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16.9 cm
(6.7 in.)

4.8 cm
(1.9 in.)

521.2 cm
(205.2 in.)

to SQUID

260.6 cm
(102.6 in.)

2 mm
(0.08 in.)(b)

(a)

Fig. 3. Eight-SQUID 1.5-m2 (16-ft2) octagonal detector in
operation at Stanford University. (a) Detector being
adjusted. (b) Schematic diagram of detector.

3000 times lower than the value from the data set

that included the original event. Thus the possibil-

ity that this event was caused by the passage of a

magnetic monopole has been largely discounted.

Another single event was observed in a second-

generation detector at Imperial College, London, on

August 11, 1985. The possibility of the event having

been caused by the passage of a magnetic monopole

also has been largely discounted because it was a non-

coincident signal observed by only one SQUID, and

thus more susceptible to a spurious cause. All other

second-generation detectors have used fully coinci-

dent multiple-loop detection schemes. See SQUID.

Several groups have operated larger third-

generation detectors. The detector shown in Fig. 3,

with a sensing area greater than 1.5 m2 (16 ft2) times

4π sr, is composed of eight planar superconduct-

ing detection coils arranged around a cylinder with

an octagonal cross section. Each coil is a gradiome-

ter connected to a high-sensitivity radio-frequency

SQUID current sensor.

The gradiometer winding pattern is an important

design feature for superconducting monopole de-

tectors. For example, a figure-eight coil couples no

net magnetic flux for any change in a uniform ap-

plied field. The sensitivity of a gradiometer to exter-

nal magnetic field changes is substantially reduced

over that from a simple coil, whereas the sensitiv-

ity to the passage of a magnetic charge remains high

since the particle passes through only one element

of the gradiometer pattern. A further improvement

was achieved by breaking the loop up into a num-

ber of separate elements that are connected to one

SQUID in parallel, thereby reducing coupling losses

to the SQUID.

The monopole flux limit from the combined data

of all detectors is below 3 × 10−13 cm−2 sr−1 s−1 (90%

confidence limit). Each of the third-generation detec-

tors is capable of surpassing the peak of the mass-

dependent Parker bound in 3 years of operation,

or convincingly discovering magnetic monopoles in

cosmic rays. If magnetic monopoles exist in cosmic

rays, they are rare and very large detectors are re-

quired to observe them.

Conventional detectors. These measure the weak ion-

ization of matter expected along the trajectory of a

magnetic charge. Particle detectors such as scintil-

lators, which collect the fluorescent light from the

ionization, and proportional counters, which collect

the electrons produced by the ionization, can be

used. The signature of a monopole in these conven-

tional detectors would be that of a massive particle

moving a thousand times slower than the speed of

light. Such a signature would not directly measure

a magnetic charge, but the detection of any mas-

sive ionizing particle, whether electrically or mag-

netically charged, would be highly significant. The

primary advantage of conventional detectors over

superconducting ones is that sensing areas roughly

10 times larger can be instrumented for the same

costs. In addition, the conventional detectors are also

sensitive to known particles such as cosmic-ray

neutrinos, allowing other experiments to be run

simultaneously. See IONIZATION CHAMBER; PARTICLE

DETECTOR; SCINTILLATION COUNTER. Blas Cabrera
Bibliography. A. S. Goldhaber and W. P. Trower

(eds.), Magnetic Monopoles: Selected Reprints,
1990; P. A. Horvathy, Introduction to Monopoles,
1988.

Magnetic observatory
A specially designed ground-based facility that pro-

vides measurements of the Earth’s magnetic field,

often with high accuracy and temporal resolution for

decades of time or longer. Data from magnetic obser-

vatories record a superposition of time-dependent

signals related to a fantastic diversity of physical

phenomena in the Earth’s core, mantle, lithosphere,

ocean, ionosphere, magnetosphere, and, even, the

Sun and solar wind. Magnetic-observatory data are

often used for scientific research, but recently they

are also becoming increasingly important for prac-

tical applications, space-weather monitoring, and

hazard mitigation. Today, magnetic observatories

around the world are operated by a variety of gov-

ernment and academic institutions, sometimes in

collaboration with private companies. An example

of a magnetic observatory is shown in Fig. 1. See
ATMOSPHERE; EARTH INTERIOR; SOLAR WIND; SUN.

