Final Site Inspection Report Munitions Response Program

WAIKANE VALLEY TRAINING AREA KANEOHE, HAWAII

November 2009

Commander Naval Facilities Engineering Command, Pacific 258 Makalapa Drive, Suite 100 Pearl Harbor, HI 96860-3134

Contract Number N62742-05-D-1868, CTO 0004

FINAL SITE INSPECTION REPORT WAIKANE VALLEY TRAINING AREA KANEOHE, HAWAII

MRC N62742-05-D-1868 CTO 0004

Final Site Inspection Report Munitions Response Program

WAIKANE VALLEY TRAINING AREA KANEOHE, HAWAII

November 2009

Commander Naval Facilities Engineering Command, Pacific 258 Makalapa Drive, Suite 100 Pearl Harbor, HI 96860-3134

Contract Number N62742-05-D-1868, CTO 0004

EXECUTIVE SUMMARY

OBJECTIVE

The objective for this task order was to perform a Site Inspection (SI) with respect to past use of Munitions and Explosives of Concern (MEC) for the Munitions Response Site (MRS) called Waikane Valley Training Area (WVTA), Kaneohe, on the island of Oahu, Hawaii (see Figure A-1). The SI, as the second component of the overall site evaluation following the Preliminary Assessment (PA), is not intended as a full-scale study of the nature and extent of contamination or explosives hazards. The National Oil and Hazardous Substances Contingency Plan identifies the SI as the on-site investigation to determine whether there is a release or potential release and the nature of the associated threats. Its purpose is to augment the data collected in the PA and to generate, if necessary, sampling and other field data to determine if further response action or remedial investigation (RI) is appropriate. The objective of performing the SI is to efficiently gather data necessary to make this determination.

SITE BACKGROUND

The MRS consists of 187 acres located in the Waiahole and Waikane Valley, on Oahu's windward side approximately 10 miles northwest of Kaneohe Bay. It was once part of a 2,000 acre lease used for jungle training and field maneuvers. The remaining acreage falls under the Defense Environmental Restoration Program for Formerly Used Defense Sites (DERP-FUDS) and is not addressed under this SI.

WVTA's military history dates back to the early 1940's when the Army leased over 2,000 acres in the Waiahole and Waikane Valleys for jungle training, field maneuvers and a bombing range for air-to-ground ordnance delivery practice. The area was known as the Waiahole Training Area and managed by the United States (U.S.) Army as property of Fort Hase.

Between 1943 and 1953, the Army leased this property for maneuvers, jungle training, and small arms, artillery, and mortar firing. The United States Marine Corps (USMC) leased 1061 acres of the training area in 1953. Training consisted of small arms fire, 3.5-inch rockets, and possibly medium artillery fire. Live fire apparently stopped in the early 1960's. Due to fire hazards, incendiaries were prohibited and all ammunition in excess of .50 caliber was to be fired into the designated impact area. The lease was terminated in 1976 and returned to the original owners who farmed and developed it.

In 1944, four people were injured, two fatally, when a 60 millimeter (mm) mortar discovered in Waikane Valley accidentally detonated. Three children were injured in 1963 when a souvenir rifle grenade reportedly discovered in Waikane Valley exploded after it was thrown against a wall. There are no other reports of fatalities or injuries attributable to MEC discovered at Waikane Valley.

The USMC conducted ordnance clearance sweeps in 1976 and 1984. The 1976 clearance effort resulted in the removal of over 24,000 pounds of practice ordnance and fragments, including 42 items of unexploded ordnance. The after action report stated that 187 acres of the WVTA can never be certified free of unexploded ordnance due to the ground cover and topography. In December 1983, heavy rain exposed ordnance on the property and USMC Explosive Ordnance Disposal (EOD) removed a number of 3.5-inch rockets. In January 1984, the USMC conducted a sweep and removed 480 3.5-inch rockets. In June 1984, an intensive ordnance clearance resulted in the removal of 16,000 pounds of demilitarized practice ordnance and 190 items of unexploded ordnance from the parcel. The after action report supported the conclusions of the 1976 report that the property could never be certified clear of ordnance.

In 1989, the government acquired title to the 187-acre ordnance impacted area of the original WVTA. Fencing of the property was completed in 1992 and remains as government property due to it being deemed improbable that it can be cleared of all ordnance. The area is currently controlled and maintained by Marine Corps Base Hawaii (MCBH). The project site is managed as an "other than operational range", with access controlled by MCBH such that civilians may only enter the property when accompanied by EOD personnel.

