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[1] Statistical analysis is made of rare, extreme geophysical
events recorded in historical data – counting the number of
events k with sizes that exceed chosen thresholds during
specific durations of time t. Under transformations that
stabilize data and model-parameter variances, the most likely
Poisson-event occurrence rate, k /t, applies for frequentist
inference and, also, for Bayesian inference with a Jeffreys
prior that ensures posterior invariance under changes of
variables. Frequentist confidence intervals and Bayesian
(Jeffreys) credibility intervals are approximately the same
and easy to calculate: 1=tð Þ ffiffiffi

k
p � z=2
� �2; ffiffiffi

k
p þ z=2
� �2� �

,
where z is a parameter that specifies the width, z = 1 (z = 2)
corresponding to 1s, 68.3% (2s, 95.4%). If only a few
events have been observed, as is usually the case for
extreme events, then these “error-bar” intervals might be
considered to be relatively wide. From historical records,
we estimate most likely long-term occurrence rates,
10-yr occurrence probabilities, and intervals of frequentist
confidence and Bayesian credibility for large earthquakes,
explosive volcanic eruptions, and magnetic storms.
Citation: Love, J. J. (2012), Credible occurrence probabilities
for extreme geophysical events: Earthquakes, volcanic eruptions,
magnetic storms, Geophys. Res. Lett., 39, L10301, doi:10.1029/
2012GL051431.

1. Introduction

[2] Large earthquakes, explosive volcanic eruptions, mag-
netic storms, and other extreme geophysical events are hazards
for humankind, infrastructure, economies, and the activities
of civilization [e.g., Bilham, 2009; Self, 2006; Baker et al.,
2008]. With globalization, with the urbanization of a grow-
ing world population, and with modern reliance on delicate
technological systems, society is becoming increasingly vul-
nerable to natural hazardous events. Estimates are needed
of the occurrence-rate probabilities of extreme geophysical
events. To be useful, these probabilities need to be accom-
panied by estimates of uncertainty. But geophysical events of
sufficient size to potentially cause catastrophes are rare, and
historical geophysical records are often only reasonably
complete and accurate for the past one or two hundred years.

Therefore, inferences for occurrence probabilities rely on
observations of a small number of events, and uncertainty is
difficult to quantify. To address this challenge, in this anal-
ysis, we assume that the time occurrence of extreme and rare
geophysical events can be described statistically in terms of
an idealized Poisson model. We explore seemingly compet-
ing frequentist and Bayesian inference methods to obtain
analytical estimates of long-term event occurrence rates,
occurrence probabilities, and associated confidence and
credibility intervals. We illustrate our results using historical
counts of extreme geophysical events.

2. Events Counted Over Durations of Time

[3] According to the USGS National Earthquake Informa-
tion Center (NEIC) catalog, a M9.0 megaquake occurred in
Peru in the year 1868. After this date, the catalog is reasonably
accurate and complete for megaquakes having magnitudes
M≥9.0. Still, we know that the NEIC catalog is especially
carefully developed for earthquakes after 1900 [Engdahl and
Villaseñor, 2002]. We consider both durations of time: from
1868 to present, during which there were 6 megaquakes in
the world: M9.0 Arica (1868), M9.0 Kamchatka (1952),
M9.5 Chile (1960), the largest earthquake ever recorded by
seismometers [Lomnitz, 2004], M9.2 Alaska (1964), M9.1
Sumatra (2004), and M9.0 Japan (2011); and, also, from 1900
to present, during which there were 5 megaquakes in the
world. The occurrence of megaquakes can be described as a
time-random process [e.g., Michael, 2011], therefore, we
assume Poisson models for the 6 (5) megaquakes since 1868
(1900).
[4] The volcano catalog of Newhall and Self [1982] docu-

ments large explosive eruptions since the year 1491, including
the 1815 super-colossal eruption in Tambora, Indonesia
[Stothers, 1984], one of the largest eruptions in recorded his-
tory.With a Volcanic Explosive Index (VEI) of 7, the Tambora
eruption was at least as large as the Baitoushan eruption, China-
Korea border, in the year 969 [Horn and Schmincke, 2000].
Since 1815 there have been 4 colossal eruptions with VEI = 6:
Krakatoa, Indonesia (1883), Santa Maria, Guatemala (1902),
Novarupta, Alaska (1912), and Pinatubo, Philippines (1991).
No VEI ≥ 6 events are listed in the catalog for years 1491–
1814, possibly reflecting incompleteness or inaccuracy. For
example, ice cores contain volcanic ash deposited in 1809, but
its source is unknown [Dai et al., 1991], and a corresponding
event is not in the catalog. The occurrence of large eruptions
can be described as a time-random process [e.g., Cruz-Reyna,
1991]; we assume Poisson models for the 2 super-colossal
(5 colossal) volcanic eruptions since 969 (1815).
[5] The largest magnetic storm ever recorded by magnet-

