{fit})

Coherent NC(π^0) events in the MC (N_0)

Measurement Sensitivity: Mock Data Studies

Width of **f** used to determine the experimental error from:

- Statistical fluctuations
- Systematic error sources

Mock Data Studies

One σ limits on fit parameters

- Based on Systematic Error Studies
- Used in the penalty terms of the fits

Mock Data Studies

The Coherent NC(π^{0}) Cross Section (E_{π} > 1.0 GeV)

- *E* = Neutrino exposure [PoT]
- \mathcal{M}_{τ} = Target mass [nuclei]
- Φ = Integrated flux [v/cm²/PoT]
- $\mathcal{E} = (2.8 \pm 0.028) \times 10^{20} \text{ PoT}$
- $\mathcal{M}_{\tau} = (3.57 \pm 0.001) \times 10^{29}$ nuclei <
- Φ = (2.93±0.23) x 10⁻⁸ v/cm²/PoT

- Detector Makeup
 ~80% Fe⁵⁶
 ~20% C¹²
 - Avg Nucleus = 48

The Coherent NC(π^0) Cross Section (E_{π} > 1.0 GeV)

- *E* = Neutrino exposure [PoT]
- \mathcal{M}_{τ} = Target mass [nuclei]
- Φ = Integrated flux [v/cm²/PoT]
- $\mathcal{E} = (2.8 \pm 0.028) \times 10^{20} \text{ PoT}$
- *M*_T = (3.57±0.001) x 10²⁹ nuclei <
- $\Phi = (2.93 \pm 0.23) \times 10^{-8} \text{ v/cm}^2/\text{PoT}$

$$\sigma = \frac{N}{\mathcal{E} \mathcal{M}_{T} \Phi}$$

- Detector Makeup
 - ~20% C¹²
- Avg Nucleus = 48

$$\sigma = (\forall 1. \forall \pm 1. \circ) \times 1 \cdot \overset{-\varepsilon}{\longrightarrow} \frac{cm'}{Nucl. (A = \varepsilon \wedge)}$$

The Coherent NC(π⁰) Cross Section – on Fe⁵⁶

- NEUGEN3 Cross section ratio
- ~90.6% of events occur on Fe^{56}
- Additional 20% uncertainty
- $\mathcal{E} = (2.8 \pm 0.028) \times 10^{20} \text{ PoT}$
- $\mathcal{M}_{T} = (2.89 \pm 0.001) \times 10^{29} \text{ Fe}^{56} \text{ nuclei}$
- $\Phi = (2.93 \pm 0.23) \times 10^{-8} \text{ v/cm}^2/\text{PoT}$

8372 Coherent NC(π⁰) Events on Fe⁵⁶

The Coherent NC(π⁰) Cross Section – on C¹²

- NEUGEN3 Cross section ratio
- ~9.4% of events occur on C^{12}
- Additional 20% uncertainty
- $\mathcal{E} = (2.8 \pm 0.028) \times 10^{20} \text{ PoT}$
- $\mathcal{M}_{\tau} = (6.57 \pm 0.001) \times 10^{28} \text{ C}^{12} \text{ nuclei}$
- $\Phi = (2.93 \pm 0.23) \times 10^{-8} \text{ v/cm}^2/\text{PoT}$

 $= \frac{N}{\mathcal{E} \mathcal{M}_{\tau} \boldsymbol{\Phi}}$

Cross Section on Fe⁵⁶ and C¹²

Experiment	А	Minimum	Number of	Coherent	Total	Rein-Sehgal
		π^0 Energy	Coherent $NC(\pi^0)$	Cross Section	Fractional	(NEUGEN3)
		$E_{\pi^0}^{min}$	Interactions	σ^{coh}	Uncertainty	Cross Section
	[amu]	[GeV]		$[10^{-40} \text{cm}^2/A]$	[%]	$[10^{-40} \text{cm}^2/A]$
SONIM	48	1.0	9241	31.6 ± 10.5	33.0	26.8
	56		8372 (0.906 × 9241)	35.3 ± 12.4	35.1	30.3
	12		869 (0.094 × 9241)	16.1 ± 8.5	52.8	11.2
	48	0.0	16,762 (1.814 × 9241)	57.3 ± 22.2	38.7	49.5
	56		15,187 (0.906 × 16762)	64.0 ± 25.9	40.5	55.8
	12		1576 (0.094 × 16762)	29.2 ± 16.5	56.5	22.0