SITE INSPECTION ACTIVITIES AND RESULTS

Site inspection activities were conducted at WVTA from 29 September to 30 October 2008. The field activities included an instrument aided field reconnaissance survey and the collection of surface soil samples.

An instrument-aided field reconnaissance survey was conducted to evaluate and document the presence of MEC, munitions constituents (MC), or other munitions-related finds. The field teams surveyed 9.55 acres in transects and 5.2 acres within 42 cells, for a total of 14.75 surveyed acres. The soil sampling team collected 35 composite samples in the lower elevations of the site and 10 discrete samples at locations where MEC items had been found. Samples were analyzed for 9 metals and for nitroaromatics and nitroamines. The analytical results were compared against Project Action Limits (PALs) consisting of United States Environmental Protection Agency (USEPA) Region 9 residential regional screening levels (RSLs), State of Hawaii Department of Health (HDOH) Tier 1 Environmental Action Levels (EALs), and Soil Background Criteria. MEC reconnaissance and MC analytical results are discussed in detail in Sections 2 and 3.

Many items of munitions debris (MD), which are remnants of munitions items not presenting an explosive hazard, were noted during the site inspection. Seventy MEC items were found, all fired and fuzed and therefore considered unexploded ordnance (UXO). The UXO items included sixty-six 3.5-inch shoulder fired High Explosive Anti-Tank (HEAT) Rockets, one 2.36 inch shoulder fired HEAT Rocket warhead, and three HEAT Rifle Grenades.

The analysis of four soil samples reveals a potential for copper and lead impacts above the PALs. These samples (MEC019, MEC021, MEC042, and MEC043) were located within very localized areas. The localized concentrations of copper and lead are believed to be related to high concentrations of munitions debris and the results of past operational practices.

CONCLUSIONS AND RECOMMENDATIONS

Based on the results of the instrument-aided reconnaissance and the analytical sampling, MEC was found and MC exceeding PALs was found. These findings indicate that further action is recommended at WVTA to address explosives risk and risk to human health and the environment.

An RI is recommended, consisting of a 100 percent surface clearance of MEC areas identified by this SI and shown on Figure A-8. This surface clearance should focus on accessible terrain north of the Waikane stream within or below the suspected target locations, clearing the areas of all surface MEC and MD.

Following the surface clearance, a subsurface anomaly investigation should be completed within the surface-cleared areas in order to determine depth of penetration and density of MEC within each target area. Grids of 50 feet by 50 feet, with 8 grids spread across the target (a total of 2 acres for the 4 targets) will be sufficient to characterize the MEC hazard at the targets. Within these grids, 100 percent of the anomalies should be investigated to depth of detection using hand-held metal detectors.

Soil samples should also be taken near the sites of previous Samples MEC019, MEC021, MEC042, and MEC043 to establish the extent of the localized copper and lead impacts. Sediment samples should be taken at Waikane Stream to determine whether copper or lead have reached the stream. Upon the completion of the RI, a feasibility study, if needed, should explore the various remediation alternatives for dealing with the residual risk.