ometers is the Carrington event of September 1859, for
which the ring-current index �Dst reached a maximum
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value of 1760 nT [Tsurutani et al., 2003]. The second largest
recorded storm is that of May 1921, maximum �Dst = 900
nT [Kappenman, 2006]. The third largest is possibly the
March 1989 storm, maximum �Dst = 589 nT, which caused
widespread disruption to technological systems [Allen et al.,
1989].A storm in September 1909 might have been larger
than the 1989 storm, but records required to estimate Dst are
(to our knowledge) incomplete; for now, we count 3 super-
storms (1859, 1921, 1989) for the 153 yr duration of time
since and including the Carrington event. The occurrence of
large magnetic storms can be described as a time random
process [e.g., Tsubouchi and Omura, 2007], with inter-event
wait times that are long compared to the solar-cycle modu-
lation of lower levels of geomagnetic activity. We assume
that the occurrence of superstorms can be analyzed in terms
of a stationary Poisson model, although we acknowledge
that, in comparison to megaquakes and colossal eruptions,
this assumption might be questioned.

3. Poisson Frequentist Statistics

[6] A time-stationary Poisson model [e.g., Cox and Lewis,
1966] can be used to describe the random occurrence of
discrete events. Denoting the long-term average rate of
occurrence as r, then the probability that a count of k events
will be realized over a duration of time t is given by the
density function

p kð jlÞ ¼ lk

k!
exp �lð Þ: ð1Þ

The characteristic parameter of the Poisson model is

l ¼ rt; ð2Þ

and under a frequentist interpretation of statistics [e.g.,
Stuart et al., 1999], l has a fixed value. When it is specified,
the probability of future data is predicted. In our case, for
earthquakes and volcanoes, the value of l is a function of the
geology and geophysics of the Earth system; for magnetic
storms, it is a function of the physics of the combined Earth-
Sun system. For an infinite set of independent realizations of
a Poisson process, where events are counted in independent
periods of time of equal duration, the mean number of events
is m = l, and the event-number variance is s2 = l. In our
analysis of extreme geophysical events, we have, for each
event type, only a single small-count datum, k, for a single
historical duration of time, t. By assuming, from the start,
that extreme geophysical events occur in time as a Poisson
process, then we can make an optimal estimate of l, and we
can place “error bars” on that estimate. Details of derivations
that follow are given in the auxiliary material.1

[7] In Figure 1a (black) we show the density function
p(k |l) for various values of l and as a function of event count
k; note that the asymmetry of the variance (skew) for small l.
Useful symmetry can be obtained by making a “variance
stabilizing” transformation [e.g., Stuart et al., 1999, chap.
32.38–40] for the Poisson-event data,

n ¼ 2
ffiffiffi
k

p
and k ¼ 1

4
n2: ð3Þ

Changing variables gives a gamma function,

p nð jlÞ ¼ f lð Þ n
2

l
1
4n

2

G 1
4 n

2 þ 1
� � exp �lð Þ: ð4Þ

The function f (l) is an adjustment for our having made a
transformation from a discrete density function (1) to a
function (4) that we are treating as continuous; f (l) can be
used to ensure that equation (4) is a properly normalized
probability density function. For this, f lð Þ ¼ 1þ 1

4 exp �lð Þ
works well. We note that f (l) → 1 for l > 1, and, therefore,
we simply take f (l) = 1. In Figure 1b (black), we see that the
transformed Poisson function p(n|l) is nearly symmetrical
and invariant for different values of l, except for translation
along the v axis. Expanding (4) in a Taylor series for small
� ¼ n � 2

ffiffiffi
l

p
and using Stirling’s approximation of the

gamma function, we find that the transformed Poisson
function can be approximated by

n nð jmÞ ¼ 1ffiffiffiffiffiffi
2p

p exp �1

2
n � mð Þ2

h i
: ð5Þ

This is a normal density function, n(n|m, s2) = n(n|m), for the
statistical realization of transformed event count v, with a mean
that is a transformation of the Poisson parameter m ¼ 2

ffiffiffi
l

p
and

variance s2 = 1; Figure 1 (red).