Fully Acceptance Corrected Coherent NC(π^0) Cross Section

- Monte Carlo correction factor
- 45% of coherent NC(π⁰) events have E_π < 1.0 GeV
- Additional 20% uncertainty
- $\mathcal{E} = (2.8 \pm 0.028) \times 10^{20} \text{ PoT}$
- $\mathcal{M}_{\tau} = (3.57 \pm 0.001) \times 10^{29}$ nuclei
- $\Phi = (2.93 \pm 0.23) \times 10^{-8} \text{ v/cm}^2/\text{PoT}$

$$\sigma = \frac{N}{\mathcal{E} \mathcal{M}_{T} \Phi}$$

16,762 Coherent NC(π⁰) Events (A = 48)

$$\sigma = (57.3 \pm 22.2) \times 10^{-40} \frac{cm^2}{Nucl. (A = 48)}$$

Cross Section E_v-Dependence

All results scaled to A = 48 with NEUGEN3 cross section ratios

Cross Section E_v-Dependence

All results scaled to \mathcal{A} = 48 with NEUGEN3 cross section ratios

Several results reported relative to the Rein-Sehgal cross section

- 15 ft B.C.
- MiniBooNE
- SciBooNE

Measurements scaled to the NEUGEN3 curve

Cross Section *A*-Dependence

All results scaled to $E_{y} = 4.9 \text{ GeV}$

Cross Section *A***-Dependence**

All results scaled to E₀ = 4.9 GeV

World Coherent NC(π⁰) Cross Section Table

Experiment	Year	Average	Average	Minimum	Coherent	Rein-Sehgal
		Neutrino	Nucleus	π^0 Energy,	Cross Section,	(NEUGEN3)
		Energy, $\langle E_{\nu} \rangle$	\mathcal{A}	$E_{\pi^0}^{min}$	$\sigma^{coh} \nu/(\bar{\nu})$	Cross Section
		[GeV]	[amu]	[GeV]	$[10^{-40} \text{cm}^2/A]$	$[10^{-40} \text{cm}^2/A]$
Aachen-		2	Aluminum	0.18	29±10	19.0
Padova	1983		27		(25 ± 7)	
Gargamelle	1984	3.5	Freon	0.2	31 ± 20	27.7
			$CF_3Br - 30$		(45 ± 24)	
CHARM	1985	31	Marble	0.0	96 ± 42	76.2
		24	$CaCO_3 - 20$	6.0	(79 ± 26)	
SKAT	1986	7	Freon	0.2	52 ± 19	44.4
			$CF_3Br - 30$			
15' BC	1986	20	Neon	2.0	RSx0.98±0.24	66.0
			NeH ₂ - 20			
MiniBooNE	2008	0.8	Mineral Oil	0.0	$RSx0.65 \pm 0.14$	4.4
			$C_X H_Y$ - 12		$RSx0.65\pm0.14$	
NOMAD	2009	24.8	Carbon+	0.5	72.6 ± 10.6	52.1
			12.8			
SciBooNE	2010	0.8	Polystyrene	0.0	$RSx0.96\pm0.20$	4.4
			$C_8H_8 - 12$			
MINOS	2010	4.9	Iron &	1.0	57.3±22.2	49.5
			Carbon - 48	1.0		

Conclusions

- First measurement of the coherent NC(π^0) scattering on nucleus with an average A > 30.
- First evidence for coherent NC(π^0) scattering on iron (Fe⁵⁶).
- Measurement consistent with the NEUGEN3 prediction and the Berger-Sehgal model.
- Confirmation of the PCAC hypothesis in the relevant kinematic ranges.
- MINOS anti-neutrino data can be used to make a follow-up measurement.

Backup Slides

Coherent NC(π^0) Event

Mock Data Studies

Calculating the Event Fractions

$$N = N_{Fe} + N_C$$
 $M = M_{Fe} + M_C = 0.8M + 0.2M$

$$r \equiv \frac{\sigma_{Fe}}{\sigma_C}$$

$$\sigma_{Fe} = \frac{N_{Fe}}{E M_{Fe} \Phi}$$

$$\sigma_C = \frac{N_C}{E M_C \Phi}$$

$$r = \left(\frac{N_{Fe}}{E M_{Fe} \Phi}\right) \left(\frac{E M_C \Phi}{N_C}\right) \Rightarrow N_{Fe} = N \left(\frac{M_{Fe} r}{M_C + M_{Fe} r}\right)$$