TABLE OF CONTENTS

EXEC	UTIVE	SUMMAR	Y			
ACRO	ONYMS		BREVIATIONS			
1.0	INTRO	INTRODUCTION				
	1.1	SITE H	1-1			
		1.1.1	PRELIMINARY ASSESSMENT	1-1		
		1.1.2	ENVIRONMENTAL ASSESSMENT	1-2		
		1.1.3	ENGINEERING EVALUATION/COST ANALYSIS OF FUDS PORTION OF WVTA	1-2		
		1.1.4	SITE INSPECTION HISTORICAL RECORDS REVIEW	1-2		
	1.2	PHYSI	CAL AND ENVIRONMENTAL SETTING	1-3		
		1.2.1	DESCRIPTION OF MUNITIONS RESPONSE SITE	1-3		
		1.2.2	TOPOGRAPHY AND GEOLOGY	1-4		
		1.2.3	GROUNDWATER	1-4		
		1.2.4	BIOLOGICAL RESOURCES	1-5		
		1.2.5	WATER RESOURCES	1-6		
		1.2.6	СLIМАТЕ	1-6		
		1.2.7	CULTURAL AND NATURAL RESOURCES	1-6		
		1.2.8	PRESENCE OF MEC	1-6		
		1.2.9	PRESENCE OF MUNITIONS CONSTITUENTS	1-7		
		1.2.10	CONTAMINANT MIGRATION ROUTES	1-7		
		1.2.11	RECEPTORS	1-7		
		1.2.12	NEARBY POPULATIONS	1-8		
		1.2.13	BUILDINGS NEAR/WITHIN SITE	1-8		
		1.2.14	UTILITIES ON OR NEAR SITE	1-8		
		1.2.15	LAND USE	1-8		
		1.2.16	ACCESS CONTROLS OR RESTRICTIONS	1-9		
2.0	SUMMARY OF FIELD ACTIVITIES			2-1		
	2.1	2.1 VISUAL SURVEY		2-1		
		2.1.1	DATA ASSESSMENT AND PLANNING	2-1		
		2.1.2	INSTRUMENT TEST PLOT AND DAILY INSTRUMENT CHECKS	2-2		
		2.1.3	MEC DATA COLLECTION	2-2		
	2.2	SOIL S	SAMPLE COLLECTION	2-2		
		2.2.1	SUMMARY OF ANALYTICAL RESULTS	2-4		
3.0	SITE INSPECTION FINDINGS					
	3.1	3.1 MUNITIONS AND EXPLOSIVES OF CONCERN				
	3.2	3.2 MUNITIONS CONSTITUENTS				
		3.2.1	NITROAROMATICS AND NITROAMINES	3-1		
		3.2.2	METALS	3-2		
4.0	REVIS	SED CON	ICEPTUAL SITE MODEL	4-1		
	4.1	SOUR	CE AREA AND SOURCE MEDIA	4-1		

	4.2	4-1		
		4.2.1	MUNITIONS AND EXPLOSIVES OF CONCERN	4-1
		4.2.2	MUNITIONS CONSTITUENTS	
	4.3	RECEF	PTORS	4-2
		4.3.1	HUMAN	4-2
		4.3.2	ECOLOGICAL	4-2
	4.4	PATHWAY ANALYSIS		4-2
		4.4.1	HUMAN	4-2
		4.4.2	ECOLOGICAL	4-3
5.0	MUNIT		ESPONSE SITE PRIORITIZATION PROTOCOL	5-1
6.0	CONCLUSIONS AND RECOMMENDATIONS		6-1	
	6.1	CONCI	LUSIONS	6-1
	6.2	RECO	MMENDATIONS	6-1
7.0	REFER	RENCES		7-1

TABLES

Table 5-1: Summary of MRS Priority or Alternative MRS Rating	IRS Rating5-1
--	---------------

APPENDICES

- Appendix A Site Maps and Figures
- Appendix B MC Data Summary Table and Data Validation Report
- Appendix C Field Effort Weekly Status Reports
- Appendix D Photographs and Historical Data
- Appendix E Munitions Response Site Prioritization Protocol
- Appendix F Step 3a Ecological Risk Assessment

SITE INSPECTION REPORT MUNITIONS RESPONSE PROGRAM WAIKANE VALLEY TRAINING AREA KANEOHE, HAWAII

ACRONYMS AND ABBREVIATIONS

ASR	Archives Search Report
COPC	Chemical(s) of Potential Concern
CSM	Conceptual Site Model
DERP	Defense Environmental Restoration Program
DOD	Department of Defense
EA	Environmental Assessment
EAL	Environmental Action Level
EE/CA	Engineering Evaluation/Cost Analysis
EOD	Explosive Ordnance Disposal
FUDS	Formerly Used Defense Sites
GIS	Geographical Information System
GPS	Global Positioning System
HDOH	Hawaii Department of Health
HE	High Explosive
HEAT	High Explosive Anti-Tank
MC	Munitions Constituents
MD	Munitions Debris
MCBH	Marine Corps Base Hawaii
MEC	Munitions and Explosives of Concern
MPPEH	Material Potentially Presenting an Explosive Hazard
MRS	Munitions Response Site
PA	Preliminary Assessment
PAL	Project Action Limit
RSL	Regional Screening Level
RI	Remedial Investigation
RIPRA	Range Investigation and Preliminary Range Assessment
SI	Site Inspection
U.S.	United States
USAE	USA Environmental, Incorporated
USEPA	United States Environmental Protection Agency
USMC	United States Marine Corps
UXO	Unexploded Ordnance
WVTA	Waikane Valley Training Area

