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[1] Several basic results from decision theory as applied to rare event forecasts are reviewed, and an

alternative method for comparing rare event forecasts is presented. A fundamental result is that for a large

class of users only interested in economic utility, the relevant performance quantity is the number of

correct and false alarm forecasts. This is contrasted with the reality that most forecast models are optimized

to have a high data-model correlation, which does not always correspond to maximum economic utility.

The value score (VS) developed by Wilks (2001) partially resolves this disconnect between modeler- and

user-relevant metrics. Although the value score is closer to what is most likely of interest to a user,

maximal VS does not necessarily correspond to maximal utility for the realistic case where the cost and

benefit are dependent on the amplitude of the forecasted event. An alternative comparison and

presentation method is proposed which may resolve this problem. For the class of users considered, full

specification of model performance requires computation of the probability of correct, false alarm, and

missed forecasts at several amplitude levels and warning time spans. Examples of the computations

involved for the modeler and user are given for predictions of large-amplitude energetic electron fluence

and geomagnetic storms parameterized by the Dst index.

Citation: Weigel, R. S., T. Detman, E. J. Rigler, and D. N. Baker (2006), Decision theory and the analysis of rare event space
weather forecasts, Space Weather, 4, S05002, doi:10.1029/2005SW000157.

1. Introduction
[2] Evaluation of a model’s prediction performance in

terms of a utility metric is a strong departure from the
usual methods of model evaluation and parameter opti-
mization, which are usually correlation based. That is, the
parameters of a model are usually determined such that a
quantity such as the mean square error between its
prediction and a measured quantity is minimized. More-
over, evaluation of a model in terms of its ability to predict
only events, as opposed to placing weight on every data
point as is the case with correlation analysis methods, is
also a departure from the norm. However, there is good
reason to use correlation metrics instead of utility metrics.
They are very general, and the computations involved in
model optimization are straightforward for linear systems.
The disadvantage of considering more user-relevant
metrics is that a model cannot always be optimized for
every possible user. In this work, we show that more user-
relevant metrics can be defined while still maintaining
generality.

[3] We summarize several mathematical aspects of eval-
uating a model on the basis of its ability to predict an
event. In the space weather arena such analysis is fairly
new, with recent evaluations including Thomson [2000],
Mozer and Briggs [2003], and Weigel et al. [2003, 2004]. The
motivation behind the application of decision theory to
event forecasts is that the end user of a forecast must make
a decision for action on the basis of each forecast [Lindley,
1985].
[4] Several recent works used decision theory related or

motivated analysis on space weather problems. These
analyses used various quantities as the measure of per-
formance of the model in question. Thomson [2000] was the
first to recognize the importance of decision theory in
applications of space weather event predictions. The met-
rics considered were the likelihood ratio (LR) and the loss
structure (K). Mozer and Briggs [2003] considered the pre-
diction of the arrival time of interplanetary shocks and
evaluated the performance of a shock prediction model
with respect to a newly defined Kq metric. As discussed
in Appendix A, this metric is applicable for a different
class of user than the one considered in this paper.
Bellanger et al. [2003] considered the prediction of
extreme changes in the ground magnetic field using a
threshold algorithm in which the relative percentage of
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unpredicted events to the ratio of time covered by the
alerts was plotted.
[5] Gavrishchaka and Ganguli [2001] developed a filter

model that made use of a nonlinear transformation of
solar wind measurements to predict the amplitude of the
geomagnetic activity index, AE, only during times when it
was above a critical level. The parameters of the model
were determined by maximizing the data-model correla-
tion for AE only on data above a critical value. The model
was then evaluated for its ability to predict large events in
terms of its false alarm and correct forecast predictions.
This work clearly shows the problem faced by modelers.
Namely, most model optimization techniques minimize a
mean square error metric, even though the more user-
appropriate metric involves the number of hits, misses,
and false alarms.
[6] Weigel et al. [2003] considered an algorithm for

predicting when the daily average flux of >2 MeV elec-
trons would exceed a threshold value. The algorithm was
evaluated according to the ratio of the number of correct
forecasts to the number of false alarms. As discussed in

