
Abstract Fishery stock assessment models connect ecosystem data to  quantitative 
fishery management. Control rules that calculate annual catch limits and  targets 
from stock assessment results are a common component of US Fishery Management 
Plans. Ideally, the outcome of such control rules are updated annually on the basis 
of stock assessment forecasts to track fluctuations in stock abundance. When the 
stock assessment – fishery management enterprise achieves this level of through-
put, they truly are operational models, much as the complex physical models used 
to routinely update climate forecasts. In reality, many contemporary assessments 
are closer to an individual scientific investigation than to an operational model. 
As a result, the review of each stock assessment is extensive and the lag between 
data acquisition and quota adjustment may extend to several years. If the future 
stock assessment process is to move towards an operational status, there will need 
to be changes in three aspects of the process. First, key data streams will themselves 
need to be made more operational and corporate so that relevant data are immedi-
ately available and trusted. Second, stock assessment models need to be made more 
capable of including diverse relevant data and comprehensively calculating levels 
of uncertainty, while also being more completely tested, documented, and standard-
ized. The class of models called integrated analysis has these characteristics and is 
described here, with emphasis on the features of the Stock Synthesis model. Areas 
of future model development, especially to include more ecosystem and environ-
mental factors, are explored. Third, increased throughput of assessment updates 
will require streamlining of the extensive review process now routinely required 
before stock assessment results can serve as the scientific basis for fishery manage-
ment. Emphasizing review of broadly applicable assessment data and methods, 
rather than each final result, is a logical step in this streamlining, while maintaining 
public trust in the final results.
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9.1 Introduction

Modern fisheries stock assessment models (Quinn 2003) are the nexus between 
our growing scientific capability to understand factors affecting the population 
dynamics of harvested fish stocks, and the expanding demands for quantitative 
management of their fisheries. These models assimilate a diverse collection of data, 
produce forecasts linked to historical estimates, and provide a framework for com-
prehensive evaluation of model uncertainty and risk assessment for proposed man-
agement actions (Maunder et al. 2009; Schnute et al. 2007). Assessment models are 
increasingly able to incorporate spatial structure (Punt et al. 2000) and the influ-
ence of environmental and ecosystem factors (Maunder and Watters 2003). Multi-
species stock assessment models are beginning to appear. This paper describes the 
role of fish stock assessment models in providing ongoing quantitative advice for 
fishery management and provides an overview of the rapidly evolving capabilities 
of a class of assessment models termed statistical catch-at-age analysis or inte-
grated analysis, with particular emphasis on the Stock Synthesis model (Methot 
1989, 2000). Areas of future model development, including increased linkage to 
environmental and ecosystem data, will be explored.

Quantitative management of US marine fisheries received a large impetus with 
the 1976 Magnuson Fishery Conservation and Management Act. The 1996 reau-
thorization of the Act required fishery management plans to prevent overfishing, 
rebuild previously overfished stocks, and obtain optimum yield from the fishery 
(NOAA 1996). Quantitative criteria related to the reproductive potential of the 
stock were required to: gauge the occurrence of overfishing, determine whether 
a stock was overfished (depleted) and in need of rebuilding, forecast potential rates 
of rebuilding for previously overfished stocks, and guide management towards 
a level of catch that will produce optimum yield but is no greater than the level 
that would produce maximum sustainable yield. NOAA responded with an update 
to guidelines for implementation of the Act and subsequent technical guidance 
(Restrepo et al. 1998). The 2006 reauthorization of the MSA upped the ante further 
by requiring establishment of annual catch limits in each fishery such that overfish-
ing does not occur, and that these annual catch limits be based upon the scientific 
recommendations of the Fishery Management Council’s Scientific and Statistical 
Committees or an established peer review process. In addition, as more fisheries 
are managed with individual fishery quotas, the demand for more precision in total 
quota determinations will only go up.

The need for expansion and improvement of the stock assessment enterprise 
(NRC 1998) led to development of the Marine Fisheries Stock Assessment 
Improvement Plan (Mace et al. 2001) by NOAA’s National Marine Fisheries 
Service. The plan identified three tiers of improvement: (1) mining existing data to 
extend basic assessments to as many stocks as possible; (2) expanding data collec-
tion and assessments to provide adequate assessments for major fish stocks and at 
least baseline monitoring of minor stocks; and (3) reaching to an ecosystem level of 
assessment for representative stocks in each region. In addition to direct  investment 
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in data collection and assessments, NMFS initiated programs such as the Sea Grant 
Fellowship in Population Dynamics to train new assessment scientists, the Stock 
Assessment Toolbox to provide a standardized interface for many assessment 
 models, and the Center for Independent Experts (Brown et al. 2006) to increase the 
rigor of assessment reviews.

The fact that fish are components of marine ecosystems and are influenced by 
ecosystem and environmental factors is not news (Hjort 1914). Yet, over the mid–
late twentieth century, the fisheries assessment community evolved methods that 
analyzed data often solely collected from the fishery itself and which incorporated 
simplifying assumptions that left little room for direct incorporation of environ-
mental and ecosystem factors. The focus on empirical description of the state of the 
stock was a logical outcome of the need to provide quantitative criteria to enable 
science-based fishery management decisions. Although such models have pro-
vided useful short-term guidance regarding adjustments in fishery regulations and 
the sustainability of a general level of fishery catch, their black-box nature made 
them poor candidates to serve as direct tools to understand and investigate the non-
fishery factors that also influence the abundance of fish stocks. In parallel, fisheries 
science continued a strong emphasis on studying factors that affect the growth, 
mortality, and reproduction of fish stocks in an ecosystem context, but opportunities 
to directly incorporate this growing body of knowledge lagged.

Fish assessment models do not ignore the fact that fish stocks respond to envi-
ronmental and ecosystem conditions; they just treat it as a reaction to be measured 
but not predicted. For example, empirical measurements of annual body weight-at-
age (i.e., growth) are directly incorporated as detailed data into many age-structured 
assessment models. Fishery and survey age composition data are used by the 
 models to estimate the annual level of recruitment of young fish into the popula-
tion. But these methods for dealing with environment-caused variations in growth 
and recruitment are entirely empirical. The results, particularly for recruitment time 
series, provide input for subsequent investigation of possible environmental causes 
of the fluctuations, but it is only recently that stock assessment models have begun 
to include the environmental information directly as an additional source of infor-
mation about the fluctuations (Maunder and Watters 2003; Schirripa and Colbert 
2006). Some ways in which environmental and ecosystem information can improve 
fish stock assessments will be explored later in this paper.

9.2 Stock Assessment Overview

A stock assessment is the collection, analysis and reporting of demographic infor-
mation to determine the effects of fishing on fish stocks (Mace et al. 2001). There 
are three basic categories of information that must be provided in order to produce 
accurate assessments: total catch, abundance trend, and life history characteristics. 
Deficiencies in one cannot be overcome by excessive data in another.
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First, there must be accounting of the total catch. Historically, assessments 
would use the landed commercial catch. For fisheries of interest, this was usually 
the dominant component of the total catch and was the component that was most 
completely available for the entire time series. While simple assessment models 
require only catch biomass as a sufficient description of the fishery impact, more 
detailed models require that the catch be broken down into catch numbers-at-age 
to more precisely assign age-specific mortality and to calculate the time series 
of annual recruitments that must have occurred in order to have supported this 
catch (Pope 1972). As fisheries have evolved and scrutiny of their total impact 
has increased, so has the requirement for complete catch accounting. Today’s 
assessments use total catch by fleet, including commercial and recreational landed 
and discarded catch in target fisheries and bycatch in other fisheries. Further, stud-
ies of discard mortality are used to calculate the total mortal catch. Biological sam-
ples characterize the age/size/gender of the catch. Fleets are separated to provide 
the ability to calculate the differential demographic impact of fleets that principally 
harvest younger/smaller versus older/larger fish. Where this demographic sampling 
level is high, the resultant time series of fishery catch-at-age is an influential source 
of information on fishery removal patterns and the time series of recruitment to the 
fished stock.