1.0 INTRODUCTION

This report describes the Site Inspection (SI) activities with respect to past use of Munitions and Explosives of Concern (MEC) and Munitions Constituents (MC) associated with the Waikane Valley Training Area (WVTA) Munitions Response Site (MRS) located near Kaneohe, Hawaii. USA Environmental, Incorporated (USAE) conducted this SI and prepared this SI Report in accordance with the Performance Work Statement, dated 3 August 2006. A location map is included in Appendix A as Figure A-1 and the study site is depicted on Figure A-2.

The purpose of this SI was to generate the field data necessary to determine whether further investigation or response action is warranted. Soil samples were taken and analyzed to determine whether MC (such as heavy metals or explosives) have contaminated the site. An instrument-aided reconnaissance survey was conducted in order to collect surface evidence of MEC hazards such as munitions debris (MD) (remnants of munitions items not presenting an explosive hazard), impact craters, target locations, fighting positions, or actual MEC items (which present an explosive hazard).

In accordance with the Comprehensive Environmental Response Compensation, and Liability Act, this SI was not intended as a full-scale study of the nature and extent of contamination or explosives hazards; rather, it was to use the field data and available information from the Preliminary Assessment (PA) to confirm or deny the presence of contamination and provide necessary data for informed decision making.

1.1 SITE HISTORY AND BACKGROUND

The MRS consists of 187 acres located in the Waiahole and Waikane Valleys, on Oahu's windward side, approximately 10 miles northwest of Kaneohe Bay. It was once part of a 2,000 acre lease used for jungle training and field maneuvers. The remaining acreage outside of the 187 acres falls under the Defense Environmental Restoration Program for Formerly Used Defense Sites (DERP-FUDS) and is not addressed under this SI.

1.1.1 PRELIMINARY ASSESSMENT

The 187-acre MRS was identified for further evaluation as a result of a Range Investigation and Preliminary Range Assessment (RIPRA) and Archives Search Report (ASR) completed in 1998. Most of the historical information within this SI report is drawn from the RIPRA/ASR.

WVTA's military history dates back to the early 1940's when the Army leased over 2,000 acres in the Waiahole and Waikane Valleys for jungle training, field maneuvers and a bombing range for air-to-ground ordnance delivery practice. The area was known as the Waiahole Training Area and managed by the United States (U.S.) Army as property of Fort Hase.

Between 1943 and 1953, the Army leased this property for maneuvers, jungle training, and small arms, artillery, and mortar firing. The United States Marine Corps (USMC) leased 1061 acres of the training area in 1953. Training consisted of small arms fire, 3.5-inch rockets, and possibly medium artillery fire. Live fire apparently stopped in the early 1960's. Due to fire hazards, incendiaries were prohibited and all ammunition in excess of .50 caliber was to be fired into the designated impact area. The lease was terminated in 1976 and returned to the original owners who farmed and developed it.

In 1944, four people were injured, two fatally, when a 60 millimeter (mm) mortar discovered in Waikane Valley accidentally detonated. Three children were injured in 1963 when a souvenir rifle grenade reportedly discovered in Waikane Valley exploded after it was thrown against a wall. There are no other reports of fatalities or injuries attributable to MEC discovered at Waikane Valley.

The USMC conducted ordnance clearance sweeps in 1976 and 1984. The 1976 clearance effort resulted in the removal of over 24,000 pounds of practice ordnance and fragments, including 42 items of

unexploded ordnance. The after action report stated that 187 acres of the WVTA can never be certified free of unexploded ordnance due to the ground cover and topography. In December 1983, heavy rain exposed ordnance on the property and USMC Explosive Ordnance Disposal (EOD) removed a number of 3.5-inch rockets. In January 1984, the USMC conducted a sweep and removed 480 3.5-inch rockets. In June 1984, an intensive ordnance clearance resulted in the removal of 16,000 pounds of demilitarized practice ordnance and 190 items of unexploded ordnance from the parcel. The after action report supported the conclusions of the 1976 report that the property could never be certified clear of ordnance.