In the early eighteenth century, Swedish as-

tronomers Olof Hiorter and Anders Celsius discov-

ered that a compass needle would rapidly swing

back and forth at the same time that the aurora

was visible at high latitudes. In the early nineteenth
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Fig. 1. Panoramic view of the San Juan, Puerto Rico
geomagnetic observatory (foreground buildings) that is
operated by the U.S. Geological Survey.

century, German geographer, Alexander von Hum-

boldt, called these periods of magnetic disturbance

“storms.” At first a scientific curiosity, magnetic

storms were considered to be a nuisance for mak-

ing global maps of the geomagnetic field needed

for compass-based navigation. To better understand

storms, to support global mapping efforts, and

to improve the fundamental understanding of the

geomagnetic field, Carl Gauss and Wilhelm Weber

organized the first international campaign to coor-

dinate magnetic-field monitoring from 1836–1841.

Participation came from many countries around the

world, with observers making direct simultaneous vi-

sual measurements at predetermined times. In 1847,

an automatic, analog-photographic method was in-

vented to record magnetic-field variations, thus en-

abling the efficient and continuous operation of ob-

servatories. During the International Geophysical

Year (IGY), 1957–1958, an unusual moment of scien-

tific collaboration that came at the dawn of the space

age, many new magnetic observatories opened and

many existing observatories were modernized. At

the same time, the World Data Center system was

established to archive geophysical data, including ge-

omagnetic data. In the 1980s, magnetic observato-

ries began the transition from analog acquisition sys-

tems to modern digital-acquisition technology, and in

1987, the international consortium of observatory in-

stitutes, INTERMAGNET, was formed to establish and

promote modern operational standards and to en-

hance the dissemination of observatory data. See AU-

RORA; GEOMAGNETIC VARIATIONS; GEOMAGNETISM.

Magnetometers. Today, most magnetic observato-

ries use fluxgate magnetometers, a sensor system

that records the time-dependent variation of the ge-

omagnetic vector, usually with either 1-min or 1-sec

resolution. The response of a fluxgate instrument is

affected by changes in temperature, and this can be

somewhat stabilized by maintaining controlled op-

erating conditions. Still, to obtain data accuracy, an

INTERMAGNET-standard observatory also includes

a proton-precession or Overhauser magnetometer,

which provides accurate magnetic-intensity data,

and a special pier-mounted theodolite, a surveying

instrument with a small fluxgate attached to its tele-

scope (Fig. 2). About once a week, an observer

visits the observatory site and uses the theodolite

to accurately measure the direction of the mag-

netic field. These different data types are combined

through data processing to give a magnetic-field

time series that has both high accuracy and high

temporal resolution. Since its inception and up to

2011, there have been 125 INTERMAGNET observa-

tories supported by 56 institutes from 41 countries

(Fig. 3). Some observatories also support search-coil

magnetometers, which can measure magnetic-field

variations in frequency ranges from about 100 to

0.01 Hz, magnetotelluric electric-field sensors, and

other types of geophysical sensors. See GEOPHYS-

ICAL EXPLORATION; MAGNETOMETER; SURVEYING

INSTRUMENTS.

Discoveries. Many of the seminal scientific dis-

coveries in geomagnetic science have been made

using magnetic-observatory data; we list a few. Secu-

lar variation of the geomagnetic field, now known

to be caused by convection in the Earth’s core,

was demonstrated, starting in the sixteenth century,

through repeated and systematic measurement of

magnetic declination (compass direction) at fixed

reference points (an early form of magnetic observa-

tory) in London, England and Paris, France. In 1852,

Edward Sabine demonstrated the existence of solar-

terrestrial interaction by correlating sunspots with a

long time series of observatory data from Toronto,

Canada and other observatories recording magnetic

storms. In 1889, Arthur Schuster inferred the exis-

tence of electric currents above the Earth’s surface

in what is now known as the ionosphere from daily

Fig. 2. A typical magnetic sensor suite at an
INTERMAGNET-standard observatory: (front) fluxgate
variometer, (left) proton-precession magnetometer, (right)
theodolite with small fluxgate attached to telescope.
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Fig. 3. Map showing the locations observatories that have been part of the INTERMAGNET consortium 1991–2011.

semiregular magnetic-field variations recorded at ob-

servatories. In 1930, Sydney Chapman and Vincent

Ferraro inferred the existence of what we now call

the magnetosphere from analysis of the sudden com-

mencements of magnetic storms recorded at many

observatories. Considerable research continues on

these subjects, and magnetic-observatory data are

being used in new subject areas as well, including

cosmic rays, oceanic induction, and global-climate

change. See IONOSPHERE; MAGNETIC STORM; MAGNE-

TOSPHERE; SOLAR MAGNETIC FIELD.

