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a b s t r a c t

magnetic L shells. A correction term exploits correlated structure in previous one-step

prediction errors, or innovations, to improve the current forecast. More importantly, this

correction term helps reduce parameter estimation bias that arises when relevant

inputs are ignored, or higher-order linear and nonlinear dynamical terms are left out of

the model while it is being trained. Analyses of the L-dependent response functions,

one-step predictions, and prediction error statistics, lead to several conclusions: (1) the

direct effects of first-order solar wind perturbations only penetrate to L�4RE, while

linear feedback, which dominates flux dynamics throughout the radiation belts,

accounts for over 80% of the observed variability below this location; (2) electron flux

diffuses upward above L�5RE, and downward below L�5RE, except below L�1.75RE,

where the estimated model parameters are considered suboptimal anyway;

(3) corrections to model output required above L�4RE suggest that modified or

additional solar wind drivers may be required for a more complete physical description

of solar wind-radiation belt coupling; while (4) corrections to model output required

below L�4RE indicate episodic reconfigurations of the global electron radiation belt

state, a type of variation that will never be captured with linear dynamics alone.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Earth’s magnetosphere is a highly dynamic system that
derives its energy predominately from the impinging solar
wind (e.g., Arnoldy, 1971; Perreault and Akasofu, 1978;
Akasofu, 1979; Vasyliunas et al., 1982). Strong correlations
between measurements of various solar wind and mag-
netospheric parameters have led to the broad application
of so-called linear prediction filters as proxies for the true,
sometimes nonlinear, coupling between these two dis-
tinct space plasma regimes (Iyemori et al., 1979; Bargatze
et al., 1985; Clauer, 1986; Nagai, 1988). For instance,
ll rights reserved.
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because radiation belt electron flux has long been known
to exhibit a strong linear relationship to solar wind speed
(Paulikas and Blake, 1979; Baker et al., 1986), Baker et al.
(1990) used finite impulse response (FIR) linear filters to
predict the log10-flux of multi-MeV electrons at geosta-
tionary altitudes. A modified form of this model is used
today to predict 42 MeV electron fluences in space
weather forecasts at NOAA’s Space Environment Center.

More recently, a series of electron radiation belt
studies (Vassiliadis et al., 2002, 2005; Rigler et al., 2005,
2007) have applied FIR filters to a much broader range of
the Earth’s inner magnetosphere. Solar wind data from
NASA’s OMNI database (King and Papitashvili, 2005)
were used to predict electron flux measured by the
Solar, Anomalous, and Magnetospheric Particle Explorer
(SAMPEX; Baker et al., 1993; Cook et al., 1993).
These complimentary studies employed both single- and
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multi-input FIR filters to ascertain which solar wind
inputs affected flux variations most efficiently at different
geomagnetic L shells.

One conclusion reached by these studies in common
was that variations in solar wind electromagnetic proper-
ties, which are expected to enhance magnetospheric
convection via increased dayside magnetic field reconnec-
tion, affect radiation belt electron fluxes strongly just
outside the slot region (L�3–4RE), and to a milder but
broader extent just inside of geostationary orbital alti-
tudes (L�4.5–6.5RE). Multi-input filter results in particular
show clearly that flux increases should be expected just
outside the slot, while temporary decreases are expected
just inside geostationary orbit, and are largely due to
adiabatic losses related to ring current enhancements
during magnetic storms (the Dst effect; e.g., Kim and
Chan, 1997; Li et al., 1997).

Another common conclusion reached between these
studies relates to solar wind parameters that are closely
linked to mostly viscous interactions with the magneto-
sphere, especially the solar wind bulk speed. These tend
to drive significant variations in electron flux beyond
L ¼ 3 RE. Results from the multi-input filters, which help
separate the influence of simultaneous solar wind inputs,
indicate that increases in the solar wind bulk speed are
almost exclusively associated with increases in electron
flux. If those multi-input filter components driven by
electromagnetic solar wind inputs do indeed capture the
adiabatic changes in electron flux, as suggested pre-
viously, a case might be made that the enhancements
driven by increases in bulk speed are the result of a
genuine increase in electron phase space density (PSD).
However, it must be noted up front that these previous
filter-based studies, as well as the present work, are all
designed to model electron flux, so all physical inter-
pretations must continue to be made in this context.

One apparent discrepancy arose from these studies
when solar wind plasma density was considered: single-
input FIR filter prediction error statistics suggested that
density does have a significant impact on electron flux
variations, while multi-input filters indicated that the role
of plasma density is relatively insignificant, at least when
daily averaged observations are used. To understand this
discrepancy, we first reconsider results from Rigler et al.
(2004), where it was shown that there exists a lack of time
stationarity in adaptive single-input FIR filter coefficients
used to predict SAMPEX electron fluxes. Similarly, Rigler
et al. (2007) demonstrated a lack of stationarity in
prediction error statistics from static single- and multi-
input linear filter output. If instrument error can be
discounted, such non-stationary behavior in a geophysical
time series is usually indicative of some sort of ‘‘missing
inputs’’ required by the model.

These ‘‘missing inputs’’ may indeed be additional
drivers, like those considered by Rigler et al. (2007). They
might also be time-lagged model output, which amounts
to linear dynamic feedback. Finally, since it is always
possible to approximate nonlinear system dynamics with
a properly chosen polynomial expansion, neglecting the
higher-order terms in this polynomial should also be
considered a form of ‘‘missing input’’ (Pindyck and
Rubinfeld, 1991). In all these cases, unless the ‘‘missing
input’’ is completely uncorrelated with any of the known
system variables, the end result will be biased model
output, which generates biased prediction errors, and
eventually leads to biased estimates of those empirical
terms being optimized for the model.

An important objective of the present study is to
minimize bias error associated with missing inputs so that
physical insights might be more easily gained from the
model parameters optimized on data. The first example
above, or the ‘‘missing driver’’ problem, was already
addressed by Rigler et al. (2007), so we just use the same
solar wind drivers they did. Linear dynamic feedback has
been neglected in most previous studies because the
filters were designed with a sufficient number of time lags
to statistically capture the system’s entire dynamic
response. However, if the filter is truncated before the
full dynamic response of a system is able to decay to zero,
it will be as if relevant inputs were neglected during the
optimization process, leading again to biased parameters.