In 1989, the government acquired title to the 187-acre ordnance impacted area of the original WVTA. Fencing of the property was completed in 1992 and remains as government property due to it being deemed improbable that it can be cleared of all ordnance. The area is currently controlled and maintained by Marine Corps Base Hawaii (MCBH). The project site is managed as an "other than operational range", with access controlled by MCBH such that civilians may only enter the property when accompanied by EOD personnel.

1.1.2 Environmental Assessment

The Draft Environmental Assessment (EA) for the Proposed United States Marine Corps (USMC) Jungle Warfare Training Waikane Valley, Oahu, Hawaii (2004) evaluated the effects of a Proposed Action of conducting non-live fire jungle orientation and maneuver training within the 187-acre property. The Proposed Action was cancelled in September 2004 after the USMC determined that Waikane Valley is unsuitable for troop training because of safety concerns. Much of Section 1.2 of this report is based on information published within the EA.

During the EA, surface water samples were collected to determine if explosive compounds were being mobilized during rain events. Five surface water samples collected on May 9, 2003 from Waikane Stream during what was considered a "dry period" (i.e., little to no rainfall for several days) at two locations within the parcel and along Kamehameha Highway contained no measurable explosive compounds above the laboratory's method reporting limit. Five additional water samples were collected from the same locations in Waikane Stream on June 16, 2003 following a rain event during which rain fell constantly from the prior evening into the following morning. Laboratory analytical results also revealed no explosive compounds above the method reporting limit thereby indicating no mobilization of contaminants of concern.

Ten surface and near-surface soil samples collected on May 9, 2003 proximal to Waikane Stream at the east and west ends of the project site did not exhibit targeted explosive compounds above the analytical laboratory's method reporting limit. Results of both sampling events, although not validated, are included in Appendix C for information.

1.1.3 ENGINEERING EVALUATION/COST ANALYSIS OF FUDS PORTION OF WVTA

From June 2005 until May 2006, U.S. Army Corps of Engineers conducted field work for an Engineering Evaluation/Cost Analysis (EE/CA) under DERP-FUDS, evaluating MEC risks over 874 acres of the FUDS property adjoining the southern and western boundaries of the MRS. The EE/CA consisted of evaluation of 150 grids (100 feet [ft] by 100 ft) and 9 miles of transect. During the investigation, seven MEC items were recovered; two 81mm high explosive (HE) rounds, three 60mm HE rounds, and two 37mm HE projectiles. All of the MEC items were recovered in the southeastern portion of the FUDS site, which adjoins the southern boundary of the MRS. Projectile fragmentation, fuze pieces, tail fins, base plates, and other munitions debris were located throughout the valley.

1.1.4 SITE INSPECTION HISTORICAL RECORDS REVIEW

The USAE Site Manager contacted and visited both off-site and on-site historical record data repositories. The data repositories included regional archives, libraries, and local historical sources.

1.1.4.1 U.S. Army Museum of Hawaii at Fort DeRussy

The Site Manager met with Ms. Judith Bowman, Curator for the U.S. Army Museum of Hawaii located at Fort DeRussy. He reviewed several binders of historical documents and black and white photos dating back to the 1920's that Ms. Bowman thought might have some information regarding the WVTA and the former Camp Hase areas. Several photos pertaining to U.S. Army training activities at the former WVTA were located and scanned copies were obtained from Ms. Bowman. These photos are included in Appendix D. The Site Manager also looked over a folder of maps that Ms. Bowman presented to him. One map (June 1944) depicting all the Island of Oahu Training Areas, Camps, and Centers following the bombing of Pearl Harbor was noted, reviewed and photo copied. These maps also showed the impact areas for each of the training areas, but at too large of a scale to be of value to this report. No additional information was noted.

1.1.4.2 University of Hawaii at Manoa Library Records

The Site Manager conducted a historical records search at the Hawaii War Records Depository of the Manoa Library's Archives and Manuscripts Department. No historical information related to WVTA was revealed during this search.

1.1.4.3 After Action Reports

The Site Manager was allowed to review and copy records retained at the offices of Donaldson Enterprises, Inc. in Honolulu pertaining to the WVTA. Several after action reports prepared by MCBH Kaneohe Bay EOD units were discovered which related specifically to the MRS, and are included in Appendix D. All of these reports were summarized in the RIPRA.