Applications. Magnetic-observatory data are rou-

tinely used to derive two very different standard

but important products. The International Geomag-

netic Reference Field (IGRF) is a spherical-harmonic

model of the main part of the Earth’s magnetic field

obtained from satellite and observatories around the

world. IGRF models are updated every five years

through international collaboration. The IGRF is

widely used for navigation, land surveys, and stud-

ies of the Earth’s deep interior. Magnetic indices

record the rapid time-dependent variation of the

geomagnetic field, and are widely used for space-

weather monitoring and diagnostics. The Kp index

measures the average global range of magnetic-field

variation and is based on data from Australia, Canada,

Denmark, Germany, Great Britain, the Netherlands,

New Zealand, Sweden, and the United States. The

Dst index measures the strength of the magneto-

spheric equatorial ring current and is based on data

from Japan, South Africa, and the United States.

The AE index measures the strength of the auroral-

zone electrojet, and it is based on data from Canada,

Greenland, Iceland, Russia, Sweden, and the United

States.

Large magnetic storms are a potential hazard to

the activities and infrastructure of our modern,

technologically-based society. By many measures, the

great magnetic storm of March 1989 was the largest

of the twentieth century. Rapid geomagnetic-field

variation during this storm lead to the induction

of electric currents in the Earth’s crust. These cur-

rents found their way through ground connections

into the high-voltage Canadian Hydro-Québec power

grid, causing transformer failure and resulting in the

loss of electric power to more than 6 million people.

If a similar storm-induced blackout had occurred in

the north-eastern United States, the economic im-

pact could have exceeded $10 billion, not counting

the negative impact on emergency services and the

reduction in public safety associated with the loss of

electric power in large cities. The same storm also

damaged satellites and severely disrupted over-the-

horizon radio communication. Because these storm

effects occur on or just above the Earth’s surface,

magnetic observatories are an integral part of co-

ordinated ground and space-based “space-weather”

projects in several countries. Real-time observatory

data feeds are used for up-to-date monitoring. And,

after a magnetic storm has passed, observatory

data are used for impact assessments. See GEOELEC-

TRICITY; VAN ALLEN RADIATION.

Several magnetic observatories are located near

the oil and gas fields in the North Sea and Prudhoe,

Alaska, where drilling is not just straight down, but,

rather, is directed down and horizontally out and

away from each drill-rig platform or pad. This tech-

nique allows access to multiple reservoirs, reduces

drilling costs, and minimizes the impact to the sur-

face ecology. Orientation for directional drilling is ac-

complished using in situ magnetometers (acting as

compasses) in the instrument package that follows

the drill bit and, also, simultaneous monitoring of

the geomagnetic field at a nearby observatory. This

is needed because the magnetic field can be very

active at high latitudes, especially during magnetic

storms. This interesting application of data recording

space-weather effects is literally “down-to-earth.”

Outlook. In the future, we can expect to see a

gradual expansion of the modern global magnetic-

observatory network, either by installing new ob-

servatories, or, more efficiently, by renovating and
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upgrading the existing observatories, especially

those in economically emergent countries. We also

expect that data collection will expand in the time

domain, with many observatories now transitioning

from collecting basic 1-min data to 1-sec and, even,

higher-resolution data. Since the Earth’s magnetic

field is global in scale, international collaboration

among magnetic-observatory institutes is essential,

and the expected improvements in global coverage

and data resolution will yield new insights into de-

tails of our planet’s geomagnetic field. Jeffrey J. Love
Bibliography. J. Allen et al., Effects of the March

1989 solar activity, EOS Trans. AGU, 70(46):

1479, 1486–1488, 1989; D. N. Baker et al., Se-
vere Space Weather Events: Understanding Societal
and Economic Impacts, National Academy Press,

Washington, D.C., 2008; C. C. Finlay et al., Interna-

tional Geomagnetic Reference Field: the eleventh

generation, Geophys. J. Int., 183(3):1216–1230,

2010; J. Jankowski and C. Sucksdorff, Guide for
Magnetic Measurements and Observatory Prac-
tice, IAGA, Warsaw, Poland, 1996; D. J. Kerridge,

INTERMAGNET: World-wide near-real-time geomag-

netic observatory data, Proc. ESA Space Weather
Workshop, ESTEC, Noordwijk, the Netherlands,

2001; J. J. Love, Magnetic monitoring of Earth and

space, Physics Today, 61:31–37, 2008; P. N. Mayaud,

Derivation, Meaning, and Use of Geomagnetic In-
dices, Geophysical Monograph 22, Am. Geophys.