the following section, a general class of users can deter-
mine if a model prediction has the potential to provide
monetary utility with this ratio.
[7] From these recent works, it is difficult to tell what

metric is most appropriate for event predictions. Here we
attempt to synthesize and clarify the relationship between
these analyses from the perspective of a hypothetical user
of an event prediction. We begin with the framework
provided by Wilks [2001] who developed the value score
(VS) for a 2 � 2 contingency table. We extend this analysis
and show that a more user-relevant presentation of binary
event forecast results is not the VS, but rather the curves
of the probability of a correct forecast, false alarm, and
miss with respect to the amplitude of the disturbance
being predicted at multiple threshold levels and realistic
alert time spans. It is shown that these quantities can be
used by a broad class of users to derive information that
may be useful for analyzing or optimizing the economic
utility of always taking action on the basis of a model
forecast.

2. Definitions
[8] An event E is defined to be either a threshold

crossing of a quantity or a situation where several quan-
tities are in a certain range. This quantity does not have to
be a direct measure of a variable that causes a system
interruption or failure, but it must have some connection
with interruption and failure, and should have a long time
series available so that a statistical evaluation can be
performed.
[9] Figure 1 shows a hypothetical disturbance and an

event predictor time series. The time of the event is
defined to be the first time interval in which the distur-
bance time series D crosses the critical level, Dc. These
events are predicted by a model with an output of a scalar
predictor signal, S, when it crosses the threshold value Sc,
which can be adjusted along with the internal set of model
parameters (� Pm).
[10] Some relevant quantities for determining the merit

of a model that predicts an event are the statistical
quantities defined in Table 1 and Figure 1. In Table 1 we
have included definitions used in the previously men-
tioned works as well as the notation used in this article.
[11] For a binary forecast (event or no event predicted),

all possible outcomes can be summarized in a 2 � 2
contingency table, as listed in Table 2. One problem with
the 2 � 2 contingency table is that there are many ratios
that can be formed, and different authors emphasize
different ratios when presenting the prediction results of
their models. However, as shown in the next section, only
one ratio is important for a large class of users to deter-
mine if always following a forecast will have economic
utility. In this paper we only consider predictions that can
be summarized by a 2 � 2 contingency table, but this table
can be generalized to cases where the quantity to be
forecasted can take on many levels [Doswell et al., 1990].

Figure 1. Schematic showing the various quantities
used in this paper. The disturbance signal D can
represent any quantity that is a proxy for system
interruption or failure. The predictor signal S is derived
from amodel output. The time the forecast is made is tF,
and the time of a correctly predicted threshold crossing
(or ‘‘event’’) of the disturbance signal D, te, is tH. The
time the forecast is extended over, T, is marked in gray.
The two other times are the times of a false alarm, tH ,
and the time of a miss, tM.
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Alternatively, in section 3 we show how the need for
contingency tables with dimensions greater than 2 � 2
can be eliminated for the class of user under consideration
by using multiple threshold values.
[12] We have used definitions that allow an event fore-

cast to be active for several time intervals. The total
number of intervals N may not sum to the total number
of data points; in this case care must also be taken in
defining the cost, because for an extended warning inter-
val the cost is with respect to taking mitigating action over
the full warning interval.

3. Utility of a Forecast
[13] Our motivation is to introduce more user-relevant

metrics than the standard correlation-based metrics with
as little loss of generality as possible. We also seek to
develop guidelines for those seeking to do space weather
event prediction. We begin by making a few general
assumptions about a user to restrict the problem. We
assume the following.
[14] 1. The user takes the same mitigating action follow-

ing each forecast of an event.
[15] 2. An ‘‘always mitigate’’ strategy yields a net mon-

etary loss for the user.
[16] 3. The user seeks to maximize monetary gain, which

we label as UF, the utility of the forecast.
[17] The first assumption restricts the results to that

produced by the forecast model output S and removes
any influence of an intermediary decision maker. The
second assumption restricts us to a set of systems for
which continuous mitigation does not have utility. Wilks
[2001] also considers the case where condition 2 is

not satisfied; that is, always protecting the system yields
a net benefit. This means that the optimal state of the
system is always mitigated. In this case the utility should
be considered as relative to this state as discussed in
Appendix A.
[18] The two quantities most relevant for assessing the

utility of forecast algorithm for users 1--3 are the number
of correct forecasts (NH) and the number of false alarm
forecasts (NH), and the forecast algorithm has utility if
UF is greater than zero:

UF � BNH � CNH > 0; ð1Þ

where C is the cost of taking mitigating action and B is
the benefit from having taken mitigating action when an
event occurred. The quantities NM and x, which corre-
spond to nonaction, do not enter into the equation
because we are considering the utility with respect to a
system that was never mitigated. The benefit can also be
written as B = Lp � C, where Lp is the loss that is
protected against. That is, the utility is with respect to a
system that is never protected and thus sufferers a loss Lp
for each event.

Table 1. Statistical Quantities Relevant for Event Forecasting

Symbol Description

NF Number of forecasts
NF Number of unit time intervals without a forecast
NE Number of events
NE Number of nonevent intervals
NH Number of correct forecasts (‘‘hits’’)
NH Number of forecast intervals during which no event occurred

(‘‘false alarms’’)
RF Forecast ratio � NH/NH
NM Number of events not predicted (‘‘misses’’)
x Number of nonevent and nonwarning intervals
N Total number of events and nonevents(= NF + NF , the total

number of forecasts and nonforecasts)
C Cost of a false alarm
B Net benefit derived from a valid forecast
Lp Loss that can be protected against, B = Lp � C
LR Likelihood ratio
K Loss structure (Kmin = RF

�1)
Odds (z) ‘‘Base rate’’ � P(z)/P(z))
P(E) Probability of an event
P(E) Probability of no event
P(FjE) Probability of a forecast given that there was an event
P(FjE) Probability of a forecasted event given that there was no event,

that is, the false alarm probability

Table 2. Contingency Table Format Used in This Paper

Forecast

Observed

Yes No Total

Yes NH NH NF = NH + NH
No NM x NF = NM + x
Total NE NE N
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[19] Alternatively, the problem from can be framed from
the prospective of losses. Wilks [2001] starts with LF, the
forecast loss

LF ¼ CNF þ LpNM ¼ C NH þNH

� �
þ LpNM; ð2Þ

and demands that it is less than the loss expected from
climatology Lclim � NELp. With LF < Lclim and the identity
NH + NM = NE, this equation is the same as equation (1).
[20] The user of an event forecast will want to choose the

forecast model that maximizes UF for their system. How-
ever, without knowledge of C and B, which are both user-
dependent, the developer of a model can still determine
for which users the model is potentially useful by report-
ing C/B ratios that satisfy

RF �
NH

NH

>
C

B
: ð3Þ

If a user has a C/B ratio that satisfies this inequality, then
taking action following every forecast will yield UF > 0. If
possible, further optimization of the model should seek to
maximize UF for those given values of C and B.
[21] The forecast ratio RF is a useful metric for assessing

if a forecast algorithm has the potential to provide eco-
nomic utility for the user defined by conditions 1--3.
However, we are considering a user who wants to maxi-
mize UF. Wilks [2001] has introduced the value score (VS)
metric for users 1--3. It is the ratio of the utility of the
forecast to the utility of a perfect forecast

VS ¼ 1

BNE
BNH � CNH

� �
: ð4Þ

This value score is proportional to UF and has the property
of being unity for a perfect predictor (NH = NE, NH = 0) and
has the advantage that it can be computed as a function
of a single parameter, C/B.