An after-action report dated 20 September 1976 described an EOD clearance operation conducted in August and September of that year, in which over 24,400 pounds of practice ordnance were lifted out of the site by helicopter and 42 items of explosive ordnance were disposed of by detonation on the site. The report concluded that the area could never be certified clear of ordnance due to the ground cover and ordnance being buried or unable to be located for various reasons.

An after action report dated 6 January 1984 describes an attempt to determine the extent of ordnance hazard at WVTA.

An after action report dated 7 June 1984 describes a surface clearance of the entire 187 acre MRS where operations were conducted from 2 February until 13 April 1984. During that specific clearance operation, 16,000 pounds of demilitarized practice ordnance was flown out of WVTA, 190 HE rounds were destroyed, and 3822 practice rounds were demilitarized. This report concluded that the surface clearance had been 85 percent (%) effective, and noted that EOD responded to the site a month later to remove 35 more 3.5-inch practice rockets either exposed by erosion or missed by the clearance team.

An EOD operations report dated 4 September 1987 indicates that Kaneohe Police Department responded to a find of dud ordnance in Waikane Valley, and in turn called an EOD unit which disposed of the HE rifle grenade by blowing in place.

1.2 PHYSICAL AND ENVIRONMENTAL SETTING

1.2.1 DESCRIPTION OF MUNITIONS RESPONSE SITE

The 187-acre MRS has had no modern construction. The property is bounded to the north, south, and west by undeveloped forest lands owned by Kualoa Ranch and SMF Enterprises, Inc. According to the EA, the City and County of Honolulu began to acquire lands in 1997 to the southeast of the project site from Azabu USA Corporation. These lands were then designated as the Waikane Nature Preserve. The Roberts family owns a small parcel adjacent to the southern border of the project site. Non-contiguous

coastal lands to the east of the project site include a mix of residential areas, beach parks, and private property.

1.2.2 TOPOGRAPHY AND GEOLOGY

According to the EA, Waikane Valley is one of several valleys with watersheds draining into the northern part of Kaneohe Bay. Windward Oahu is the remnant of the Koolau Volcano. Waikane was carved into the basalt of the Koolau Range through erosion. Some of the gravel and clay formed by weathering and erosion of the shield were deposited on valley floors. In addition, alluvium of marine origin accumulated in the valleys as the sea level rose during interglacial periods and fell during glacial periods.

The project site extends along a gradient from 100 feet above mean sea level at the southern boundary to approximately 1,400 feet along the northern boundary. Much of the project area has slopes exceeding 45 percent, with some sections containing steep vertical cliffs.

According to the U.S. Department of Agriculture, Soil Conservation Service *Soil Survey of Islands of Kauai, Oahu, Maui, Molokai, and Lanai, State of Hawaii* (1972), the five soil types within the project site exhibit the following characteristics:

- <u>Waikane silty clay, 25 to 40 percent slope (WpE)</u>. This soil type is found on steep terraces and alluvial fans. WpE soils are very strongly acid in the surface layer and subsoil, with moderately rapid permeability, medium to rapid runoff, and a moderate to severe erosion hazard.
- <u>Waikane silty clay, 40 to 70 percent slope (WpF)</u>. On WpF soil, runoff is rapid to very rapid and the erosion hazard is severe.
- <u>Waikane silty clay, 40 to 70 percent slope (WpF2)</u>. This soil type is very similar to WpE except that it is very steep. Most of the surface layer and, in some places, part of the subsoil has eroded. Soft weathered rock is exposed in a few areas. On WpF2 soil, runoff is rapid to very rapid and the erosion hazard is very severe.
- <u>Rock land (rRK)</u>. This classification refers to areas where exposed rock covers 25 to 90 percent of the surface. The main characteristics of rRK are rock outcrops (of mainly basalt and andesite) and very shallow soils.
- Hanalei silty clay, 0 to 2 percent slope (HnA). This soil type is found on stream bottoms and flood plains. HnA soils are strongly acid to very strongly acid in the surface layer and neutral in the subsoil, with moderate permeability. On HnA soil, runoff is very slow and the erosion hazard is no more than slight.

The EA report indicates that Waikane Series soils (WpE, WpF, and WpF2) are found on approximately 75 percent or the majority of the project site, and that the WpE soils type is primarily found below the 300-foot contour. According to the EA report, land at the top of the ridge at the northern boundary of the project comprises rRK whereas HnA is found at the southeastern corner of the site along Waikane Stream.