Second, there must be some measure of abundance. Assessments that lack 
a measure of the level, or at least trend, in stock abundance will not be able to 
achieve confident results (NRC 1998). Ideally, there will be a time series of survey 
observations, each calibrated to provide an absolute estimate of stock abundance. 
Absolute calibration is difficult to attain and the typical goal is to have a time 
series of observations that track the relative trend in stock abundance. From a 
statistical perspective, this relative abundance trend is best obtained from a fishery-
independent survey so that the sampling protocols can be highly standardized and 
applied over the range of the stock in a statistically-based sampling strategy. Some 
surveys have been conducted by a single vessel, or its directly calibrated replace-
ment. Others have relied upon use of multiple chartered vessels and have absorbed 
the added variability of between vessel variability into the total variability of the 
survey results (Helser et al. 2004). In some cases, basic fishing technology such as 
longlines or bottom trawls have been adapted and standardized for use as a survey 
sampling tool. In other cases, specialized technologies have been developed such 
as hydroacoustics deployed from Fisheries Survey Vessels, egg and larval surveys, 
or underwater imaging systems deployed from Remotely Operated Vessels or 
even Autonomous Underwater Vehicles (ref this book). As with the fishery catch, 
there should be sufficient demographic sampling of the survey catch to describe the 
life history segment of the total population that is being monitored and to provide 
more detailed information on the trends in abundance by age and size. Fishery-
independent resource surveys conducted from larger, multiple capability vessels are 
also a valuable platform on which to piggyback ecosystem observations.

Standardized, fishery-independent surveys are not available for many stocks 
and the fallback is to use a proxy measure of average fish density per unit area 
calculated by statistical processing of fishery catch rate (CPUE) data obtained 
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from logbooks or observers (Maunder and Punt 2004). While such CPUE data 
can appear highly precise due to the thousands of fishery logbook observations 
included in some analyses, the shortcoming is the inability to confidently assert that 
the units of fishing effort can be standardized over each year of the time series to 
the degree that fishery-independent survey methods are standardized. Increasingly, 
assessment methods are able to relax the assumption of constant catchability to 
make best advantage of fishery CPUE data (Bence and Wilberg 2006). The topic of 
time-varying catchability will be explored further in the model section.

Third, there should be sufficient information regarding the stock’s life history 
characteristics. Although biomass-dynamics models operate with just a time series 
of catch and catch per unit effort, basic age-structured models require the capability 
to determine fish age from some biological structure such as otoliths, fin rays, or 
scales; and a measure of body weight-at-age and natural mortality (usually assumed 
constant across the age range available to the fishery). Because the goal is to ana-
lyze the impact of the fishery on the reproductive potential of the fish stock, a nor-
mal additional requirement is information on percentage mature at age. Spawning 
biomass so calculated is still a crude measure of reproductive potential and a more 
accurate measure will take into account fecundity-at-age and even larval quality if 
it differs by age (Bobko and Berkeley 2004). Some species such as hermaphrodites 
and nest-breeders require information on the male’s contribution to reproductive 
potential. A major challenge is maintaining sufficient sampling over time to track 
changes in growth and maturity. This is especially important if these changes are 
density-dependent or have long-term trends due to environmental or other factors.

One highly influential factor, natural mortality, is more ecological than biologi-
cal. Biological measurements of individuals may indicate a fish’s relative predispo-
sition to predation, parasitism, disease, and other causes of natural mortality or may 
provide measurements of growth and reproductive factors that appear correlated 
with natural mortality. However, natural mortality itself is the average probability 
of death from non-fishery causes, so is not directly observable from individual fish. 
Most direct estimates of natural mortality have been obtained by sampling the age 
composition from pre-fishery periods or lightly fished components of the stock, but 
such estimates do not directly measure the natural mortality occurring in the cur-
rent, fished component of the stock.

From the catch, relative abundance, and life history information, assessment 
models can infer the abundance of the population that must have existed in order 
to exhibit the observed trend in the abundance indicator while producing the 
observed level of catch. An adequate assessment should provide an estimate of the 
time series of stock abundance and fishing mortality and an analysis to determine 
sustainable levels of fishing mortality and the resultant expected level of catch and 
stock abundance. The accuracy and precision of the results depends on the quality 
and quantity of the data, and also on the characteristics of the stock’s history. If 
there is little contrast in the time series of catch and relative abundance, then a wide 
range of combinations of average fishing mortality and average stock abundance 
may be consistent with the available data. But if the stock has been monitored 
through at least one major cycle of lowered abundance and subsequent rebuilding, 
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then more precise estimates of stock abundance and productivity can be obtained 
from stock trend and absolute catch data. There are two corollaries to this situa-
tion: the maximum productivity of a newly fished stock cannot be well determined 
until it has been fished at a moderate level for a sufficiently long time, nor can the 
rebuilding target of an overfished stock be well estimated if significant monitoring 
does not begin until after the stock has already been depleted to a low level of abun-
dance. However, if fishery-independent surveys can employ technologies that are 
directly calibrated to provide measures of absolute stock abundance, rather than a 
relative trend, then just a few years of surveys provides immediate stock assessment 
information regardless of the level of fishery exploitation.

9.3 Scientific Advice for Fishery Management

The results of stock assessments serve as the basis for long-term and short-term 
fishery management decisions. First, the assessment provides the basis for status 
determinations. These status determination criteria are specified in regional fishery 
management plans guided by the National Standard 1 Guidelines of the Magnuson-
Stevens Sustainable Fisheries Act and technical guidance. Loosely they entail: 
(1) determining whether overfishing is occurring by comparing the current level 
of fishing mortality to a limit level that is based upon the level that would produce 
maximum sustainable yield; and (2) comparison of current reproductive potential 
(usually measured just as spawning biomass) to a limit level (usually set to approxi-
mately half the level that would produce maximum sustainable yield) as a measure 
of stock depletion and a trigger for development of a rebuilding plan. Second, 
assessments provide forecasts of the expected future catch and stock abundance 
associated with proposed harvest policies. Thus they provide the basis for calcula-
tion of the expected time period for rebuilding of previously overfished stocks and 
for implementation of the harvest policy that will produce optimum yield from the 
fishery. Finally, the time series of abundance, mortality, and productivity produced 
by single-species stock assessments provide input to ecosystem food web models. 
Indeed, the multi-decadal stock assessment results are among the most quantitative 
and well-documented results available for such ecosystem models.