Figure 1. Probability densities as functions of (a) event count
k and (b) transformed event count v, each for various Poisson
parameters l: (black) Poisson density functions p(k |l) and p
(n |l), (red) normal density functions n(k |l) and n(n|l).

1Auxiliary materials are available in the HTML. doi:10.1029/
2012GL051431.
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[8] If we interpret equation (5) in terms of likelihood, then
we can use it to estimate m given v. The most likely value of
the transformed Poisson parameter is

mML ¼ n: ð6Þ

After transforming back to the standard parameterization,
the most likely Poisson parameter is what we might have
expected it to be,

lML ¼ k: ð7Þ

With (2) we can estimate the most likely occurrence rate,

rML ¼ k
t : ð8Þ

Uncertainty is often expressed in terms of the lower and
upper values of confidence intervals, C = [Lower, Upper].
From equation (5), we choose confidence intervals for the
transformed parameter m that are centered on the most likely
estimate,

Cz mð jnÞ ¼ n � zð Þ; n þ zð Þ½ �; ð9Þ

where, for example, the 1s, 68.3% (2s, 95.4%) confidence
interval corresponds to setting the width parameter to z = 1
(z = 2). With inverse transformation, the confidence intervals
of the standard Poisson parameter l are

Cz lð jkÞ ¼
ffiffiffi
k

p
� 1

2
z

� �2
;

ffiffiffi
k

p
þ 1

2
z

� �2
	 


ð10Þ

[e.g., Davison, 2003, p. 59], and where, to ensure positivity,
it is required that z < 2

ffiffiffi
k

p
for the lower limit. With (2), the

confidence intervals on the rate parameter r are

Cz rð jkÞ ¼ 1
t

ffiffiffi
k

p
� 1

2
z

� �2
;

ffiffiffi
k

p
þ 1

2
z

� �2
	 


: ð11Þ

Under a frequentist interpretation of statistics [e.g., Stuart
et al., 1999, chap. 19], for each Poisson datum k there is
a corresponding confidence interval. And, just as each datum
is a random realization from a distribution, each confidence
interval is also a random realization from a distribution. A
set of confidence intervals “covers” the true unknown l
with a certain specified probability. But this is not a useful
concept for the case considered here, where we have just one
confidence interval obtained from one small-count Poisson
datum k. And since the events we analyze are rare, we would
probably have to wait very patiently to acquire any more
data! Our situation invites a Bayesian analysis.

4. Poisson Bayesian Statistics

[9] With a Bayesian approach to statistical inference [e.g.,
O’Hagan and Forster, 2004], the Poisson parameter l is
treated as a random realization from a “posterior” distribution
having a probability density function g(l|k) that is constructed,
for event-count data k, from the equation

g lð jkÞ∝ p kð jlÞ � p lð Þ: ð12Þ

The “prior” function p(l) describes knowledge, belief, or
prejudice that is held before an inference is made. Almost

always, there is little by way of specific prior knowledge, and
in such circumstances, it is appealing to invoke something like
Laplace’s principle of indifference. Guided by the observed
data, an unbiased parameter estimate is sought from the space
of all possible values. In this context, the Jeffreys “least-
informative” prior is often used in Bayesian analyses.
[10] According to the philosophy of Jeffreys [1961, chap.

3.10], the prior for l should ensure conservation of posterior
probability under arbitrary changes of variables. In our case,
this is accomplished by the prior

p lð Þ∝
ffiffiffiffiffiffiffiffiffiffiffiffi
I lð Þj j

p
; ð13Þ

where the Fisher [1922] information is given by

I lð Þ ¼ �E ∂2
∂l2 log p kð jlf Þg l



;

����
	

ð14Þ

and where the expectation E is calculated relative to all
possible event counts k. Fisher information is a measure of
curvature; where it is high (low), probability density is also
high (low); therefore, it is qualitatively reasonable that I(l)
would lead to the invariance property advocated by Jeffreys.
[11] After performing the needed calculations for the

Poisson model p(k|l), the prior function is found to be

p lð Þ∝ 1ffiffiffi
l

p : ð15Þ

As with many priors, this is not a proper probability density
function; its integral over the l domain [0, ∞) is infinite, but
when it is combined with the likelihood, via Bayes’s relation
(12), the posterior is proper [Jeffreys, 1961, chap. 3.10].
After normalization, the posterior is found to be a gamma
density function,

g lð jkÞ ¼ lk�1
2

G k þ 1
2

� � exp �lð Þ: ð16Þ

In Figure 2a (black) we show the posterior g(l |k) for various
event counts k and as a function of the Poisson parameter l.
In this standard parameterization, the maximum likelihood
value is biased, lML = k � 1/2, and variance is not sym-
metrically distributed; note the skew for small k.
[12] With the variance stabilizing transformation,