1.2.3 GROUNDWATER

The United States Geological Survey Ground Water Atlas of the United States HA 730-N indicates that WVTA site is located in the Koolau Rift Zone groundwater area of Oahu. This area consists mostly of dike-intruded Koolau Basalt, which is the principal aquifer. Regional ground-water movement is from the highlands to adjacent ground-water areas and directly to the ocean. Dike-impounded water is most important in this ground-water area, and some water levels are as much as 1,000 feet above sea level.

According to the HDOH map of Oahu's Underground Injection Control Areas, WVTA lies inland of the Underground Injection Control line, and therefore the underlying aquifer is considered a drinking water source.

1.2.4 BIOLOGICAL RESOURCES

The EA cited literature and field surveys of the project site conducted by biologists and environmental specialists which resulted in the following findings regarding flora and fauna resources.

1.2.4.1 Vegetation

According to the EA, the project site has been highly disturbed in the past such that only remnants of native vegetation remain. Native plant communities such as 'Ohi'a Scrub and Koa/'Uluhe Woodland occur on some of the ridges that extend to the northern ridge line. The Ohi'a Scrub community occurs on the ridges at the north side of the project site, and particularly on the eastern end. It is characterized by low and shrubby 'ohi'a trees with dense clumps of the native fern pala'a (Sphenomeris chinensis) between the shrubs. Koa/'Uluhe Woodland dominates the northwestern portion of the project site on the ridge leading up the hills that separate Waikane Valley from Kaaawa Valley. This plant community comprises Dicranopteris linearis ('uluhe). Two plant communities (i.e., Managed Land Vegetation and Secondary Forest) found in most of the flat to sloping areas south of the hills on the northern portion of the project site reflect extensive disturbance. Managed Land Vegetation exhibits the characteristics of abandoned agricultural clearings that cover large patches on the alluvial plain of the Waikane Stream, and the areas around the abandoned living sites. Most of the lowlands of the site are covered by Secondary Forest, which is a plant community almost entirely dominated by alien tree species. The most prevalent of these alien tree species is Paraserianthes falcataria ("albizia"), which is a huge, fast-growing tree with an open, spreading canopy. No distinct wetlands were found within the project site.

A total of 104 vascular plant species were recorded. Of the 104 species, 17 are native but only five of the native species are endemic to Hawaii: *Cibotium chamissoi (haupu'u 'i'i), Acacia koa (koa), Scaevola gaudichaudiana (naupaka kuahiwi), Metrosideros polymorpha ('ohi'a lehua), and Wikstroemia oahuensis ('akia).*

1.2.4.2 Fish and Wildlife

The EA indicates that non-native arthropod, mammalian, and avian species identified at the project site are consistent with the habitat found at the project site. Many common non-native species are present. Medically important species (i.e., centipedes, scorpions, widow spiders, western yellow jacket wasps, and common paper wasps) were not observed but may be present. Four mammalian species – domestic dog *(Canis f. familiaris)*, small Indian mongoose *(Herpestes a. auropunctatus)*, domestic cat *(Felis catus)*, and feral pig *(Sus s. scrofa)* – were observed. Fifteen species of birds from 11 separate families were observed. The findings of the avian survey were consistent with the habitat and altitude of the study area. No native avian species were detected. A few native species of aquatic life were found in the middle and lower reaches of Waikane Stream, but were noted as not especially unusual or unique.

1.2.4.3 Listed Species

The EA indicates that previous surveys of the project site in 1989 and 2003 found no federally listed threatened or endangered plant species and no plants proposed for such status. Snail species listed as threatened or endangered under federal or state statutes (i.e., *Achatinella*) were not found. The EA states that endemic Hawaiian sub-species of the Short-eared Owl (*Asio flammeus sandwichensis*) was not detected during surveys but may occasionally use resources present within the site, especially in the more open 'uluhe dominated higher elevations of the valley wall. According to the EA, the Oahu population of this sub-species is listed as endangered by the State of Hawaii, but it is not listed under federal statutes. Typical nesting habitat used by the threatened Newell's Shearwater (*Puffinus auricularis newelli*) is found on the upper 'uluhe covered slopes. There are no known nesting colonies of this species on Oahu; however, a small number of these birds are downed annually on the island, most near the lighted entrances to the Pali Highway tunnel.