A single stock assessment can provide sufficient information to serve as the 
basis for a one-time status determination and for setting fishery management tar-
gets. However, stock assessments are also expected to serve as a core component of 
an ongoing fishery management system. Status determinations need to be updated, 
rebuilding of overfished stocks needs to be tracked, and catch levels need to be 
adjusted to maintain fishing mortality targets. Achievement of these additional 
goals means that assessments must be updated frequently to track changes in stock 
conditions due to natural and fishery factors. In effect, they become part of the 
operational model used to provide fishery management advice. Harvest control 
rules serve to translate stock assessment forecasts into target and limit levels of 
fishery catch (Fig. 9.1). The term, operational model, distinguishes such assess-
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ments from one-time, stand-alone scientific investigations. An operational model 
provides timely updates to inform a set of clients of rapidly changing conditions. 
For example, the frequently updated forecast of the path and intensity of a hurricane 
is calculated using a complex model of the system calibrated with data collected on 
the time scale of hours. The results, including probability distributions, are rapidly 
produced and disseminated to the public in an easily understood graphical format. 
The fishery assessment operational model is identical in concept. The major dif-
ferences being that the fishery biological model is less well-understood than the 
physical model used for hurricane forecasting; the time scale is months–years, not 
hours–days; and the output of the fishery model feeds directly into a regulatory 
framework rather than a public information framework.

The requirement for fishery assessments to serve as part of an operational 
model for management of US marine fisheries has increased with passage of the 
Magnuson-Stevens Fishery Conservation and Management Reauthorization Act of 
2006. By 2010, Fishery Management Plans must specify annual catch limits for 
each fishery, based on scientific advice and at a level such that overfishing does 
not occur. Clearly, quantitative stock assessments are key to implementation of 
these requirements. Stock assessments can provide estimates of the level of catch 
that would be considered overfishing, and can provide a probability distribution 
for the chance of overfishing relative to a range of possible annual catch limit levels 
(Prager et al. 2003).
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Fig. 9.1 Harvest control rules calculate limit and target levels of catch from short-term forecasts 
of stock abundance. In this hypothetical example, the target is a smaller fraction of the limit at 
lower levels of stock abundance in order to guard against further depletion
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It is feasible for a simple model that only tracks recent trends in stock abundance 
to serve as the basis for adjustment of fishery target levels of catch. However, such 
a simple model is not well suited to assure that the target level is itself correct, nor 
is it well suited to integrating multiple current data sources into a forecast of future 
stock conditions. Further, when affected constituents see a simple model’s inability 
to track some observed trends in the data, the importance of environmental and 
ecosystem factors are usually invoked, and the demand for more complex analysis 
begins. Although a model should not be more complex than necessary to assimilate 
the available data, the best solution is not necessarily to start with a simple model 
and to move to a more complex model as data allow. Instead, a smoothly scalable 
approach is to build a fully detailed model and to collapse its details down to the 
level that is estimable with the available data. Further, the complex model provides 
the framework for more comprehensively calculating the uncertainty in model 
results due to factors for which there are insufficient data.

9.4 Integrated Analysis Assessment Models

A class of models that has evolved over the past 25 years to meet the growing 
assessment challenge is termed integrated analysis or statistical catch-at-age analy-
sis. A recent review can be found in Schnute et al. (2007). Such models were first 
developed in the 1980s (Fournier and Archibald 1982; Methot 1989) and began to 
see widespread use and rapid evolution by the late 1990s (McAllister et al. 1994; 
Quinn 2003). Integrated analysis models work as a simulation of the underly-
ing population dynamics calibrated with the available data. They tend to cast the 
 goodness-of-fit to the model in terms of data elements that retain the statistical 
characteristics of the raw data. This distinguishes integrated analysis from models 
such as Virtual Population Analysis that work more as a transformation of a par-
ticular type of preprocessed data, in this case fishery catch-at-age. Most integrated 
analysis models have an age-structured population dynamics sub-model, but the 
class itself is more general and includes strictly length-structured population 
 models (Chen et al., 2005). The current generation of integrated analysis models 
has broad and flexible capabilities: age and/or length structured; spatial structure; 
environmental inputs; and other features that have them evolving towards multispe-
cies models (Livingston and Methot 1998; Sitar et al. 1999). The general character-
istics of integrated analysis models are described here, with particular emphasis on 
the features incorporated in the Stock Synthesis model.1

Integrated analysis models incorporate a linked set of sub-models (Fig. 9.2). The 
core sub-model contains the population dynamics. This is where the processes of 
birth, death, and growth create the time series of estimated population abundance 

1NOAA Fisheries Toolbox Version 2.10, 2006. Stock Synthesis 2 Program, Version 2.00c. [Internet 
address: http://nft.nefsc.noaa.gov].
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and mortality. Some of these processes are represented by fixed input quantities and 
others are calculated from parameters being estimated by the model. For example, 
annual recruitment of young fish into the modeled population and annual fishing 
mortality by each fleet are usually calculated from model parameters. On the other 
hand, natural mortality is usually based on a fixed input value because data avail-
able to include in the model are not informative about the exact levels. Growth 
(e.g., body weight-at-age) is fixed in some models and estimated within others. 
As integrated analysis models evolve, there has been a move towards estimation 
of more parameters within the models and to utilize Bayesian methods to provide 
additional information in the form of a prior probability distribution for the value 
of the parameters. The estimation of more parameters has also evolved towards 
development of approaches that allow some parameters to have values that vary 
over time either as freely fluctuating quantities or as linkages to additional model 
inputs such as ecosystem or environmental factors.

Next is the observation sub-model where the processes of catchability, selectiv-
ity, aging imprecision, and other factors are modeled to create expected values for 
the types of available data. Like the population dynamics sub-model, the observa-
tion sub-model represents some processes with fixed inputs and others as relation-
ships that incorporate estimated model parameters. This observation sub-model is 
where integrated analysis obtains much of its strength. Rather than preprocess and 
adjust the data so that it is in terms of the underlying population dynamics, inte-
grated analysis models build knowledge of the observation process into the crea-
tion of expected values for the data. For example, the virtual population analysis 
model assumes that fish ages are determined without any error, so if the otolith 
reading process is known to have some variability between readers, the inverse of 

Data

Management
Quantities

and Forecasts

Input / Output

Parameters

Statistical Fit

Observation
(expected values)

Population
Dynamics

Gradient of
model fit

Adjust
parameters

to improve fit

Parameter
uncertainty

ProcessSub-Model

Fig. 9.2 Integrated analysis models consist of a linked set of sub-models: population dynamics, 
observation, and statistical. The statistical model compares expected values from the observation 
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this reader variance should be applied to the age data before feeding the adjusted 
data into the VPA assessment model. When doing so, the variance associated with 
reader imprecision is not carried through to final management quantities. Besides, 
it is difficult to sharpen data that have already been blurred by the observation proc-
ess. In integrated analysis, the opposite approach is taken. Information about reader 
imprecision is used to blur the expected value of model estimates of age composi-
tion so the model’s estimates are blurred to the same degree that it is believed that 
the data have been blurred. Because the blurring process is built into the model, its 
effect on variance of model outputs is fully incorporated.

Third is the statistical sub-model where the goodness-of-fit to the data is calcu-
lated in terms of the negative of the logarithm of the probability of the observations, 
termed the negative log-likelihood or NLL for short. The NLL for each diverse type 
of data is basically calculated by scaling each observation’s deviation from the pre-
dicted value according to the statistical form and magnitude of the error distribution 
for that data source.

This NLL basis means that the degree to which the model doesn’t exactly fit 
each type of data is scaled in comparable terms. So, even though the model may 
contain tens of NLL components (age composition from fishery A, length compo-
sition from fishery B, % discard from fishery A, abundance from survey C, catch 
per unit effort from fishery B, recruitment index from survey D, etc.), the NLL 
components can be added together into a total NLL that is a meaningful measure of 
the total goodness-of-fit to all the data. Key to a successful model is inclusion of all 
relevant processes that have contributed to the observed data so that all the devia-
tions are due to measurement error, and using the correct level of variance for these 
measurement errors. Of course, determining when the model is at the “sweet-spot” 
of complexity such that hidden processes are not misinterpreted as high measure-
ment error is part of the art of model building.