4. Beyond the Value Score
[22] We have questioned if a correlation metric is suffi-

cient for a user to make comparisons between predictors
because a high data-model correlation does not necessar-
ily imply maximum utility. The value score defined in the
previous section is a metric that is of interest to users 1--3
because it is proportional to UF. However, the value score
may not be ideal for this user if the critical disturbance
threshold Dc is a free parameter. Often the user-relevant
optimization problem is to determine the values of the
adjustable internal model parameters Pm and the Dc value
that maximize UF. (There is an additional free parameter,
the time that the alert is extended over, T as illustrated in
Figure 1. In the case of space weather forecasts, the range
of values that T can take is usually restricted by the lead
time provided by solar wind measurements or the time for
a structure to propagate from the Sun to Earth. In the

following, we assume that T is fixed.) In this section we
consider the more realistic user that is described by
conditions 1--4, where the additional condition is as
follows.
[23] 4. The user has a C/B ratio that depends on Dc.
[24] If we are to compare two models at a given Dc, then

the value score given by equation (4) is a suitable metric
for the user defined by conditions 1--3. However, in a
practical situation, B and C are likely to depend on Dc. For
example, shutting down a power station to prevent dam-
age from geomagnetically induced currents will result in a
loss of income dependent on the extent of shutdown,
while the amount of damage protected against depends
on the magnitude of the geomagnetic event, represented
by Dc.
[25] By rewriting equation (4) as

VS Pm;Dcð Þ ¼ UF Pm;Dcð Þ
BNE

; ð5Þ

it is clear that if B or NE are dependent on Dc, then the
values of Pm and Dc that maximize UF will not necessarily
be the same as those that maximize VS. (In general,
B increases with Dc while NE decreases with Dc, so the
values of Pm and Dc that maximize UF may be near the
values that optimize VS in some cases. This possibility is
considered in the following section.)
[26] The most general optimization problem for the user

+ modeler is to find parameters Pm and Dc that yield
maximal utility

UF Pm;Dcð Þ ¼ B Dcð ÞNH Pm;Dcð Þ � C Dcð ÞNH Pm;Dcð Þ: ð6Þ

We are left with the question of if a better metric of
comparison and optimization can be devised for the users
1--4. Some of the choices are as follows.
[27] Option a: The modeler optimizes their model to

maximize RF.
[28] Option b: The modeler optimizes their model with

respect to VS for several values of C/B.
[29] Option c: The users provide C(Dc) and B(Dc) curves.

For each user the modeler determines an optimal Pm and
Dc.
[30] Option d: The modeler reports many NH(Pm, Dc) and

NH(Pm, Dc) curves.
[31] Option e: The modeler reports NH(Dc) and NH(Dc)

curves for a fixed Pm.
[32] How should modelers report results or optimize

their model while still giving users 1--4 information that
is of value? Options a and b are the most straightforward.
Option a gives a user information they can use to deter-
mine if they can even benefit from always taking action
following a forecast. Option b allows models to be more
easily comparable side by side with a single number in the
tradition of a correlation metric. A modeler can claim that
‘‘In this range of C/B values, my model is superior on the
basis of the VS metric.’’ However, for the realistic user
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constrained by condition 4, the model may not be superior
in a practical situation. Option c requires a user to provide
information that may be of interest to their competitors.
Option d puts a great burden on the modeler, especially if
it takes a long time to compute a prediction time series.
[33] We suggest that the best compromise for users 1--4

is option e. With this information, a user can do a partial
optimization by using the NH(Dc) and NH(Dc) curves to
maximize equation (6) with Pm constant. In the follow-
ing section we show how a hypothetical user could use
this information to determine the optimal parameter
Dc.
[34] Adding the complication of allowing for a threshold-

dependent B and C makes the analysis usable to a broader
class of users than the value score. The drawback is that
instead of determining a single set of model parameters Pm

that optimize the value score for a fixed Dc, the modeler
needs to provide either a curve that tells of the model
performance as a function of Dc or needs to provide many
models. Although we have added the complication of
needing to present model performance as a function of Dc,
we have simultaneously removed one of the restrictions
inherent inusinga 2� 2 contingency table. By allowingDc to
vary,weare effectively consideringa contingency tablewith
more elements.