f ¼ 2
ffiffiffi
l

p
and l ¼ 1

4
f2; ð17Þ

the posterior density function (16) becomes

g fð jkÞ ¼ 1
22k

f2k

G k þ 1
2

� � exp �1
4
f2

� �
: ð18Þ

In Figure 2b (black), we see that the transformed poste-
rior density function g(f|k) is nearly symmetrical and invariant
for different values of k, except for translation along the f axis.
This property, which even holds for k = 1, is what Box and
Tiao [1973, chap. 1.3.4] call “data translation”. Since we
want to let the data speak for themselves, this appears to be the
most natural formulation for making unbiased parameter
estimates.
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[13] After expanding (18) in a Taylor series for small � ¼
f� 2

ffiffiffi
k

p
and using Stirling’s approximation, we find that

the transformed posterior function can be approximated by

nðf mj Þ ¼ 1ffiffiffiffiffiffi
2p

p exp �1
2
f� mð Þ2

h i
: ð19Þ

This is a normal density function, n(|m, s2) = n(f |l), for the
statistical realization of transformed Poisson parameters f,
with a mean that is a transformation of the event-count
datum m ¼ 2

ffiffiffi
k

p
and variance s2 = 1; Figure 2 (red). With

this, and after making mathematical manipulations similar to
those in Section 3, we obtain the most likely estimate for the
Poisson parameter; it is, as with (7), what we might have
expected it to be,

lML ¼ k: ð20Þ

The Bayesian “credibility” intervals are

Cz lð jkÞ ¼
ffiffiffi
k

p
� 1

2
z

� �2
;

ffiffiffi
k

p
þ 1

2
z

� �2
	 


: ð21Þ

In terms of mathematical equations, this is the same as the
approximation we obtained for frequentist confidence inter-
vals (10). From the Bayesian perspective, the credibility
interval (21) is a measure of the probabilistic dispersion of
the Poisson model parameter l given a single datum k.
Specifically, the probability is 68.3% (95.4%) that the model
parameter is within a credible interval defined by a width

parameter of z = 1 (z = 2). This interpretation is consistent
with what many scientists seem to be thinking when they
give “error bars”, but it is very different from the frequentist
interpretation assigned to confidence intervals, Section 3.
[14] In contrast to the argument Jeffreys makes for priors

derived using equation (13), which, in our case, leads to the
1=

ffiffiffi
l

p
prior for Poisson statistics, earlier on in his book,

Jeffreys [1961, chap. 3.3] argues that the need for a sort of scale
invariance leads to a 1/l prior. Jaynes [2003, section 6.15] and
many geophysicists call the latter the “Jeffreys prior”; in
other scientific communities, it is the former that usually
bears that moniker [e.g., Prosper et al., 2008]. While
Jeffreys, himself, seems undecided as to which prior is
“best”, we choose to interpret Bayesian analysis with a bit
of flexibility and accept the fact that different priors lead
to different statistical inferences, each of which is consis-
tent, in its own way, with the data. For the Poisson sta-
tistics considered here, equation (13) not only ensures
invariance under changes of variables, but it also results in
the nearly symmetric duality between the frequentist and
Bayesian distributions shown in Figures 1 and 2. We find
this to be appealing. And, indeed, some statisticians
advocate a general approach to Bayesian analysis that
seeks to maximize mathematical symmetry with frequent-
ism [e.g., Kass and Wasserman, 1996, section 3.7].

5. Simple Estimates of Relative Accuracy

[15] How many Poisson events must be observed before
we can make an accurate estimate of their occurrence rate? A
rough answer to this question is obtained by dividing the
width of the credibility interval (21) by the most likely
parameter (20), giving 2z=

ffiffiffi
k

p
as a measure of relative

accuracy. An illustrative example: if we have observed only
one, presumably very rare, geophysical event in a given
duration of time t, then the best estimate we can make for
the occurrence rate is 1/t, but the 68.3% credibility interval
corresponds to a relative error of 2/t. While each researcher
will have his or her own requirements for accuracy, the
width of Poisson credibility intervals corresponding to just a
few events is sobering. To reduce the interval to width 1/t, we
would have to observe four events, and this would require, on
average, making observations over a time duration that is
four times longer than the original duration. Of course, a high
level of accuracy can be obtained if we can count lots of
events, but this is not usually possible for extreme events.