Many integrated analysis models are written in the C++ computer language 
using ADMB, which was developed in the private sector by Otter Research (http://
otter-rsch.com/) to facilitate the development of complex models. It employs 
automatic differentiation so that the gradient of the NLL with respect to each 
parameter’s value can be calculated analytically, thus greatly speeding the iterative 
search for the set of parameters that maximizes the goodness-of-fit. When the gra-
dient is large, this means that the parameter is influential and is relatively far from 
the value that maximizes the NLL. As the model searches for the set of parameter 
values that maximizes the NLL, it is searching for values at which the gradient 
goes to zero, hence where no further improvements can be made (Fig. 9.2). At that 
point, the model also calculates the curvature of the NLL surface with respect to 
the para meters. Where the curvature is strong, this means that small movements 
of the parameters away from the best fitting point will have large degradation in 
the NLL, thus meaning that the best value of the parameter is precisely determined. 
Where the curvature is weak, this means that the parameter’s value has little effect 
on the NLL, which means that the data included in the model do not have much 
information about the best value of that particular parameter. It is not uncom-
mon for the NLL surface to form a ridge with respect to a pair of parameters. 
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The strength of this ridge represents the correlation between these two parameters. 
The model may have tens to hundreds of parameters being estimated, so the mul-
tidimensional shape of the NLL surface is complex indeed. Because the curvature 
of the NLL surface is not necessarily parabolic and symmetric, as assumed by the 
normal distribution theory for obtaining confidence intervals, integrated analysis 
methods also use nonparametric approaches to calculate the shape of the NLL sur-
face. In the Monte Carlo Markov Chain approach, after finding the best-fitting set 
of parameter values, the model then semi-randomly moves around the parameter 
space, each time calculating the NLL and building up an empirical representation 
of the multidimensional NLL surface.

The present state-of-the-art for assessment modeling routinely incorporates 
two forms of uncertainty in forecasts of stock abundance and potential fishery 
yield: (1) uncertainty in model parameters and current stock conditions based on 
goodness-of-fit between the model and the available data; and (2) expected future 
year-to-year fluctuations in productivity (recruitment) (Prager et al. 2003; Brodziak 
et al. 1998). These two components of variability may capture most of the total 
uncertainty, but there are other factors to consider: model structure, management 
implementation, and ecosystem factors.

Every model’s structure is an approximation of the myriad of processes actually 
affecting fish stocks and creating the set of available data. Alternative models will 
make different assumptions and process the available data in different ways. The 
use of alternative models is important for understanding the basis for and robust-
ness of any model’s results. Considering a range of complex and simple model 
structures can clarify the additional insight that the more complex model provides 
as it incorporates a richer set of data. Where data are highly informative about 
stock conditions, good alternative models should produce similar results. But as 
the quantity and quality of data weakens, alternative model assumptions will have 
more influence on the results. Model-averaging and decision tables (Patterson et al. 
2001) are two principal approaches to dealing with model structure.

Imperfect implementation of forecast catch levels is an additional factor to 
consider when conducting medium- or long-term forecasts of the stock’s response 
to fishing. When the fishery is managed principally through input controls such 
as number of licenses or number of days at sea, the implementation error occurs 
because such measures are imperfect at holding fishing mortality to exactly the 
prescribed level. When the fishery is managed principally through the output con-
trol of quotas, then there is implementation error in controlling the fishery catch to 
that level and implementation error in forecasting the correct level of a future quota 
based on imperfect knowledge of stock abundance. The potential impact of these 
implementation errors are principally investigated through Management Strategy 
Evaluations that simulate the entire system of stock dynamics, imperfect assess-
ment, imperfect management implementation, and feedback of actual catch to stock 
dynamics (Butterworth and Bergh 1993; Smith et al. 1999; Patterson et al. 2001).

An additional aspect of uncertainty is with regard to ecosystem factors. In 
particular, adult natural mortality and juvenile natural mortality (e.g., the mean 
spawner–recruitment relationship) are plausibly related to whole ecosystem 
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 conditions and it is conceivable that a multispecies ecosystem model will someday 
be able to estimate how they change and include this information in each stock’s 
assessment. However, today’s single-species assessment models have none of these 
data so these factors are assumed to be constant at some average level. A more 
complete characterization of the uncertainty in single-species assessments should 
seek a means to acknowledge the suppressed uncertainty caused by keeping these 
factors constant.

9.5 Generalized Model: Stock Synthesis

One of the highly generalized integrated analysis models is termed Stock Synthesis 
(Methot 2000), now implemented as Stock Synthesis 2 in the NOAA Fisheries 
Assessment Toolbox and popularly known as SS2. SS2 is a third-generation inte-
grated analysis model. The first was developed in the mid-1980s specifically for 
assessment of anchovy off the coast of California (Methot 1989). The second was 
a generalized model developed principally for assessment of groundfish off the 
US west coast and Alaska (Methot 2000). It existed in two versions: one was a 
length-age-structured model developed for situations with predominately length 
data, and the other was an age-structured model with capability for movement 
between geographic regions. This third-generation model merges the length-age 
and age-area second-generation models, adds additional features, and is coded in 
ADMB to gain speed and powerful methods for evaluating uncertainty. There are 
three major aspects of SS2’s adaptability that have contributed to is widespread 
use: (1) it is highly flexible in its ability to have multiple fisheries and surveys with 
diverse characteristics; (2) its parameters have a rich set of controls to allow prior 
constraints, time-varying flexibility, and linkages to environmental data; and (3) its 
structure allows it to be scaled down to simple, data-limited cases using only two 
estimated parameters, and up to complex data-rich situations requiring hundreds of 
parameters.

In the population sub-model of SS2, annual total recruitment is calculated as a 
deviation from an estimated spawner–recruitment curve, which in turn describes 
the central tendency of the time series of recruitments (Fig. 9.3). The magnitude of 
each recruitment deviation is informed by the data, including environmental data, 
in the model yet constrained by an overall distribution function so that estimates 
of historical, data-limited, and forecast recruitment deviations will have the same 
distribution properties as the recruitment deviations that are well informed by the 
data (Fig. 9.4) (Maunder et al. 2006). In this regard, SS2 performs similar to sto-
chastic stock reduction analysis (Walters and Martell 2004), but SS2 also includes 
a full observation sub-model to make advantage of more complex data where it is 
available.

Growth of individuals is defined to follow a von Bertalanffy function, the para-
meters of which are estimable in the model when sufficient size and age data are 
included. In fact, SS2 could be configured to estimate only the growth parameters 
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and then calculate a yield per recruit analysis from a data set that had no catch 
and just a single size composition observation that had informative size modes. Of 
course, the full model capability is realized when it is allowed to estimate growth 
parameters from a time series of observations while taking into account the influ-
ence of size-selectivity sampling, aging error, and other processes that can other-
wise bias estimates of growth. As with all SS2 parameters, the growth parameters 
can vary over time using a variety of methods including random annual deviations, 
separate parameter values for specified time blocks, and functional linkage to 
environmental data. For growth, an additional feature is the calculation of a year-
class-specific growth deviation for situations such as abundant year classes having 
density-dependent suppression of growth.