Clearly, this is a major problem in the radiation belts
for L shells lower than �4RE, where electron flux lifetimes
can be on the order of weeks, months, or even years. To
properly model such a response with an FIR filter requires
dozens to hundreds of free parameters, and ultimately,
similarly lengthy sequences of valid input data with which
to convolve it. A solution to this problem is to just design a
model that employs real dynamic feedback, and is there-
fore capable of reproducing a potentially infinite impulse
response (e.g., Shynk, 1989). As we shall soon see, a linear
state-space model makes this very easy. It also makes the
inclusion of multiple inputs a fairly trivial task. Perhaps
most important from the perspective of the current study,
state-space models can accommodate dynamic feedback
from multiple outputs.

The final source of bias error described above, nonlinear
dynamics, is perhaps the most difficult type of ‘‘missing
input’’ to add to any empirical model. As we noted above, a
nonlinear system can be approximated, to an arbitrary
precision, by using a properly chosen polynomial expan-
sion of the system variables. Of course the most obvious
problem with this approach is that all the relevant system
variables may not even be known, or available as the
observations required for parameter optimization. What’s
more, the degree of the polynomial required to approx-
imate a nonlinear system may be so large as to discourage
empirical optimization of the coefficients.

Fortunately, these problems can be largely mitigated by
assuming that observation errors are negligible, or can at
least be characterized as zero-mean, random sequences,
and adding a non-deterministic correction term to the
model that pushes model output toward observations. This
approach is not particularly suited for long-term forecasts
because future observations will not yet be available for
calculating the necessary prediction errors. However, from
the perspective of developing and refining our under-
standing of the dynamics of the system, it is bias error,
more than any loss of predictive ability, that needs to be
reduced in our empirical model. Besides, confidence in the
terms that were explicitly included in the model makes it
easier to ascertain which ‘‘missing inputs’’ should be



ARTICLE IN PRESS

Fig. 1. This block diagram represents a generic state-space model, in a

training or validation configuration, that uses innovations to adjust one-

step predictions. A discrete, fixed length time delay allows both

deterministic (Ax) and stochastic (Ke) feedback loops. Filtered input

can perturb the state (Bu), or bypass the model’s dynamics altogether

(Du) to combine directly with the system output, thus exploiting

correlations between the input and output not captured by the system

dynamics due to the model’s discretization.
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considered for inclusion in a future version of the model,
thus eventually leading to better long-term forecasts.

One should not choose the correction term arbitrarily. If
the corrector is unable to fully account for the predictable
‘‘noise’’ in the system, and correlated residuals persist, so
will biased parameter estimates; only now these estimates
also include effects from the correction term, which
exacerbates the bias problem (Rigler et al., 2007). It is
necessary for both the correction term and deterministic
model coefficients to be estimated simultaneously, which
inevitably requires a nonlinear, and computationally
expensive, optimization algorithm. A recursive nonlinear
estimator helps to redistribute this computational expense
over time, and as we shall soon see, state-space models are
well-suited to such algorithms.

Section 2 of this paper describes both the general linear
state-space model, with an error (innovation) correction
term, as well as the specific form used for this study.
Section 3 presents and discusses the model output, which
consists of 1-day predictions of the log10-flux of radiation
belt electrons. Section 4, using techniques described in
more detail in Appendix A, examines these results in a
more statistically rigorous manner in order to determine
exactly what fraction of the observed electron flux
variability can be attributed to each component of the
full state-space prediction. The paper ends with a
summary of the preceding discussions, and a few
concluding remarks.

2. Linear state-space model

Eq. (1) represents a generic linear state-space model
designed to predict an arbitrary state vector, x, one
discrete time step into the future

xðt þ 1Þ ¼ AxðtÞ þ BuðtÞ þ mðtÞ,
yðtÞ ¼ CxðtÞ þ DuðtÞ þ eðtÞ. (1)

The state-space matrices are defined as A 2 Rn�n,
B 2 Rn�p, C 2 Rl�n, and D 2 Rl�p, where n is the dynamic
order of the system, p is the number of inputs, and l is the
number of expected outputs or predictions. Simply put,
the state is propagated forward in time as a linear function
of its current self, Ax(t), plus a linear function of some
external forcing or input, Bu(t). For generality, model
uncertainty is represented by the process error term, m(t).
Since the modeled state may not be directly comparable
to observations of the real system output, y(t), another
linear mapping function, Cx(t), can be used to interpolate,
or otherwise modify the state, in order to best match
output measurements. Again, for generality, the state-to-
output mapping model considers measurement errors,
e(t), as well as potential statistical relationships that
might exist between the input and output, but which
cannot be captured by the system dynamics. This so-
called ‘‘feed-through’’ term, Du(t), is only required for
discrete time models because certain dynamics will
always be missed due to the inherent time lag.

Often, little is known a priori about either of the error
terms, m(t) or e(t). Therefore, it is not unreasonable to
assume that one is related to the other in a predictable
manner. In particular, within the context of model training
and/or validation, it is assumed that a complete set of
output observations is always available with which to
compare model predictions. As a result, e(t) would be
known at each time step, so this information could be
used to help specify m(t), and potentially improve predic-
tions. In keeping with the linear state-space model
concepts described above, a simple linear transformation
is applied to the measurement error, and the process error
becomes Ke(t), which can be plugged back into Eq. (1) to
improve predictions. A block diagram of this so-called
innovations form of state-space model (ISS; Ljung, 1979,
1999) is shown in Fig. 1.

No unique state-space representation of a linear
system exists (Priestley, 1988). This is because an
equivalent state-space representation can always be
constructed from the similarity transform x0 ¼ Tx (T being
a non-singular matrix of the same dimension as A). If
T exists, it can be used to modify the remaining state-
space matrices according to: A0 ¼ TAT�1, B0 ¼ TB, K0 ¼ TK,
and C0 ¼ CT�1 (the feed-through term, D, does not
change). This being noted, there are certain forms that
the matrices can take on that possess desirable numerical
characteristics, or which allow for easier physical inter-
pretation. For instance, consider a system in which only
the diagonal of the A matrix possesses non-zero values. In
such a system, each element of x might be considered a
distinct physical state whose first-order linear dynamic is
defined by a scaled version of its own value at the
previous discrete time-step. If these values are all less
than one, the model is considered stable, and represents
multi-output exponential decay.