6. Forecasting Future Probabilities

[16] What is the probability of the occurrence of a rare,
great geophysical event in, say, the next ten years? And,
correspondingly, how certain is such a forecast? We can
answer such questions by assuming stationarity, and using
our estimated Poisson parameters, and their corresponding
confidence-credibility intervals. With equation (1) and the
most likely occurrence rate rML, the most likely probability
that there will be 1 or more event in time T is

P ≥1
ML ¼

X∞
k¼1

rMLTð Þk
k!

exp �rMLTð Þ ð22Þ

¼ 1� exp �rMLTð Þ: ð23Þ

Figure 2. Posterior probability densities as functions of
(a) Poisson parameter l and (b) transformed parameter f,
each for various event counts k: (black) posterior density
functions g(l|k) and g(f|k), (red) normal density functions
n(l|k) and n(f|k).
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Similar formulas apply for calculating probabilities for
confidence-credibility intervals, equations (10) and (21).

7. Some Specific Results and Comments

[17] In Table 1, we give, for the geophysical events dis-
cussed in Section 2, most likely occurrence rates, most easily
viewed in Bayesian terms, and 10-yr probabilities, most easily
viewed in frequentist terms. We also give corresponding
confidence-credibility intervals. We discuss some illustrative
examples, starting with the results for multiple megaquakes.
The most likely occurrence rate rML for M ≥ 9.0 earthquakes
since 1868 is 4.167 per century. This is higher than the 1–3 per
century rate that McCaffrey [2008] estimates from plate tec-
tonic parameters is more typical. His estimates, however, are
mostly contained by our C2 95.4% interval of [1.459, 8.263]
per century. The most likely Poisson probability for the
occurrence of at least one M ≥ 9.0 earthquake in the next 10 yr
is 0.341. The 95.4% interval for such earthquakes is [0.136,
0.562], the relative width of which reflects the small number of
events used in the estimate. Similar results pertain for M ≥ 9.0
earthquakes since 1900; we note that there is substantial
overlap between their confidence-credibility intervals with
those for M ≥ 9.0 earthquakes since 1868.
[18] With respect to volcanic eruptions, the 5 VEI ≥ 6

events since 1815 correspond to an occurrence rate of 2.538
per century, and a 95.4% interval of [0.776, 5.316] per cen-
tury. For the 2 VEI ≥ 7 events since 969, assuming that the
Baitoushan eruption qualifies for this size, the corresponding
occurrence rate of 0.192 per century, while for the 1 VEI ≥ 7
since 1815 it is 0.507 per century. This might seem, at first, to
be a considerable difference, but we note that the C1 68.3%
intervals have considerable overlap; we can say that the two
rate estimates are statistically indistinguishable. This is
another example, of course, of the limited accuracy of sta-
tistical estimates for Poisson occurrence rates that are based
on the observation of only a few events.
[19] For magnetic storms, if another event like the � Dst ≥

1760 nT Carrington event of 1859 were to occur today, it
could lead to an economic loss for the United States of $1–2
trillion [Baker et al., 2008]. Therefore, it is important to fore-
cast the future occurrence probability of such a superstorm. It
is also important to appreciate the limited accuracy of such a
forecast. The most likely Poisson occurrence probability for
another Carrington event in the next 10 yr is 0.063, or about
half the 0.120 probability that Riley [2012] estimates by
extrapolating from smaller events. His estimate, however, is

contained by our 68.3% interval of [0.016, 0.137]. This serves
as yet another example of the limited accuracy of statistical
estimates; completely different methods give rates that are
statistically indistinguishable. The 10-yr recurrence probabil-
ity for a Carrington event is somewhere between vanishingly
unlikely and surprisingly likely.
[20] To improve long-term estimates of extreme-event

occurrence rates, future work will continue along several
tracks, including development of (1) back-in-time historical
catalogs that add to the data used to analyze extreme geo-
physical events, (2) statistical models that more completely
exploit the information content of existing historical cata-
logs, (3) statistical models that make simultaneous exploi-
tation of multiple types of data, and (4) physical models that
are substantially more complete and realistic than those in
present use. With respect to short-term forecasts, we under-
stand that those for volcanic eruptions, based on local seis-
mic activity and mountain deformation, are not amenable to
pure statistical methods. On the other hand, short-term
forecast methods, along the frequentist-Bayesian lines given
here, might be developed for earthquake aftershock proba-
bilities, conditional on the occurrence of a mainshock, or for
magnetic storm probabilities, conditional on the existence
and size of a sunspot. We predict, however, that it will be a
long time before we can substantially reduce the uncertainty
of long-term forecast probabilities of extreme geophysical
events.
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