SS2 tracks population numbers-at-age within each of several possible sub-
divisions, termed platoons (Goodyear 1984). A platoon in SS2 is a collection of 
individuals that share the same biological characteristics and probability of being 
captured by a fishery or observed by a survey. Each platoon is defined to have a 
normal distribution of size-at-age that interacts with the size selectivity of each 
fishery and survey to create the unique observed size-at-age for that fishery/survey 
(Fig. 9.5). While a single platoon model is feasible to configure, it is more  common 
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Fig. 9.3 Annual recruitment is defined as a deviation from the estimated spawner–recruitment 
relationship. The relationship defines the historical unfished equilibrium and provides a basis for 
calculating maximum sustainable yield and forecasting future levels of recruitment. In this exam-
ple, during early years (high biomass) there are no data to inform the model about recruitment 
fluctuations, so estimated recruitments remain close to the mean relationship
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to  partition the population into male and female platoons so that their dimorphic 
growth, mortality, and fishery selectivity characteristics can be calculated. When 
recruitment occurs in multiple seasons of the year, each such birth season adds 
platoons. In addition, it is possible to define multiple growth patterns, each with 
unique growth characteristics and receiving a fraction of the total number of 
recruits. A configuration with multiple areas and multiple growth patterns allows 
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Fig. 9.4 The underlying spawner–recruitment relationship in Fig. 9.3 allows the model to pro-
duce population estimates, with variance, during far historical periods with no data other than 
catch, a data-rich era, and a forecast period. The transition between these periods is mostly trans-
parent with the data phasing in and then back out
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investigation of geographic clines in growth. Finally, each gender, birth-season, 
growth pattern platoon can be further subdivided into up to five sub-platoons to bet-
ter track the consequences of size-selective mortality. We cannot distinguish such 
sub-platoons in the data, but we can assert that an underlying growth process that 
is built up from multiple platoons is a more accurate representation of the natural 
range of individual growth trajectories (Kristensen et al. 2005) than what can be 
provided by a single, homogeneous platoon (Fig. 9.6). Fast-growing sub-platoons 
will enter a size-selective fishery at a younger age, and thus experience greater 
cumulative fishing mortality and resultant reduced survival to older ages.

Each fishery or survey included in a SS2 configuration has a pattern of selec-
tivity that can be in terms of age, size, or both and to include gender differences. 
Selectivity defines the fraction of a particular size (or age) that is captured relative 
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Fig. 9.5 Size-selectivity acts upon the population’s total size composition to create the size com-
position of catch. It also acts upon the normal distribution of size-at-age to create a unique 
observed size-at-age for that fishery that is used to calculate that fishery’s body weight at age. In 
the observation sub-model, aging error will blur the occurrence of a strong year class into adjacent 
ages, thus affecting the observed size-at-age for those weaker year classes
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to capture rate for the size (or age) that has a selectivity of 1.0. By providing both 
age and size options, the model can, for example, be configured to estimate small 
fish selectivity as a function of size if it is believed that it is mostly a function of 
gear technical characteristics (e.g., mesh size), while also estimating older fish 
selectivity as a function of age if it is believed that it is mostly due to an age-based 
diffusion into microhabitats that are relatively inaccessible to the fishery or survey 
sampling gear. Various parameterizations of selectivity are available. These can 
be as simple as specification of knife-edge selectivity occurring at a particular age 
(no estimated parameters). Functional forms include a two-parameter logistic func-
tion, a six-parameter double normal (Fig. 9.7), nonparametric forms with a separate 
parameter for each age, and others.

SS2 incorporates two options for modeling the fishery catch. The first option 
employs Pope’s (1972) approximation to calculation of fishery mortality. Here, the 
population’s numbers-at-age are decayed to the middle of the season according to 
natural mortality alone. Then the catch-at-age for each fishery is calculated as a 
harvest rate times the selectivity at age. Each fisheries harvest rate is calculated such 
that the total catch (either in numbers or biomass) matches the observed catch. The 
survivors after all fishery removals are then decayed to the end of season. In this first 
approach, the harvest rates are simply an array of values to match the observed catch 
and do not enter the model as explicit parameters. The second option treats fishing 
mortality as a continuous process simultaneous with natural mortality. Here the 
fishing mortality rates are estimated as model parameters. The first option is faster, 
especially in models with long time series and large number of fisheries, and the sec-
ond option performs more robustly when fishing mortalities are high. When fishing 
mortalities are low or multiple seasons are used to reduce the cumulative mortality 
within any season, the two approaches produce equivalent results. Fishery catch can 
be in terms of numbers or biomass and different fisheries can be in different units.

10 15 20 25 30

SIZE

F
R

E
Q

U
E

N
C

Y

Fig. 9.6 Each platoon of 
fish in the model can be 
divided into 1, 3, or 5 inde-
pendent sub-platoons with a 
specified fraction of the 
total variability in size-at-
age between sub-platoons 
versus within sub-platoon. 
Here five sub-platoons have 
the amount of variability 
within sub-platoon equal to 
70% of the variability 
between sub-platoons



9 Operational Models in Support of Fisheries Management 153

Fishery catch can be partitioned into discarded and retained components (Punt 
et al. 2006) (Fig. 9.8). Further, the discarded partition can have a length-specific 
survival function defined. Thus the total fishing mortality for a given fleet is 
the retained catch plus the mortal fraction of the discarded fish. By partitioning 
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Fig. 9.7 The double normal selectivity function is commonly employed in SS2 when a dome-
shaped selectivity pattern is needed. Six parameters control the function’s shape
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the total catch into discard and retained components, SS2 is then able to develop 
expected values for discard only, retained only, or total catch samples of size and 
age composition.

With the above description of discarding, we have partly transitioned from the 
population sub-model to the observation sub-model. SS2 can produce expected  values 
for several kinds of common fishery and survey data. All of these expected 
 values start from a size/age/gender array of selected fish calculated by applying 
the size/age/gender selectivity for each gear to the size/age/gender population 
array at that point in time (Fig. 9.5). When summed across ages, the result is the 
expected size composition, which can then be compared to an observation of the 
size composition for that fishery or survey. When summed across sizes, the result 
is the expected value of the sampled age composition. But stopping at this stage 
would omit the effect of aging imprecision. The process of determining age from 
otoliths or scales or other structures involves some uncertainty that is expected to 
blur the observed age composition (Tyler et al. 1989; Kimura and Lyons 1991). 
Rather than try to remove this blurring effect from the data before providing the 
data to the model, integrated analysis models like SS2 build the blurring process 
into the model so that the expected values are blurred to the same degree that the 
data are blurred. While it is feasible to provide the model with both size and age 
composition data, this will tend to double weight the information from some fish. 
An alternative approach available in SS2 is to examine the age composition data 
conditional on being within a subset of the size/gender range (Methot 2000; Punt 
et al. 2000). Thus, the model considers the additional information provided by age 
data over and above the information already provided by the fish size.

The size and age composition expected values can be compared to data for each 
gender, summed across genders, or treating the size/gender information as a joint 
distribution that preserves information on sex ratio. When multiple platoons and 
sub-platoons are used, the selectivity and resultant mortality is applied to each and 
the results are summed across platoons because the difference between platoons 
is invisible to the observation process. This is analogous to creating a two-gender 
model to deal with a known difference in growth between males and females, then 
summing the expected values across the two genders to provide a combined gender 
expected value where data have not been partitioned into males in females.

SS2 can also include information from surveys of stock abundance. The sum of 
the age/size/gender “selected” fish from a particular fishery or survey is the esti-
mated total abundance of this selected component of the population. The sum can 
be in terms of numbers of fish, or in terms of biomass by incorporating the model’s 
estimate of body weight at age. This sum times a scaling factor is the expected 
value for the survey observations. This scaling factor is also termed a catchability 
coefficient, q. Ideally, q would be independently measured and calibrated, as is pos-
sible for some acoustic and visual surveys. Some bottom trawl surveys where the 
area-swept, herding, and escapement has been measured may also be analyzed as a 
fully calibrated survey (Somerton et al. 2007).