A slight modification to this state-space form might
incorporate super and subdiagonals into the A matrix,
implying that each state is related to the previous value of
its two nearest-neighbor states, in addition to itself. Such
dynamics represent discrete linear diffusion. Finally, if the
mapping matrix is nothing more than a square identity
matrix of dimension n, there will be a one-to-one mapping
of the state to outputs, simplifying further our interpreta-
tion of the model dynamics.

For the purposes of this study, we considered a set of
27 distinct physical states that correspond to the log10-
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Fig. 2. Eight years of solar wind inputs (IMF magnitude, plasma bulk speed, and mass density) are shown in the top panel. All are normalized by their own

standard deviations, then offset from zero by {10,5,0} respectively. The log10 of 2–6 MeV electron fluxes are shown in the bottom panel, as a function of

magnetic L-shell, in units of Earth radii. The data shown here were used for both model estimation and validation.

E.J. Rigler, D.N. Baker / Journal of Atmospheric and Solar-Terrestrial Physics 70 (2008) 1797–18091800
flux of energetic electrons (2–6 MeV) measured by the
SAMPEX satellite. Each state element represents daily
averaged fluxes that have been resampled using quarter RE

magnetic L shell bins centered on the monotonically
increasing span 1.25–7.75RE. We also chose three daily
averaged solar wind inputs as external perturbations to
our system: the magnitude of the interplanetary magnetic
field (jBimfj); the bulk speed of the solar wind (jVswj); and
the mass density of the solar wind plasma (rsw). These
data were either obtained directly, or derived, from the
NASA’s OMNI2 database (King and Papitashvili, 2005), and
so have already been propagated to the Earth’s position
from their respective observation platforms. They were
chosen to provide reasonably meaningful physical inputs
for our system, but they are probably not optimal in any
physical sense; mostly they were chosen so as to be
comparable with Rigler et al. (2007). These training data
are shown in Fig. 2.

Eq. (2) presents the input, state, output, and error
vectors required at each time step. Eq. (3) presents the ISS
model matrices in a manner that should make the
adjustable and fixed coefficients apparent, as well as
specify their respective dimensions:

uðtÞ ¼

1

u1ðtÞ

u2ðtÞ

u3ðtÞ

2
666664

3
777775
; xðtÞ ¼

x1ðtÞ

x2ðtÞ

..

.

x27ðtÞ

2
6666664

3
7777775

yðtÞ ¼

y1ðtÞ

y2ðtÞ

..

.

y27ðtÞ

2
6666664

3
7777775
; eðtÞ ¼

�1ðtÞ

�2ðtÞ

..

.

�27ðtÞ

2
6666664

3
7777775

(2)
A �

a1;1 a1;2 0 � � � 0

a2;1 a2;2 a2;3
. .
. ..

.

0 . .
. . .

. . .
.

0

..

. . .
.

a26;25 a26;26 a26;27

0 � � � 0 a27;26 a27;27

2
666666666664

3
777777777775

,

B �

0 b1;2 b1;3 b1;4

0 b2;2 b2;3 b2;4

..

. ..
. ..

. ..
.

0 b27;2 b27;3 b27;4

2
6666664

3
7777775

,

C �

1 0 � � � 0

0 1 . .
. ..

.

..

. . .
. . .

.
0

0 � � � 0 1

2
6666664

3
7777775

,

K �

k1;1 k1;2 0 � � � 0

k2;1 k2;2 k2;3
. .
. ..

.

0 . .
. . .

. . .
.

0

..

. . .
.

k26;25 k26;26 k26;27

0 � � � 0 k27;26 k27;27

2
666666666664

3
777777777775

,

D �

d1;1 d1;2 d1;3 d1;4

d2;1 d2;2 d2;3 d2;4

..

. ..
. ..

. ..
.

d27;1 d27;2 d27;3 d27;4

2
6666664

3
7777775

. (3)
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Fig. 3. A one-day unit impulse in each of the three solar wind inputs was

processed by the state-space model to produce the profiles shown here.

The model’s output is discrete in time and space, with boxes centered on

each day from 0 to 14, and each quarter L-shell from 1.25 to 7.75RE.

Discrete intensity bins are plotted for clarity, but the model’s output is

actually continuous in this regard.
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If these matrices are substituted back into Eq. (1), it is easy
to see from the Ax(t) term how each state is a function of
its previous value, as well as its two nearest neighbors
(the upper and lower boundary conditions are assumed to
be zero). The reader will also notice that the structure of K
is very similar to that chosen for A. This choice was not
required, but it was not entirely arbitrary either. By
imposing certain structural constraints on estimated
coefficients, ISS model matrices can be converted into
almost any well-known black-box linear time-series
model. Coefficients in these particular matrices can be
rearranged into a so-called multi-input/multi-output
ARMAX model (Ljung, 1999), which may be more familiar
to some readers than the linear state-space model. Finally,
the B and D matrices are nearly identical in structure,
despite their very distinct roles in the state-space model.
However, D possesses an extra column of adjustable
parameters, dk¼1!l;1, that corresponds to the fixed singular
value in the input vector u(t). This is analogous to how an
intercept term is determined for simple linear regression
using ordinary least squares (OLS). Since our system is
assumed to be stable, the model’s unperturbed response
will always decay back to this static L shell-dependent
baseline rather than zero.

If all that was required were optimal matrix coeffi-
cients for a standard state-space model (i.e., without
corrections), a straight-forward least-squares estimation
algorithm could be used. However, the ISS model
described above introduces non-deterministic feedback
via Ke(t), and cannot be optimized using typical linear
regression techniques since the regressors cannot all be
known beforehand. It might be argued that improved
predictions resulting from inclusion of the Ke(t) term
could be obtained just as readily from data assimilation. In
this case, the standard state-space model would be
optimized using more typical methods, then simply
inserted into a Kalman filter, or some other well-known
data assimilation algorithm, when making predictions.