5. Examples
[35] In this section we give two examples of how a

hypothetical user could use modeler-provided analysis
to determine if the model’s forecasts can benefit them.
To simplify the presentation and analysis in this section,
we restrict our analysis to that of a user that has, in
addition to conditions 1--4, the following constraint.
[36] 5. The user has a cost C (�Co) that is independent of

Dc.
[37] Given curves of the number of hits and false alarm

forecasts, the user described by conditions 1 --5 can
compute

UF

Co
¼ B Dcð Þ

Co
NH Pm;Dcð Þ �NH Pm;Dcð Þ ð7Þ

on a grid of [B/Co, Dc] values. To find an optimal value of
Dc, the user plots their characteristic B(Dc) curve on top of
the UF/Co surface and locate the maximum UF along the
path.
[38] Because we are assuming that only results with

fixed Pm are available, that is, the model is fixed, the
user-relevant problem is to maximize

UF

Co
¼ B Dcð Þ

Co
NH Dcð Þ �NH Dcð Þ: ð8Þ

Given the NH(Dc) and NH(Dc) curves and the user’s
B(Dc)/Co versus Dc curve, UF/Co can plotted as a surface

dependent on Dc and B/Co. This surface can be
compared to that of the value score

CoVS ¼ Co

B Dcð Þ
UF

NE Dcð Þ : ð9Þ

5.1. Prediction of MeV Electron Events
[39] In this section we consider the problem of forecast-

ing when the dimensionless disturbance quantity D � Je/
(103 particles sr�1 cm�2 s�1) at L = 4.4 will cross a threshold
value, Jec, where Je is the daily average fluence of energetic
electrons measured by the PET instrument on SAMPEX.
Although there is not a one-to-one correspondence be-
tween elevated Je and satellite failure, Je is a good proxy for
failure or interruption in that long data sets of its measure-
ments are available, and the probability of satellite failure
or interruption is highly correlated with Je [Baker et al.,
1987; Vampola, 1987].
[40] A simple prediction algorithm for Je was analyzed

by Weigel et al. [2003]. The algorithm states that if the daily
average solar wind velocity, V, on day t � 1 was below Vc

and above Vc on day t, then J is predicted to rise above a
critical threshold level Jec on day t + 1, t + 2, or t + 3. If the
flux was pre-elevated (Je(t) > Jec) then no prediction is
made. In the analysis, the minimum usefulness ratio, RF,
was considered as a function of Jec.
[41] The electron flux data are from the SAMPEX satel-

lite while the daily averaged solar wind velocity data are
from the OMNIWeb data set. The time interval of analysis
starts on day 285 of the year 1994 and runs through day
365 of 2000, giving a total of 1951 days. (SAMPEX data are
available from approximately 1993 on, but consistent near-
Earth solar wind velocity data were not available in 1993
and most of 1994.)
[42] The number of hits, misses, and false alarm fore-

casts as a function of the critical disturbance level, Jec is
shown in Figure 2a for the algorithm with Vc = 600 km/s.
The NH and NH curves in Figure 2a are used to compute
the metrics RF, VS, and UF. For this example, we
assume the user has a benefit/cost curve B/Co = 5 +
10 tanh((Je/103--0.05)/0.05). The shape of this curve was
chosen so that for large Jec, B/Co approached an as-
ymptotic value, and for a small value of Jec, B/Co is zero.
Such curves are user-dependent, and this form was
chosen for illustration purposes only.
[43] The optimal values of Jec determined for RF, VS,

and UF derived in Figures 2a--2c differ substantially. The
optimal value of RF is determined by inspection from
Figure 2a. The optimal values of VS and UF are determined
by locating their maximum values on the B/Co curve
shown in Figures 2b and 2c. The threshold value
corresponding to maximal RF, VS, and UF are Jec/10

3 =
0.02, 0.17, and 0.1, respectively. This result highlights the
problem addressed in this article; If only RF is presented,
the user could not do the optimization in Figure 2c. If only
the value score was presented, the user that chooses Jec on
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that basis may obtain a result that differs from that if NH

and NH curves were provided so that the user could
compute UF.
[44] Note that the surfaces shown in Figures 2b and 2c

are jagged, which is most likely a result of the small
number of events considered. For this reason any optimal
value selected by the user would need to account for such
uncertainty.