Most surveys, however, have intangible factors in the catchability that have 
defied direct calibration to date. Where standardization of methods has allowed 
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assertion that q has remained constant at some unknown value, then it is feasible to 
treat the survey as a measure of the stock’s relative trend and to allow the assess-
ment model to estimate q internally as a scaling factor between the units of the 
survey measurement and the units of estimated, selected population abundance. In 
this case, it takes accumulation of a time series of observations before any mean-
ingful assessment information can be obtained from the survey. In the worst case, 
the intangible components of q cannot be comfortably asserted to be constant over 
time. This is most common when fishery catch per unit of effort is used as an index 
of population abundance. However, even in this situation it is not uncommon for the 
assessment configuration to maintain the assumption of constant q or a prespecified 
drift in q over time.

As an example of the kind of analysis that can be conducted with SS2, consider 
three survey scenarios. In the first scenario, a single research vessel conducts an 
annual relative index survey for 20 years and is then replaced by a similar vessel 
that is calibrated to the first vessel so that a continuous time series of survey obser-
vations can be analyzed with the assessment model under a constant q assumption. 
In the second scenario, several (2–4) chartered vessels conduct replicate surveys 
each year and the combined results of these surveys are analyzed as a relative index 
under the constant q assumption. Differences in q between vessels is not directly 
calibrated and becomes part of the system noise. In the third scenario, thousands 
of logbook observations from hundreds of vessels are processed using a statistical 
model to develop an annual CPUE index that is analyzed by the assessment model 
under the constant q assumption. All three scenarios have assumed a constant q 
in the assessment analysis and the fishery CPUE scenario may produce a more 
precise model result because of the large number of observations. What’s wrong 
with this picture and why is there value in single-vessel standardized surveys over 
 statistically standardized fishery data?

A more holistic approach would acknowledge that there is always some fluctua-
tion in q (Millar and Methot 2002; Francis et al. 2003; Bence and Wilberg 2006) 
and some survey methods are better than others at keeping these fluctuations small. 
We expect a more constant q from scenario 1 in the preceding paragraph than from 
scenario 3, so the model should be configured to use this knowledge. In SS2, the 
q parameter can be specified as having an annual random deviation or an annual 
random walk, each with prior value with variance. Thus it is feasible to directly 
incorporate information on the degree of confidence in the constancy of q. In the 
first scenario above, the annual q parameter could be specified to have only a small 
random walk from the previous year’s q value except in the year of vessel transi-
tion in which case the value of the vessel inter-calibration and its variance would 
provide information on the size of a larger change in q that year, and this degree 
of change would be updated each subsequent year as more data are collected using 
the new vessel. In the second scenario, the degree of variability in estimated vessel 
effect among the chartered survey vessels could be used to constrain the degree of 
random drift in q for their combined survey result. In the third scenario, the lack 
of direct standardization of the fishery CPUE data could be used to assign a larger 
variability to the possible random walk in catchability (Bence and Wilberg 2006). 
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Of course, allowing too much variability in q means that the population signal 
 possibly found in the survey trend will be lost to the estimation of time-varying q. 
The result of this more holistic treatment of variability in q would be demonstration 
of the improved overall precision in assessment model results that can be attained 
when good standardization and vessel inter-calibration has occurred.

The statistical sub-model of SS2 is generally as described above for integrated 
analysis models. All data going into the model have an associated level of variance 
that determines the scaling of the deviations between the data and the model’s 
estimates of expected values. Because these estimates of data variance may them-
selves be inaccurate and because the structure of the model may not be flexible 
enough to adequately represent all processes that created the actual data, the SS2 
approach provides opportunity for adjustment of the data variance. Model outputs 
include statistics that compare the average goodness of fit to the level of input data 
variance. This can then guide changes in the level of model flexibility (more or 
less parameters) and adjustment of the input variance levels to better represent the 
subsequent model capability to match these data. With the input and output vari-
ances so tuned, the final estimates of variance in model outputs better represent the 
relative contribution of all sources of data. As the model evolves towards more use 
of random effects for factors such as annual survey catchability, it will be necessary 
to develop better protocols for balancing the magnitude of these random effects 
versus adjustment of the variance terms.

Although model fitting is in terms of the total NLL, it is prudent and necessary 
to examine the model’s fit to each data component individually and graphically 
(Richards et al. 1997). The best-fitting set of parameters will be a compromise. 
They will not provide the best possible fit to any one component, nor should they 
produce an unreasonably poor fit to any influential data. Visualizing and quantify-
ing the residuals in the fit to each type of included data helps the modeler identify 
places where adjustments need to be made in the model structure. Too tight a fit 
means that some aspect of the model is too flexible and has too many free para-
meters. Unreasonable patterns in residuals usually mean that some process affect-
ing the real data has not yet been included in the model. The art of model building is 
largely about the selection of the best degree of model complexity and best balance 
of fit among the various data components.

Management quantities and forecasts are an important feature of SS2. Following 
estimation of the model’s parameters, the values of various management quantities 
are calculated and a forecast is conducted using a selected management policy or 
specified catch level. By integrating this management layer into the overall model, 
the variance of the estimated parameters can be propagated to the management 
quantities and forecast, thus facilitating a description of the risk of various possible 
management scenarios. Because the entire model works as a simulation, it is feasi-
ble for a single model configuration to start in a pre-data, lightly fished era; extend 
through a data-rich era to the present day; and continue into a forecast era (Fig. 9.4). 
The transition from the estimation era to the forecast era is transparent and denoted 
only by the phasing out of the data availability, but even that transition is blurred as 
very recent environmental data are included in today’s models.
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The management quantities include the fishing intensity level that would 
produce a specified level of spawning biomass per recruit, a specified spawning 
biomass level as a fraction of unfished biomass (taking into account the spawner–
recruitment relationship), and the fishing intensity level that would produce maxi-
mum sustainable yield. The search for these quantities is across a range of fishing 
intensity levels conditioned upon a particular allocation of the intensity among 
fishing fleets and the size/age pattern of selectivity for each fleet. This means that 
the level of fishing mortality varies between ages in a complex way and a single 
value representation of fishing mortality is ambiguous. Because of this ambigu-
ity, SS2 reports the level of fishing intensity in terms of spawning potential ratio 
(Prager et al. 1987). The forecast can use the current fishing intensity or any one 
of the calculated management quantities. The forecast incorporates biomass-based 
adjustments to future fishing intensity levels according to the harvest policies in the 
west coast groundfish Fishery Management Plan (Ralston 2002).

Environmental data can be incorporated into SS2 is two ways. First, any SS2 
parameter can be defined to be a function of an input environmental data time 
series. For example, this could be used to set the annual expected recruitment 
deviation to be a function of sea surface temperature (Schirripa and Colbert 2006) 
according to the method described in Maunders and Watters (2003). It could also 
be used to set a fishery selectivity parameter to be a function of an environmental 
variable such as wind speed or any other predictor variable such as mean depth of 
fishing. Survey catchability could be similarly linked to an input variable. Growth 
could be linked to environmental variables such as temperature or ecosystem pro-
ductivity. Natural mortality could be linked to predator abundance (Methot 1989; 
Livingston and Methot 1998).