However, if the Ke(t) term is retained during parameter
optimization, it helps account for missing inputs, non-
linear feedback, and many other model deficiencies that
can otherwise lead to biased estimates of the optimal
model matrix coefficients. With this in mind, we
employed a recursive prediction error estimator described
by Ljung and Söderström (1983). This algorithm is very
similar to the well-known extended Kalman filter (EKF)
with a state vector augmented to include unknown model
coefficients in addition to the dynamical state. The
prediction error is minimized recursively in a manner
that might one day be adapted to simulate non-stationary
system behavior that manifests as time-varying model
coefficients. For this study however, we assumed that the
system dynamics were time-stationary, in which case
the method can be proved to converge to a minimum in
the error surface as t-N.

Recent empirical studies of radiation belt dynamics
using linear filters (Vassiliadis et al., 2002, 2005; Rigler
et al., 2004, 2007) plotted the optimized FIR coefficients
versus time lag and L shell, providing an L-dependent
profile of the radiation belt’s impulse response to various
solar wind inputs. Fig. 3 is analogous to such plots, but
because the profiles shown here are generated by a true
dynamic model, and are not just the results of a large
multi-variable linear regression, it should be understood
that the state-space model will continue to generate a
non-zero response beyond the largest time lag shown.

We actually start with the middle panel in Fig. 3, or the
system’s response to jVswj, because it differs considerably
from its FIR counterpart presented in Rigler et al. (2007).
This difference arises mostly because enhancements in
observed electron flux tend to occur 1–2 days after peaks
in solar wind speed, and so they do not get incorporated
into the estimation concurrently with the peak in jVswj.
This time lag is easily incorporated into an FIR filter by
inserting additional time-lagged regression coefficients,
but a state-space model that is first order in time like ours
may very well miss many of these perturbations, leaving it
up to the correction term to try to reproduce the flux
variations instead. In contrast, the top and bottom panels
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are similar to their multi-input counterparts for the same
solar wind inputs, at least above L�4RE. This is because
jBimfj and rsw tend to exhibit marked increases less than a
day before observed enhancements in electron flux, so
their perturbation of the state is better captured by our
first-order model. All of the input response profiles shown
in Fig. 3 fail to register much of a change below L�4RE, a
Fig. 4. A one-day unit impulse in each of its 27 states was processed by

the state-space model. Representative response profiles are shown here.

The model’s output is discrete in time and space, with boxes centered on

each day from 0 to 14, and each quarter L-shell from 1.25 to 7.75RE.

Discrete intensity bins are plotted for clarity, but the model’s output is

actually continuous in this regard.
significant deviation from multi-input FIR filter results
that will be explained shortly.

Input impulse response profiles are not the only useful
way to represent the dynamic capabilities of a state-space
model without examining closely every single coefficient.
For instance, if one were to remove the inputs from the
state-space equations temporarily, and artificially change
each state from 0 to 1 for a single time step, it becomes
possible to see how flux decays and diffuses across L shells
over time when the system is free from external
perturbations. All 27 model states were tweaked in this
manner, and their respective response profiles were
recorded. Decay times at lower L shells are extremely
long, showing little change in state from the initial
condition after 14 days. Decay times gradually become
shorter as L increases, but there is a very noticeable drop
between L ¼ 4–5RE. At geostationary altitudes, initial
conditions decay to zero within 3–4 days. As for cross-L

shell coupling, there is a slight tendency for electron flux
to diffuse upward below L ¼ 1.75. Otherwise, there is
generally downward diffusion between L ¼ 1.75 and 4.75,
peaking near L ¼ 4.0. There is no discernible preference
for flux to diffuse up or down at L ¼ 5.0, and there is
generally upward diffusion of flux at all locations above
L ¼ 5.0. Fig. 4 presents four representative response
profiles demonstrating what was just stated in words,
and should be examined only while keeping in mind the
caveats regarding flux and PSD mentioned previously.
3. Model component predictions

We begin this section by noting that a sequence of full
ISS predictions is not easily distinguishable from the
SAMPEX observations plotted previously if the intercept
terms are retained. Therefore, we will not inundate the
reader with such redundant information here. More
important for physical interpretations, we will present
and discuss the various components of our ISS model
predictions. These include each of the solar wind
variables’ contributions to changes in electron flux
modeled by the Bu(t) term, the potentially coupled linear
feedback described by Ax(t), and the coupled error, or
innovations, corrections described by Ke(t). For reference,
the first panel in Fig. 5 is the full state-space model
prediction with the intercept terms removed, effectively
disregarding the background radiation belt state. This
panel is somewhat redundant because it is the sum of the
different component predictions plotted below it, but it
still offers an interesting global view of relative flux
variations with respect to the background state. Similarly,
the column of small plots on the right are just averages of
the component predictions to their left.

The first three rows of L-dependent component pre-
dictions offer a compelling visual representation of how
different solar wind inputs contribute to different
dynamic responses in the electron radiation belts con-
sistently over a long time span. jBimfj, considered here as a
proxy for electromagnetic coupling between the solar
wind and terrestrial magnetosphere, clearly drives reduc-
tions in electron flux in the outer belt, in addition to a
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Fig. 5. The top panel is a full ISS model prediction with its static intercepts removed. It is actually the sum of the remaining panels, which describe

contributions from perturbations caused by each of the three solar wind inputs, coupled linear feedback, and coupled innovations corrections,

respectively.
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slight enhancement just outside of L ¼ 3. jVswj, represent-
ing viscous interactions between these two plasma
regimes, is clearly associated with flux enhancements in
the outer belt, although perhaps not to the extent that we
might have anticipated had the model’s input response
captured the 1–2 days lagged peak of the solar wind
perturbation. Mass density is a proxy for plasma pressure
effects, and appears to have only a minor influence on
radiation belt electron fluxes measured by SAMPEX.
Physically, we might suspect that the latter may not hold
true when higher time cadences are considered, but based
on these results, as well as results presented in Rigler et al.
(2007), we conclude that extreme increases in rsw are
required to significantly affect fluxes over periods longer
than a day.

