NRL Home Page
  Information Search
  Organizational Directory
top half of NRL logo Chemical Dynamics and Diagnostics
bottom half of NRL logo NRL Resources
 
 
 
 
 
 
 
 
 
 
 

Current Areas of Research


Electroosmotic flow manipulation for high pressure micro- and nanofluidics-


1) to understand the impact of the electrical double layer on a new size scale- microfluidics to nanofluidic; 2) to control and manipulate electroosmotic flow (EOF) generated in micro- and nanofluidic devices; 3) to apply theory and experiment to enable dramatic enhancements in EOF generated on MEMS based substrates; and 4) to realize maximal conversion of EOF into high pressure (e.g., 1000-8000 psi), field free pumping and actuation.



ARI on IED: Explosives detection in seawater on a microchip

To develop a capillary electrophoresis (CE) microchip sensor that incorporates a rapid, pre-concentration step for the real-time, sensitive and selective detection of energetic explosives in seawater and capitalizes on the miniaturization, high speed, inherent selectivity, high sensitivity, versatility, and negligible reagent features of the “laboratory-on-a-chip” technology



Field portable chip-based antiterrorism microanalyzer

To create, evaluate, and deploy a highly integrated, self-contained, portable/field-deployable, multi-channel microanalyzer, based on advanced ‘Lab-on-a-Chip’ technology and novel detection chemistries/biochemistries, for providing early/rapid/timely, reliable and simultaneous identification and quantitation of nitroaromatic and ionic explosives and organophosphate nerve agents.


 

Sensitive diagnosis of biowarfare agents on a microchip

Tto develop a novel microchip sensing system capable of sensitively, selectively, simultaneously and rapidly identifying the presence of biowarfare (BW) agents relevant to our nation’s biodefense program (NIAID Category A, B & C priority pathogens).

 



Laser Separation, Detection, and apriori Identification of Biological Warfare Agents

A system for biological warfare (BW) agent detection and characterization will be developed based upon laser light exerting differential optical pressure on microorganisms. The research will be conducted in a tiered development cycle resulting in an intermediate technological deliverable: a prototype coarse optical separator that will fractionate an injected mixture of microorganisms into respective pure fractions.



Laser Concentration and Detection of Biological Warfare Agents in Water

An automated, non-contact method for biological agent concentration, purification and detection in water will be developed. The approach involves using optical pressure, generated with a laser, to optically trap and retain biological species in a liquid flow. The proposed work will develop an optical method for sample concentration and purification, capable of removing sample interferences.

 


Optical Control, Manipulation, and Separation of Colloidal Materials

The first objective of the proposed research is to advance the fundamental scientific understanding of optical pressure as it relates to chemically different materials. The second objective is to push the limits of optical trapping toward nanometer sized materials and macromolecules. Understanding the optical forces that arise in a wide range of chemically different materials is critical for the broad range of future optical pressure based applications.

 
   
Privacy Policy   Code 6110

skip to content NRL home page NRL home page