The first approach to environmental linkage described above is based upon the 
intuitive concept that the environmental factor has caused changes in the popula-
tion process being modeled. But this intuition has a degree of naivety. The envi-
ronmental variables we measure are, hopefully, a good indicator of the myriad and 
complex factors that actually cause the changes in population processes. But they 
are only indicators; for example, they are data that may be informative about the 
process. The second method of including environmental data in SS2 exploits this 
alternative logic. Currently, SS2 only implements this alternative for recruitment 
by having the environmental data enter the model as if they are a survey of the age 
zero recruitment deviations. These data then compete and/or reinforce other data 
in the model to produce the best-fitting estimates of recruitment. From a statisti-
cal perspective, the model does not care if the direct recruitment data come from 
a fishery-independent survey of 5-month-old juveniles that indexes the numbers 
of recruits, or from an environmental measurement that indexes the deviation of 
recruitment relative to the level predicted from the spawner–recruitment relation-
ship. Thus, method two uses environmental data as a correlate to help explain 
recruitment, whereas method one uses environmental data to cause the recruitment 
deviations. In the future, SS2 and other integrated analysis models are expected 
to evolve to more use of such random effects procedures. In this approach, any 
parameter could be defined as having an annual change, the random effect, and the 
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magnitude of these changes can be estimated through inclusion of conventional as 
well as environmental data.

9.6 Getting to Ecosystem

The NMFS Stock Assessment Improvement Plan described Tier II as elevating 
stock assessments to new national standards of excellence and Tier III assessments 
as reaching to an ecosystem level. What does it mean to achieve an ecosystem level 
for fishery stock assessments? Characterizing Tier II assessments helps provide a 
foundation for this discussion. Tier II assessments are empirical descriptions of a 
stock’s status. They measure stock abundance and fishing mortality, compare these 
to reference levels, calculate fishing mortality levels that are sustainable given 
current conditions, and translate abundance and fishing mortality targets into a 
forecast of short-term catch levels. In doing so, the assessment model defines the 
system as containing the stock of fish and its fishery. Outside influences are rec-
ognized to cause random perturbations to the system, but these perturbations are 
considered measurable within the system and not to require understanding about 
how the outside influences cause the perturbations. Tier II assessments treat the 
fishery reference levels as entirely derivable from information inside the “system” 
and treat the outside influences as providing only random noise without directional 
trends. Such Tier II stock assessments do have a one-directional link to ecosystem 
analyses because the time series output of Tier II assessments is valuable input and 
validation to holistic ecosystem food web models.

Getting to Tier III means expanding the scope of the assessment system so that 
more of the outside influences become part of the analyzed system. As a first step, 
fishery assessment models can include more environmental and ecosystem inputs so 
that factors in the assessment system are explicitly linked to these inputs. Integrated 
analysis models have already begun evolving in this direction as described in this 
paper, and some examples of linked multispecies models have appeared. The next 
step will essentially be a merger of the expanding scope of these integrated analysis 
models and the increasing detail and data assimilation capabilities of holistic eco-
system food web models. Before reaching that stage, and perhaps even at today’s 
stage of model evolution, it seems relevant to ask whether it would be beneficial 
to explicitly develop two linked scales of model complexity (Hilborn 2003). The 
more complex, ecosystem-linked model would be the strategic model used to deter-
mine target harvest rates that achieve optimum yield from fisheries while explicitly 
accounting for ecosystem effects. The less complex model would be the tactical 
model that uses simple data inputs to guide tweaking the fishery up and down to 
implement the policies determined from the complex model.

The following section identifies some ways in which Tier II assessments can 
evolve towards Tier III. In general these fall into two categories: (1) allowing 
change in factors that now must be assumed to be constant, and (2) improving 
predictions for factors that are currently allowed to fluctuate in a random manner. 
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The first category includes natural mortality and the shape and scale of the 
spawner–recruitment relationship. The second category principally includes annual 
recruitment deviations and body growth. Environmentally caused fluctuations in 
survey catchability could be included here also.

Natural mortality (M) is the 900 lb gorilla of stock assessment parameters. It is 
arguably the parameter that is least estimable from conventional assessment data 
and the parameter that is most dependent on shifts in the ecosystem predator–prey 
relationships. Where fishing mortality (F) is much greater than natural mortality, 
then the exact value of M has little effect on estimates of the trend in abundance 
of the stock, but well-controlled fisheries are not likely to have F much, if at all, 
greater than M. While small error in M is unlikely to cause an assessment to 
misestimate the trend in stock abundance, the absolute level of stock abundance is 
directly related to the level of M. Natural mortality can be an estimable parameter 
in an assessment model, but robust performance of such a model generally requires 
informative and precise survey and age composition data with verifiable selectiv-
ity and catchability characteristics. Without data that is truly and unambiguously 
informative about M, the model will adjust M to attempt to explain other patterns 
in the data. Consequently, M is usually held fixed in assessment models at a level 
estimated from the age composition from pre-fishery periods, or lightly fished 
components of the stock, or from empirical relationships between the few direct 
estimates of M and more easily obtained life history parameters. Validating the 
accuracy of these M estimates for today’s fully exploited ecosystem and obtaining 
time and age-varying values is an extreme challenge. Getting contemporary infor-
mation on M is one of the greatest contributions that ecosystem studies could give 
to stock assessment.

The estimated spawner–recruitment relationship (S–R) represents the average 
level of recruitment expected from a specified level of reproductive output. Walters 
and Martell (2004) contains a broad examination of the various factors that go into 
estimation and interpretation of this relationship. They note that R is not produced 
by a single S–R relationship; rather it is the result of a myriad of sequential life 
history stages, each with various potentials for density-dependent factors. So, 
under what conditions can a simple two-parameter S–R relationship adequately 
describe the historical pattern in the data, serve as the basis for estimation of the 
long-term productive capacity of the stock, and forecast the expected level of future 
recruitment?

First is the measurement of spawning biomass. It is not uncommon for fish 
stocks to exhibit changes in age-specific maturity over time and it is possible that 
the shift to earlier maturation is part of the stock’s compensatory response to the 
additional adult mortality imposed by the fishery. Yet such changes in maturity are 
usually not measured as a time series and it is more common for contemporary, 
“better” estimates of maturity and fecundity to be used to calculate the spawning 
output throughout the time series. Thus, the estimated curvature in the S–R can be 
confounded with the degree to which maturation has shifted and whether these tem-
poral shifts have been taken into account in the calculation of spawning biomass. 
Investigation of the degree to which density-dependent shifts in maturation occur 
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in harvested fish stocks could lead to improved standard practices for dealing with 
such shifts in the face of inadequate information.

Second is the assertion that the S-R is constant in the face of ecosystem shifts. 
The S–R basically represents the cumulative mortality through the egg–larval– 
juvenile stages and how this mortality changes with stock abundance. However, 
juvenile fish can be prey to many species of fish and many of these species may have 
exhibited changes in abundance over the same decades that are being analyzed for 
the S–R of the subject species. In many systems, the S–R data have been collected 
over a period of time in which the abundance of many species has been reduced due 
to fishing. Frankly, the coastal ecosystems are coming into a new state with human 
fishers as an introduced predator. Fishing mortality’s primary effect is in reducing 
the abundance of older fish, which have the greatest tendency to be piscivorous. So 
it is possible that while fishing has reduced the abundance of spawners that produce 
juveniles of species A, fishing has also changed the abundance of species B and C 
that are predators on the juveniles of species A. A major contribution of ecosys-
tem food web studies could be identification of the stocks that are most in need of 
including ecosystem interactions in their S–R relationships.