Predictions plotted in the fourth row of component
predictions are by far the dominant component of the full
ISS prediction, so it is perhaps prudent at this juncture to
remind the reader that these predictions are relative to
the background radiation belt state for each L shell. With
this in mind, it appears as though a large fraction of the
time is spent recovering from relative flux dropouts at L

shells higher than 5RE, while flux at L shells between
3 and 5RE is typically decaying back to the baseline
following strong and rapid enhancements. Much of this
signal comes from exponential decay at any given L shell,
especially inside 5RE, but a significant portion can be
attributed to diffusion of electron flux across L shells due
to the off-diagonal terms in the A matrix. The data shown
here provide some visual evidence for this phenomenon,
but more robust statistics presented in the following
section will help make this argument more definitively.

Finally, the last row of component predictions shows
flux variations captured by the Ke(t) term in the ISS
model, accounting for many of the dynamic processes that
were not considered explicitly in our state-space model.
First, note that the absolute value of the average Ke(t)
component prediction is very nearly zero, in spite of the
fact that there are very obvious, sometimes quite large,
corrections in the time-series plot to its left. This is
because corrections, whether large or small, tend to
oscillate about zero, thus canceling each other out in the
end. There is a negative trend in the amplitude of these
oscillations as L increases, similar to the negative trend in
flux contributed by linear feedback. This is evident early
on in the time series shown in the figure, and much more
obvious upon closer inspection of the raw data. This is
more consistent with the idea of missing internal
dynamics in the model than missing external drivers.
Since the corrections are usually quite large, especially at
middle to lower L shells, these represent significant
reconfigurations of the radiation belt state, and are most
likely due to some highly nonlinear dynamics that our
state-space model structure is incapable of reproducing in
any deterministic way.
4. Prediction statistics

We now take the model predictions obtained in the
previous section and determine robust prediction metrics
designed to ascertain what fraction of the variability
observed in the actual measurements can be attributed
to changes in the different component predictions.
Previous studies have used various correlation coeffi-
cients, prediction efficiencies, and other measures of
‘‘skill’’, all typically designed to provide a metric that falls
between �1 and 1, or between 0 and 1. This has much
value when comparing the predictive ability of one model
with another model, or even a future incarnation of itself,
but it does not really describe the model’s ability to
capture variations in the quantity it is attempting to
emulate. The metric we chose might best be described as
a fractional covariance, and does not necessarily fall
within these limits

s0yŷ ¼
syŷ

syy
. (4)

Eq. (4) represents the ratio of the variance shared
between observations and predictions (i.e., ‘‘covariance’’),
and the simple variance of the observations (covariance of
the observations with themselves). The advantage of this
metric over the others mentioned above becomes clear if
one considers a simple model that predicts sin(x), but
which is mistakenly used to simulate a system that
resembles 2sin(x). An observation–prediction correlation
coefficient would give a value of 1, which is clearly not
appropriate since the predictions did not capture all of the
true system’s variability. So-called prediction efficiency
(i.e., 1� s��=syy) provides a metric equal to 0.75, which is
incorrect because there remain correlations between the
residuals and the predictions that have not been con-
sidered (see below, and Appendix A). The fractional
covariance is equal to 0.5 for this observation–prediction
comparison. This equals the ratio of integrals of the
functions that describe our predictions and observations
(also equal to the ratio of their respective standard
deviations), scaled by the simple correlation between
the two, which is in this case equal to 1. Furthermore, a
fractional covariance larger than 1, or even less than zero,
are both perfectly valid; it simply means that the model
tends to either overshoot, and/or is anticorrelated with
observations (e.g., a model that predicts �2 sin(x), used to
simulate observations that go as sin(x), will produce a
fractional covariance equal to �2, or the model captures
�200% of the observed variability).

Perhaps most relevant to our current purposes, frac-
tional covariance is a perfectly additive property when
there are additive component predictions to consider:

s0yŷcum
¼
XK

k¼1

s0yŷk
. (5)

This relationship holds regardless of any correlations that
might exist between the component predictions, which
means that we can easily compare the relative contribu-
tions of each component prediction described in the
previous section to the variations in the observed output.
Finally, Eq. (5) is only one part of a convenient relationship
that describes not only the variance shared between
component predictions and observed output, but the
covariance with prediction errors, and the variance of
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the errors themselves

1 ¼
XK

k¼1

s0yŷk
þ
XK

k¼1

s0�ŷk
þ s0��. (6)

The last term in Eq. (6) is the fractional variance of the
prediction errors, noted previously when discussing
prediction efficiency. The middle term can often be
assumed to equal zero because a least-squares-optimized
model will decorrelate predictions and residuals. It must
be kept in mind that this only holds true for in-sample
validation. If the model is validated using a set of data
other than the one on which it was trained, there is no
guarantee that the predictions and residuals will be
uncorrelated. More relevant to this study is the fact that
our recursive estimation algorithm may not actually
converge to an optimal solution given the finite set of
training data available. However, as long as this middle
term is reasonably small it may be assumed that the
model is optimized enough for real-world predictions and
to make physical interpretations of the results (see
Appendix A for proof of these relationships).

Fig. 6 presents the L-dependent profiles of each of the
three terms in Eq. (6). Our ISS model does a very good job
predicting electron fluxes at the lower, if not the lowest,
L shells, capturing well over 80% of the observed electron
flux variability. The quality of these predictions drops
smoothly as L increases beyond 4RE, but the model still
manages to capture at least 50% of the observed variance,
even near the outer limits of the electron radiation belts.
The fact that the shared variance between observations
and prediction errors is near zero for all but the lowest
L shells indicates that our model is nearly optimal. With
this in mind, we proceed to look more closely at the
Fig. 6. Fractional covariances between observations and the cumulative

ISS prediction (
P

s0
yŷk

), between prediction errors and ISS predictions

(
P

s0�ŷk
), and the fractional variance of the prediction errors themselves

(
P

s0��), are all shown as functions of L shell. The sum of all three curves

equals unity.
individual components of our model predictions in an
attempt to gain some physical insights.