Union, Washington, D.C., 1980.

Magnetic reception (biology)
Sensitivity to magnetic stimuli. For more than a cen-

tury, biologists have speculated whether any living

organism can detect magnetic stimuli, especially the

very weak ones occurring naturally in the environ-

ment (the intensity of the Earth’s magnetic field, the

geomagnetic field, is roughly 0.5 gauss). A great va-

riety of biological effects resulting from exposure

to fields many thousands of times more intense

than Earth’s have been reported. Among these are

changes in plant growth rates, retardation of em-

bryo development, changes in enzyme activity, al-

terations of tumor growth, and other indications of

stress. While the evidence for some of the reported

effects is not very convincing, it does seem likely

that, under certain conditions, such intense fields

can indeed produce stress effects in living tissues

similar to the effects of factors such as extremes of

heat, cold, or starvation. This article is primarily con-

cerned with sensory detection, not with stress ef-

fects, and focuses primarily on fields of geomagnetic

intensities.

Invertebrates. Most of the evidence for magnetic

detection comes from experiments performed dur-

ing the 1960s and 1970s. During the first half of this

period, most of the experiments were performed by

F. A. Brown and colleagues, who reported turning

or orientational responses to weak magnetic fields

in a variety of invertebrates, including protozoa, flat-

worms, and snails.

In the late 1960s and early 1970s, a number of

other laboratories began to find evidence of re-

sponses to weak magnetic fields. Attracting special

attention were experiments on insects and on birds

(and later, on fish and on bacteria). In 1968, Martin

Lindauer and Herman Martin first published exten-

sive data showing that the geomagnetic field influ-

ences the orientation of the waggle-run dance by

which a scout honeybee communicates the distance

and direction of a food source to the forager bees.

Later, Lindauer and Martin showed that honeybees

are so sensitive to magnetic stimuli that fluctuations

of less than 10−4 gauss (roughly 1/10,000 of the

Earth’s field) can influence their behavior. Other in-

vestigators found evidence of magnetic detection in

other kinds of insects, including termites, beetles,

and fruit flies (Drosophila).

Birds. Most of the evidence for magnetic detection

by birds has come from studies of their migratory and

homing behavior. Experiments on birds exhibiting

oriented migratory restlessness in circular test cages

and experiments on the initial orientation of hom-

ing pigeons have yielded results strongly suggesting

that birds possess a magnetic compass, that is, they

can determine compass bearings from the geomag-

netic field. Evidence indicates that birds’ sensitivity

to magnetic stimuli is roughly similar to the honey-

bees’; they too can probably detect fluctuations of

less than 10−4 gauss. It appears that the tiny fluctu-

ations in the Earth’s magnetic field caused by solar

flares and other solar disturbances have a detectable

effect on birds’ navigation.

Although behavioral effects of magnetic stimuli

have been found in many kinds of animals, no one

has yet succeeded in conditioning an animal to a

magnetic stimulus in the laboratory. There is abun-

dant evidence that the detection process is not quick,

usually taking 15 min or more; hence, the flash stim-

uli presented in most classical conditioning attempts

may be undetectable.

It appears that birds do not read the magnetic com-

pass from its horizontal component the way people

do. Rather, they probably rely on the angle between

gravity and the magnetic total vector (which points

north and down in the Northern Hemisphere); for a

bird in the Northern Hemisphere, north is apparently

that direction in which the gravity and magnetic vec-

tors form the most acute angle. Only the magnetic

vector itself, not its polarity, is important. Moreover,

the detection system probably has a narrow range of

sensitivity; magnetic fields much stronger or weaker

than the Earth’s probably cannot be detected. See
MIGRATORY BEHAVIOR.

Mechanisms. The physical mechanism for mag-

netic detection by living organisms is unknown,

though a variety of possibilities have been put for-

ward, such as an induced electromotive force (emf)

as a result of motion through the magnetic field; de-

flection of moving charges by means of the Hall ef-

fect; distortions of molecular bond angles; nuclear

magnetic resonance effects; direct deflection of fer-

romagnetic particles; and many others. But the ev-

idence is still so scanty that any choice between