A third issue is the sequencing of environmentally caused and density-dependent 
mortality. The S–R relationship is routinely written such that environmentally caused 
variability occurs after the action of density-dependent survival. The ecological argu-
ments that would support such a relationship make sense for a species like salmon. 
For example, when salmon spawners are super-abundant they may spawn in margin-
ally suitable reaches of streams that do not support high egg survival. Subsequent 
to this density-dependent stage is the estuarine and early ocean period in which it 
is recognized that highly variable environmental conditions will cause variation in 
survival of juveniles. However, what makes sense for the predominant life history of 
marine fish? Isn’t it generally accepted that high variability in survival occurs in the 
early larval stage and that density-dependence is most likely during the subsequent 
juvenile stage as they settle into limited habitats or otherwise behaviorally interact? 
If so, shouldn’t the S–R relationship be formulated such that most variability occurs 
before density-dependence acts, in which case the density- dependence should 
dampen the environmentally caused variability in larval survival? Further consid-
eration of this alternative S–R formulation could perhaps make more sense of the 
uninformative scatter found in many sets of spawner–recruitment data.

Fourth is the effect of environmental factors, which has both long-term and short-
term consequences. Long-term environmental patterns can bias estimates of S–R 
parameters. As fishing has moved average spawning biomass from a moderately 
high level to a moderately low level over a period of decades, the observed change 
in average recruitment is the basis for the estimated S–R relationship. However, if 
the decadal time scale of some environmental shifts also affects recruitment, then 
the S–R estimate is confounded with the environmental changes. Unambiguously 
disentangling the spawner effect from the long-term environmental effect seems 
nearly impossible until many decades of monitoring are available or until process 
studies are able to estimate either the spawner effect or the environmental effect 
without resorting to simple correlation studies.
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The short-term effect of the environment on annual recruitment is more a  matter 
of improved forecasting rather than disentangling historical relationships. Conven-
tionally available fishery and survey data are sufficient to estimate annual fluc-
tuations in recruitment. However, these data cannot provide direct information on 
recruitment until the fish are old enough to appear in these sources of data. They 
provide precise, accurate estimates but they are fundamentally retrospective esti-
mates. This may be sufficient for long-lived species in which the young recruiting 
year classes are only a small fraction of the population and fishery, but more timely 
recruitment estimates are needed for short lived species, species with extremely 
high recruitment fluctuations, or species with management plans that seek to 
closely track maximum potential yield. More timely estimates of recent recruit-
ment fluctuations can be made by conducting a survey that measures abundance of 
pre-recruits at a young age, and/or by determining and measuring environmental 
covariates that provide good predictions of recruitment. Survey cost, timeliness of 
estimates, and precision are factors that influence the relative merits of initiating a 
pre-recruit survey versus initiating a research program to determine a relevant envi-
ronmental predictor. In practice, a program desiring a better recruitment predictor 
will probably need to do both in order to provide necessary cross-validation.

Growth and reproduction, like recruitment, are empirically measurable from 
available data, thus can be allowed to change over time in assessment models. 
Tier III models will include mechanisms that link growth and reproduction to popu-
lation abundance and ecosystem/environmental factors.

A final aspect of more realistic Tier III assessment models is spatial structure. 
The need for spatially explicit models is growing as we consider the dynamics 
of populations that have a significant fraction of their abundance within marine 
reserves (Holland 2002; Punt and Methot 2004; Field et al. 2006). Conventional 
models that treat the stock as if diffusion was infinitely high can produce biased 
results when applied to populations that have low rates of mixing between areas. 
Spatial population models may be needed to combine information from multimodal 
survey programs in which direct observation methods measure the absolute fish 
abundance on rocky habitats while conventional trawl surveys measure relative 
trends on adjacent smoother habitats. In principle, it is straightforward to code the 
model to include multiple geographic zones and to allow fish movement between 
zones. The data requirements for such a model are feasible in some of our highly 
monitored fisheries today. However, spatially disaggregating historical data and 
obtaining information on rates of fish movement are daunting steps.

Some of the above suggestions have substantial new data requirements. In parti-
cular, tagging studies to obtain movement rates and predation monitoring programs 
to measure natural mortality rates are expensive field programs, the value of which 
should be evaluated against the potential gains in assessment accuracy and pre-
cision. The suggestions regarding temporal shifts in maturation, the form of the 
spawner–recruitment relationship, and long-term climate effects on the spawner–
recruitment relationship could, in some instances, be addressed through additional 
investigation using currently available data. Finally, suggestions for more flexible 
model capabilities can be implemented as next generation assessment models are 
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developed. In the short term, expanded model capabilities to admit time-varying 
factors may demonstrate decreased precision in model results, but this will establish 
a framework for better identification of the data needed to truly improve the preci-
sion of model results.

9.7 Operational Model

Stock assessments provide operational support for quantitative management of 
fisheries. The integrated analysis models described in this paper have the capability 
to link the estimation of the population’s historical abundance, to the inference of 
biological reference points and forecasts of future population trends and potential 
catch. In order to provide more timely updates for more stocks, efficiencies are 
needed at each step in the sequence from collection of data through delivery of 
results.

The first obvious step is the need for timely access to accurate, precise, and com-
prehensive fishery and survey data. A great fraction of the total assessment time and 
energy goes into discovering, quality-checking, and calibrating historical data that 
don’t quite meet the standards of today’s data collection systems. Greater efficiency 
in this process can be obtained by taking a horizontally integrated approach rather 
than a vertically integrated approach. Most data collection systems collect data on 
multiple species, so analysis and review of these data is best accomplished at the 
same time across all relevant species, rather than species by species as they are 
assessed. Likewise, life history analysis methods are likely to be relevant for many 
related species, so also can be clustered into a methods-oriented review rather than 
fully opening the topic for each species as its assessment is reviewed. Timely avail-
ability of contemporary data can be improved through better data systems: more 
electronic recording of data in the field and more sophistication in the databases to 
quickly accomplish quality checks and delivery of data to end-users.

The second step is the set of models. These must be at the right level of 
 complexity: simple enough to be rapidly updated without extensive diagnostics, 
and complex enough to adjust for confounding effects of non-fishery factors. 
Because of the great diversity of data situations and fish life history patterns, stand-
ardized models must have a flexible structure that is scalable in complexity to the 
particular situation being analyzed. Quick tactical models may need to be paired 
with more complex strategic models to achieve the right mix of overall capabilities. 
Once developed, such standardized models allow less experienced users to fully 
participate in assessment modeling, they facilitate improved communication as 
results are being reviewed, and they enable development of a more comprehensive 
suite of tools to disseminate model results to a wide range of clients and the inter-
ested public. A downside of increased standardization among the models used for 
management purposes is a stifling of research and creativity. Recognizing this as 
a possibility can perhaps be turned into greater emphasis on explicit research on 
model development. We need to decide what technical and ecosystem processes 
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can be included within the modeled system of the operational models, and which 
must be fire-walled off into exploratory analyses designed to improve the next 
generation of operational models.

Third is the process in which the model is used to develop technical advice for the 
regulation of fisheries. This regulatory link creates a high level of controversy for 
all aspects of the stock assessment enterprise. Fishery data and assessment  models 
receive an extraordinary degree of public scrutiny and formal review. Increased 
throughput of assessment updates will require streamlining of the extensive review 
process now routinely required before stock assessment results can serve as the 
scientific basis for fishery management. Emphasizing review of broadly applicable 
assessment data and methods, rather than each final result, is a logical step in this 
streamlining, while maintaining public trust in the final results.
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