Fig. 7 illustrates the existence of at least two distinct
dynamic regimes. Even though internal linear dynamics
dominate radiation belt electron flux variations at all
L shells, this contribution drops rapidly between L ¼

4–5RE, after which it continues to drop somewhat less
precipitously out to the highest L shells. Likewise, the
impact of solar wind perturbations drops very quickly
inside L�5, falling to near-zero for Lo4. Concurrently, the
variance captured by corrective component predictions
appears to be relatively minor at the lower L shells,
somewhat larger at higher L shells, and undergoes a
perceptible, if not very sharp, transition between the two
regions just described. This would seem to be at odds with
results discussed at the end of the previous section, which
showed that the amplitude of corrections tends to follow a
profile more similar to internal linear feedback. However,
we now recall that most of the corrections at lower
L shells constituted significant reconfigurations of the
radiation belt state. Once the state adjusts itself to the
current conditions, linear feedback once again takes over
as the dominant dynamics in this region.

It is also important to remember that corrective
contributions can account for more than just missing
internal dynamics in our model, and may in fact correct
for the absence of relevant external drivers. Assuming it
was relatively persistent, a missing driver should manifest
itself as a constant source of error, requiring more regular
than episodic corrections by Ke(t). This helps explain the
tendency for the fractional covariance of the corrective
predictions to increase along with the relative influence of
those external drivers that were included, in spite of the
fact that the average amplitude of these corrections
Fig. 7. Fractional covariances between observations and major compo-

nents of the ISS model predictions are shown as functions of L shell.

These include contributions from the solar wind perturbations (s0yŷpert
),

linear dynamic feedback (s0yŷdyna
), and corrections made based on

previous prediction errors (s0
yŷcorr

). The sum of all three curves equalsP
s0

yŷk
.
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Fig. 8. An L-dependent index equal to +1 indicates that the local electron

flux is more influenced by variations in flux occurring above than below

itself. An index equal to �1 indicates that variations in local electron flux

are more influenced by variations occurring below than above. An index

equal to 0 indicates either that recurrence completely dominates the

dynamics, or that there is no significant difference between the influence

coming from above or below.
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decreases. If, on the other hand, a missing external driver
is not very persistent, but rather constitutes a rare but
significant perturbation to the system (a shock in the solar
wind, for example), the correction term will probably not
capture all of its dynamic impact to the system. Still, it
does correct for some fraction of the variance, and the bias
that would otherwise be introduced into the estimated
model parameters is reduced.

We noted in Section 2 that both the A and K matrices
contained off-diagonal terms that allowed neighboring
states to influence the local state of the radiation belt. We
could have plotted a fractional covariance profile for the
contribution of every single off-diagonal term, similar to
Fig. 7, but this would be difficult to decipher, even for a
researcher who was intimately familiar with the physics,
data, and ISS model structure being used here. We chose
instead to analyze the relative influence of nearest
neighbors on each L shell bin. Our approach used a simple
algorithm to define an index describing whether the local
state was influenced from above (+1), below (�1), or if its
dynamics were overwhelmingly dominated by its own
previous state (0), or if there was no significant imbalance
in the direction of influence (also 0):
1.
 If the fractional covariance between the flux observed
at each L shell and flux predicted from linear feedback/
error corrections at the same L shell is more than five
times the fractional covariance between observed flux
and predictions for either nearest neighbor, a value of 0
is assigned to that L shell.
2.
 If this is not the case, but the ratio of fractional
covariances of the lower/higher neighbors’ predictions
with local observations is between 80% and 125%, it is
assumed that neither neighbor had a significantly
stronger impact on the local state, so a value of 0 is
once again assigned to that L shell.
3.
 If the ratio of fractional covariances of the lower/higher
neighbors’ predictions with local observations is great-
er than l25%, it is assumed that the lower neighbor had
a stronger impact on the local state than the higher
neighbor, and a value of -1 is assigned to that L shell.
4.
 If the ratio of fractional covariances of the lower/higher
neighbors’ predictions with local observations is less
than 80%, it is assumed that the higher neighbor had a
stronger impact on the local state than the lower
neighbor, and a value of +1 is assigned to that L shell.
The resulting indices might be considered an indication
of the direction from which information flows in the
system being modeled, and are presented in Fig. 8 as a
function of L shell. In general, these results indicate that
changes in electron flux at L shells below 5RE are
influenced more by what is happening above them than
below. Changes in electron flux at L shells above 5RE are
influenced more by what is happening below them than
above. For the most part, this rule holds true for both
linear dynamic feedback and error corrections. While it is
true that this ‘‘diffusion’’ of information might just as
easily have arisen from anticorrelations between observa-
tions and predictions, a closer inspection of the A and K
matrix coefficients showed that they were almost all
positive. This implies that we are reproducing a genuine
diffusion of log10-flux with the ISS model, if not necessa-
rily diffusion of PSD. One clear exception to this rule
occurs between just below L ¼ 2, and just above L ¼ 3,
where linear feedback has an index value equal to 0,
implying that simple persistence dominates. Isolated
deviations to the rule that occur at L ¼ 4.5 and 6RE are
probably anomalous.

It is also worth noting that, while non-persistent
effects of linear feedback come mostly from above at the
very lowest L shells, the influence of error corrections
seem to diffuse upward for Lo1.75RE. If we look back at
Fig. 7, a small but significant enhancement in the
fractional covariance associated with error corrections
can also be seen at these L shells, while a decrease in the
fractional covariance associated with linear feedback is
observed. One might be inclined to interpret this as some
sort of nonlinear dynamical phenomenon in this region.
However, if we look even further back, to Fig. 6, there is a
clear spike in the covariance between predictions and
residuals in this region, which implies that our model is
not optimal here. Any physical interpretations in this
region should be made with caution until more data
become available with which to refine our estimates of the
corresponding ISS matrix coefficients.
5. Summary and conclusions

In this study, we optimized a linear state-space model
in order to reproduce that portion of the electron radiation
belt flux dynamics that resembles linear diffusion, and
which is perturbed directly by our three representative
solar wind quantities: jBimfj, jVswj, and rsw. Even though
our understanding of radiation belt dynamics is far from
complete, we can be certain that this model is missing
many relevant ‘‘inputs’’, including additional solar wind
drivers and higher order, even non-linear, dynamic feed-
back terms. Rigler et al. (2007) showed how such missing
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inputs can lead to biased estimates of those parameters
that are explicitly included in empirical models. We
therefore introduced a correction term that is optimized
concurrently with the deterministic state-space model
parameters in order to exploit non-random signals in the
prediction error, or innovations, sequence. A perfect
corrector (i.e., residuals constitute a zero-mean, time
stationary, random sequence) should account for any
missing inputs/physics in the system, and the strictly
linear dynamics described by our state-space model
would be unbiased.