5.2. Prediction of Geomagnetic Storm Events
[45] In this section we consider predicting an excursion

of the disturbance -Dst (on the basis of daily averaged Dst)

above a threshold using only solar wind velocity measure-
ments. The Dst data were obtained from OMNIWeb and
the solar wind velocity data are the same as that used in
the previous section.
[46] Statistically, the primary driver of Dst is the product

of the solar wind velocity and the rectified north-south
component of IMF (VBs). (In that most of the variance in
Dst can be explained by this product alone, even though
many drivers exist that influence Dst that depend on other
solar wind variables and combinations thereof [Burton et
al., 1975].) Long lead time prediction of Bz is much more
difficult than prediction of V because Bz varies on a much
shorter timescale. On 1-min timescales, Chen et al. [1997]
used the fact that in a magnetic cloud, Bz is slowly varying,
which allows its time evolution to be predicted when only
a small fraction of the cloud has been observed. Here we
suppose that only measurements of V are available and

Figure 2. (a) Number of correct, false alarm, and
missed forecasts and the ratio of correct to false alarm
forecasts produced by the algorithm with Vc = 600 km/s
that predicts the dimensionless disturbance D � Je/(103

particles sr�1 cm�2). Je is the daily averaged energetic
electron flux measured by the PET instrument on
SAMPEX. (b and c) Value score, VS, and forecast utility,
UF, surfaces computed using equations (9) and (8),
respectively, and the correct and false alarm curves in
Figure 2a. The thick line in Figures 2b and 2c is the
assumed B/Co versus Jec curve; the large dot is the
maximum value of the surface along the line. In
Figures 2b and 2c, small dots indicate negative values.
(The RF curve stops at 0.018 because we omit RF values
when the number of forecasts is less than 20 to prevent
overfitting.)

Figure 3. (a) Number of correct, false alarm, and
missed forecasts and the ratio of correct to false alarm
forecasts produced by the threshold algorithm with
Vc = 567 km/s that predicts the disturbance -Dst. (b and
c) Value score, VS, and forecast utility, UF, surfaces
computed using equations (9) and (8), respectively, and
the correct and false alarm curves in Figure 3a. The
thick line in Figures 3b and 3c is the assumed B/Co

versus Dstc curve; the large dot is the maximum value
of the surface along the line. In Figures 3b and 3c, small
dots indicate negative values.
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that the lead time of interest is one day. Note that by
omitting Bz the number of misses and false alarms will
increase significantly. However, for many purposes,
depending on the user, even a seemingly poorly
performing prediction algorithm may have some value
given the alternative of no prediction at all.
[47] Figure 3a shows the curves of the number of correct

and false alarm forecasts and the number of missed events
of an algorithm that predicts an event in Dst using the
same algorithm in the previous example. The NH and NH
curves in Figure 3a are used to compute RF, VS, and UF,
where we have assumed the user has benefit/cost
curve B/Co = 5 + 5 tanh((D � 0.35)/0.05), where
D �(�Dst � 25 nT)/158 nT. As in the previous example,
the form of this curve was chosen to have a limiting
value of B/Co for large values of the threshold param-
eter, �Dstc and to be zero for a small values of the
threshold parameter. Also, this curve was chosen so
that the there was some maximal value of VS or UF

along its path.
[48] For the user path shown, the optimal Dstc value is

�38 nT, for the VS and �33 nT for UF. The RF metric again
gives a much different answer; in this example the optimal
value of Dst is �1 nT. As in the previous example, if the
user is only given RF as a function of a threshold param-
eter, their optimal value will be significantly different than
what is determined if the full contingency table informa-
tion is reported as a function of the threshold parameter.
[49] Note that the values of �33 nT and �38 nT repre-

sent very small geomagnetic storms and from Figure 3c
the minimal value of Dstc that yields positive UF for any
user is 	�65 nT, which is a somewhat common occur-
rence (3.4% of the Dst values in the OMNIWeb data set
from 1963--2002 fall below �65 nT). Given these numb-
ers, it is quite likely that many users have a B/Co curve
that never yields a positive UF, and hence are better off
always ignoring the forecast. This is not surprising given
the simplicity of the forecast algorithm that was used.
Given the current state of solar wind velocity forecasting
[Baker et al., 2004], this is a reminder of the need for
significant improvements in solar wind velocity predic-
tions if extreme geomagnetic events are to be predicted
at a level and lead time that is relevant to a potential
user.