For various reasons a perfect corrector is impossible to
attain, so biased model parameters will always exist. Still,
the linear state-space model presented in this study is
substantially less biased than a similar state-space model
that was developed in parallel, but not presented here,
and whose coefficients were estimated without innova-
tions-based corrections. As such, we proceeded to analyze
the ISS model, as well as its in-sample predictions and
prediction error statistics, to better understand what role
linear dynamics play in governing the evolution of
electron flux in the radiation belts. Input impulse response
functions were presented as functions of L shell, and can
be considered analogous to the FIR filter profiles used in
prior studies. Considering that the solar wind inputs used
here served as rough proxies for a variety of solar
wind–magnetosphere coupling mechanisms, these
showed a clear separation between electromagnetic,
represented by jBimfj, and viscous interactions, repre-
sented by jVswj. The former leads primarily to reductions
in electron flux between L�4–6.5RE, while the latter leads
to electron flux enhancements between L�5–8RE. There
also appear to be losses related to pressure, represented
by rsw, but a cursory examination of the actual time-
dependent component predictions reveals that these are
very episodic, and require extreme changes in the solar
wind density to have any significant impact on radiation
belt fluxes.

Given the state-space representation of our model, it
was fairly straight-forward to conduct simple experiments
wherein the state at each L shell was perturbed directly to
see how flux might evolve in the absence of solar wind
perturbations or flux from neighboring L shells. We found
that flux diffuses upward beyond L�5RE, downward
between L �1.75–5RE, and surprisingly, upward again at
the very lowest L shells. This last result is somewhat
suspect though, since there are significant correlations
between the prediction errors and component predictions
at these altitudes, indicating that the model was not fully
optimized here.

Component predictions corresponding to each of the
solar wind perturbations, linear dynamic feedback, and
the innovations correction term were presented next.
These more clearly demonstrated the largely separable
effects of electromagnetic and viscous interactions be-
tween the solar wind and radiation belts, as well as the
relative non-impact of changes in solar wind pressure at
daily time scales. More importantly, these perturbation
effects were almost trivial when compared to the relative
influence of linear feedback, which tends to account for
the recovery of lost electrons in the heart of the outer belt,
and the decay of electron flux after strong enhancements
near the inner edge of the outer belt. Contributions from
the corrective term tended to be less coherent in both
space and time, manifesting as strong but infrequent
changes in flux. This is not surprising because once a
major correction was made to the model output, the
remaining model dynamics take over to propagate those
changes forward in time in a linear fashion.

The predictions were subjected to a more robust
analysis than simple visual inspection using a metric we
refer to as ‘‘fractional covariance’’. Unlike metrics used in
previous studies, the fractional covariance is not arbitra-
rily scaled to a fixed interval (e.g., {�11}). Rather it very
deliberately represents a fraction of the total observed
variability in the state variable of interest that is captured
by each component prediction. By design, it is perfectly
additive, meaning that the fractional covariance of each
component prediction will add up to the cumulative
fractional covariance. The ISS state-space model captures
at least 50% of the observed log10-flux variance at the
highest L shells, and increases smoothly downward until it
plateaus above 80% between L�2–3RE, and drops rapidly
below L ¼ 2.

The component prediction statistics offer substantially
more insight into the actual physics of the system than do
the combined prediction statistics. While linear feedback
dominates the flux dynamics at all L shells, there is a rapid
transition between L�4–5 where the share of variance
that can be attributed to linear feedback drops from �80%
to 30% and less. There is also a corresponding increase in
the combined effects of solar wind perturbations across
this same region. The flux contribution from model
corrections appears to be fairly low inside of L ¼ 4, and
grows steadily beyond this point until it surpasses linear
solar wind perturbations, and is nearly comparable to
recurrence at the highest L shells.

The fact that corrections tend to be smaller at higher
L shells, and yet still account for a fairly large fraction of
the total variance of observed fluxes, suggests that these
probably account for missing, and potentially nonlinear,
combinations of solar wind drivers. Corrections made at
lower altitudes tend to be episodic, but quite substantial
when they do occur, and because linear feedback already
dominates the overall radiation belt dynamics here, we
believe they account more for major reconfigurations in
the radiation belts that occur during intense solar wind
events. It is unlikely that such events could ever be
captured by our state-space model in any deterministic
sense without expanding the current state dimension
significantly, so the correction term is critical for reducing
model bias in this region.

The fractional covariances were further processed
using a simple algorithm to generate an index for each
L shell that indicated whether the local state was mostly
persistent, or whether it was influenced more strongly by
variations in flux occurring above or below itself. Aside
from a few anomalous data points, it is clear that radiation
belt fluxes above L ¼ 5 are influenced from below, while
fluxes below L ¼ 5 are influenced from above, or are just
so persistent as to be uninfluenced at all by what is
happening at their neighboring states. These results are
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consistent with the state impulse response functions
described earlier, and indicate that flux diffuses down-
ward below L ¼ 5, upward above L ¼ 5, and is influenced
equally from both directions near L ¼ 5, which corre-
sponds to the heart of the electron radiation belts.

We conclude by reminding the reader that all the
results presented so far relate to electron flux, not PSD, a
more physically meaningful quantity that is difficult to
extract accurately from the SAMPEX data. However,
relatively long duration time-averaging, a recognized
global coherence in the electron radiation belts (Kanekal
et al., 2001), and perhaps most importantly, the fact that
all dynamics discussed up to this point describe variations
about an estimated baseline, and not any absolute values,
gives us reason to believe that the relative relationships
between states and inputs, if not the exact model
parameters, will remain unchanged if such a transforma-
tion from flux to PSD were to be performed. If this is
true, the work presented here strongly suggests that
radial diffusion/transport does play a significant role in
radiation belt dynamics, but not necessarily as an accel-
eration mechanism, especially above L ¼ 5RE. In addition,
there are several localized un-modeled dynamical pro-
cesses being reproduced, at least in part, by the innova-
tions correction term, indicating non-diffusive and
potentially nonlinear electron flux dynamics in the Earth’s
radiation belts.
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Appendix A. : Fractional covariance as a
prediction metric

The covariance between a single observed dependent
variable (Y), and potentially several observed independent
variables (Xk), can be interpreted as a fraction of the
observed variability in Y that can be attributed to
variations in Xk, if it is properly scaled.

We start with a simple two-variable linear regression,
complete with an intercept (a) and prediction error term
(e) for generality, but the forthcoming conclusions will be
scalable to an arbitrary number of independent variables:

Y ¼ aþ b1X1 þ b2X2 þ �. (7)

Multiply both sides of Eq. (7) by Y to get:

YY ¼ aY þ b1X1Y þ b2X2Y þ �Y . (8)

Next, apply the expectation operator E to this relationship,
accounting for its distributive properties, and the fact that
a, b1, and b2 are all constants, while the remaining terms
are not:

EfYYg ¼ aEfYg þ b1EfX1Yg

þ b2EfX2Yg þ Ef�Yg. (9)

Finally, substitute Eq. (7) into Eq. (9)’s final term to give:

EfYYg ¼ aEfYg þ b1EfX1Yg þ b2EfX2Yg

þ Ef�ðaþ b1X1 þ b2X2 þ �Þg
¼ aEfYg þ b1EfX1Yg þ b2EfX2Yg

þ aEf�g þ b1EfX1�g þ b2EfX2�g þ Ef��g. (10)

At this point, the expectation terms in Eq. (10) are
becoming somewhat unwieldy, and to be perfectly
accurate, they only apply to entire populations of random
variables anyway. In reality, only limited samples of a
population are available to any statistical study. The
expected value of any sampled variable is simply its
mean, m. With this in mind, we can rewrite Eq. (10) for a
sample instead of the entire population:

mYY ¼ amY þ b1mX1Y þ b2mX2Y þ am�
þ b1mX1� þ b2mX1� þ m��. (11)

Now, the sample covariance between any two random
variables (sXY) can be defined as the mean of the product of
two random variables, which have in turn had their own
means removed.

sXY ¼ ðX � mXÞðY � mY Þ . . .or . . .

¼ mXY � mXmY . (12)

Rearranging the second form of Eq. (12) so mXYcan be
substituted back into Eq. (11) gives

sYY þ mYmY ¼ amY þ b1sX1Y þ b1mX1
mY þ b2sX2Y

þ b2mX2
mY þ am� þ b1sX1� þ b1mX1

m�
þ b2sX2� þ b2mX2

m� þ s�� þ m�m�. (13)

Fortuitously, the product of means on the LHS of Eq. (13)
equals exactly the sum of every product on the RHS that
contains a mean. No proof is provided, but this is easy to
confirm numerically. This allows us to write

sYY ¼ b1sX1Y þ b2sX2Y þ b1sX1�

þ b2sX2� þ s��. (14)

Noting that the covariance of any variable with itself is
just the variance of that single variable, we simply divide
both sides by the variance of the observed output, sYY, to
arrive at

1 ¼ b1

sX1Y

sYY
þ b2

sX2Y

sYY
þ b1

sX1�

sYY
þ b2

sX2�

sYY
þ
s��
sYY

. (15)

If b1 and b2 were estimated such that there existed no
correlation between the prediction residuals and the
inputs, the third and fourth terms in Eq. (15) could be
neglected. This is not generally the case, so these terms
are left in place. These relationships hold regardless of the
number of observed input variables, so we can write:

1 ¼
XK

k¼1

bk

sXkY

sYY
þ
XK

k¼1

bk

sXk�

sYY
þ
s��
sYY

. (16)

Simply stated, Eq. (16) reflects the fact that the sum of the
b-weighted fractional covariances of the independent

http://omniweb.gsfc.nasa.gov
http://omniweb.gsfc.nasa.gov
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variables Xkwith the dependent variable Y, added to the
sum of b-weighted fractional covariances of Xkwith the
prediction residuals e, added to the fractional variance of
the residuals, equals unity. Finally, if all of the bk’s happen
to equal 1, implying that the independent variables in
Eq. (7) are actually just additive components of a
cumulative prediction (i.e., Ŷ ¼ aþ

PK
k¼1Ŷk), we can

write each component’s fractional contribution to Y’s
variance as

1 ¼
XK

k¼1

sŶkY

sYY
þ
XK

k¼1

sŶk�

sYY
þ
s��
sYY

. (17)

If so-called standardized regression coefficients, or the
ratio of the standard deviation of each component
prediction to the standard deviation of the observed
dependent variable (i.e., b0k ¼ sŶk

=sY ), are multiplied by
corresponding correlation coefficients rŶkY , one also gets a
fractional covariance. This was as demonstrated almost
accidentally by Rigler et al. (2007) in their efforts to
determine R2 (i.e., the first RHS term in Eq. (18)) from the
regression coefficients of multi-input FIR linear prediction
filter models.

1 ¼
XK

k¼1

b0krŶkY þ
XK

k¼1

b0krŶk�
þ
s��
sYY

. (18)

It should be noted that Rigler et al. (2007) did not
actually calculate bkin this manner, but instead regressed
the standardized dependent variable (Y0) on the standar-
dized component predictions (Ŷ

0

k). Unless correlations
between these component predictions and the residuals
happen to be zero, the relative significance of each
bk must change because OLS regression re-optimizes
the parameters in order to de-correlate predictions and
residuals. Plugging these re-optimized bk values into
Eq. (18) will lead to a value other than unity on the LHS,
and the term ‘‘fractional (co)variance’’ loses all meaning.
Rigler et al. (2007) were not aware of this nuance at the
time of publication, and so were lucky to have chosen an
estimation algorithm (i.e., OLS) for their FIR models that
guaranteed zero correlation between residuals and com-
ponent predictions.
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