6. Summary and Conclusions
[50] We have presented some of the differences between

what quantities a modeler evaluates, presents, and
optimizes for model performance and what quantities
are useful for a hypothetical user fitting the following
description.
[51] 1. The user takes the same mitigating action follow-

ing each forecast.
[52] 2. Both a coin flip forecast and an ‘‘always predict

event’’ forecast yield a net monetary loss for the user.
[53] 3. The user seeks to maximize monetary gain.

[54] This user seeks to maximize the utility, UF, which
depends on the number of correct and false alarm
forecasts.
[55] In the recent literature there have been numerous

analyses of forecasts of rare events, all with emphasis on
different forecast quality metrics. We have shown in two
examples of how a modelers sometimes arbitrary choice of
metrics to evaluate their model against may have a sig-
nificant influence on a users decision. We have suggested
that some of this influence can be eliminated if the
researcher presents the curves NH(Dc), NH(Dc), and
NM(Dc), which are the number of a correct forecasts,
the number of false alarm forecasts, and the number of
misses as a function of the threshold quantity of the
disturbance, Dc. With these curves, the optimal thresh-
old value that a user selects is not influenced by the
metric that a researcher decides to emphasize, com-
parison of model results may be more straightforward,
and the metrics emphasized in the literature including
RF, Kq, and many other ratios that can be derived from a
2 � 2 contingency table, can still be derived.

Appendix A: Appendix

[56] In this section we show how the formulations and
metrics developed by Wilks [2001], Mozer and Briggs [2003],
and Matthews [1997] are related to that developed in this
article.
[57] Wilks [2001] considers the value score in the full

range 0 
 C/Lp 
 1. In the range of 0 
 C/Lp 
 NE/N, the
utility is with respect to the state of a system that is always
mitigated, because if NELp 
 NC, then it follows that if the
system is never mitigated there will be a loss of Lp for
every event and that this loss is less than the loss incurred
if the system is always mitigated. In this case the utility is
with respect to the mitigated state and there is a gain for
the unmitigated intervals of N-NF and a loss of LP for every
miss

UF ¼ C N �NFð Þ � LpNM; ðA1Þ

and the value score is

VS ¼
N �NFð Þ C=Lp

� �
�NM

N C=Lp
� �

N �NEð Þ
: ðA2Þ

[58] In this paper we have only considered the utility for
the case NE/N 
 C/Lp 
 1, because we required that the
always predict and coin toss algorithms have UF < 0. In this
case the constraint is C/Lp < NE/(NE + NE) and the utility is
with respect to the unmitigated state.
[59] Mozer and Briggs [2003] introduced and evaluated

the metric

Kq ¼
NH 1� qð Þ �NHq
NH þNMð Þ 1� qð Þ ; ðA3Þ
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where

q � C

Cþ Lp
: ðA4Þ

This metric is equal to the value score when C� B, which
can be seen by rewriting equation (A4) as

Kq ¼
1

BNE
BNH � CNH 1þ C=Bð Þ�1

� �
: ðA5Þ

Such a metric is probably more applicable to, for example,
a patient who needs to decide if undergoing a medical
testing procedure is useful since it deemphasizes the cost
of a false alarm by a factor of (1 + C/B)�1 relative to the
value score. It is possible to derive this metric given the
curves of NH(Dc), NH(Dc), and NM(Dc), as proposed in
this article.
[60] An additional formulation was given by Matthews

[1997], who states that for a forecast to be useful,

LR �Odds Eð ÞK > 1; ðA6Þ

where Odds(E) = P(E)/P(E), and the loss ratio, LR, is
defined as

LR � P FjEð Þ
P FjE
� � ¼ NH

NH

NH þ x

NH þNM
¼ NH

NH

NE

NE
; ðA7Þ

which follows from the relations in Table 1. With this,
equation (A6) can be written as RF > K�1 which can be
compared to equation (3), RF > C/B, which represents the
minimum hit to false alarm ratio that a model must have if
it is to produce positive utility for a user with a give C/B
ratio.
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