1.2.5 WATER RESOURCES

The EA states that Waikane Stream traverses the project site along its southern border at approximately the 150-foot elevation. The United States Geological Survey has monitored stream flow at the 75-foot elevation approximately 1,150 feet downstream from the eastern border of the property since 1959. Its records indicate Waikane Stream to be perennial.

According to the EA, the Waiahole Ditch Tunnel System has intercepted water at the most productive portion of the Waikane catchment upstream from the site since 1916, thereby altering flow volume and other hydrological characteristics of Waikane Stream.

The EA indicates that water quality sampling of the perennial Waikane Stream was accomplished in May 2003 at four sampling stations from above to below the project area to measure temperature, pH, conductivity, dissolved oxygen, turbidity, total suspended solids, and nutrients (as ammonia, nitrate plus nitrite, total nitrogen, and total phosphorous). Differences between stations were found to be small and values were within ranges indicating good water quality.

1.2.6 CLIMATE

The climate of Hawaii is warm and humid year round. The Juvik and Juvik *Atlas of Hawaii (1998)* states that the daily average temperature on Oahu ranges between 65 to 85 degrees Fahrenheit (°F) with relative humidity ranging from 30 to 90 percent. The project site is located in the interior of the forested Waikane Valley. All of these windward valleys, from Kaneohe in the south to Hakipuu in the north, support lush vegetation owing to an abundance of water.

1.2.7 CULTURAL AND NATURAL RESOURCES

The EA notes that field investigations and ethnographic interviews were conducted in 2003, and a *heiau* or shrine within National Register of Historic Places was identified and recorded in February 2004. The project site was divided into three sampling zones based on terrain variations in Waikane Valley. Zone A, along Waikane Stream where archaeological sites had previously been identified, was subjected to a systematic and intensive survey and re-recordation of previously documented sites. Zone B, a transition area between the flatter areas near Waikane Stream and the extremely steep slopes along the valley walls, was subjected to a reconnaissance level survey. Zone C, comprising extremely steep slopes along the valley walls, was visually inspected from available vantage points in Zone B and from the ridgeline above. Seven sites were evaluated, several of them within a National Historic Register site. Four were reconfirmed as significant, two were recommended for deletion from state inventory, and one was newly identified as historic. All culturally significant sites appear to be located in Zone A, less than 0.2 kilometers from Waikane Stream.

Archeological monitoring was conducted during the SI fieldwork. Cultural materials, when encountered, were avoided.

1.2.8 PRESENCE OF MEC

According to the ASR, four people were injured in 1944, two fatally, when a 60mm mortar discovered in Waikane Valley accidentally detonated. Three children were injured in 1963 when a souvenir rifle grenade reportedly discovered in Waikane Valley exploded after it was thrown against a wall. Historic use of the project site as an impact area resulted in the USMC conducting ordnance clearance sweeps in 1976 and 1984. The 1976 clearance effort resulted in the removal of over 24,000 pounds of practice ordnance and scrap from the impact areas in Waikane Valley. An additional 16,000 pounds of demilitarized practice ordnance were removed from the site in 1984. The continued presence of MEC at the site was evidenced in 1990 when unexpended mortar rounds, a grenade, and shrapnel were

discovered during an archaeological inventory of the FUDS property to the south and west of the WVTA MRS (U.S. Army Engineer District Honolulu 1996). Potential MEC at WVTA are as follows:

- Mortars, 60mm and 81mm;
- Rockets, 2.36 inch and 3.5 inch
- Grenades, HE and smoke;
- Projectiles, HE
- Signals
- Demolition Explosives
- Small arms

The presence of MEC is relevant because it may be an explosive hazard. MEC in the surface and subsurface soil may also release MC into the site soils through impact and detonation, corrosion, or leakage. Based on evidence collected from archives research work performed to date, chemical warfare materiel has not been used at WVTA.

1.2.9 PRESENCE OF MUNITIONS CONSTITUENTS

Based on the type of munitions used at WVTA and their composition, explosives and metals were the main components of the munitions used. Nitroaromatics, nitroamines, and 9 heavy metals (aluminum, antimony, barium, chromium, copper, iron, lead, nickel, and zinc) associated with the specific MEC were selected for analysis during the SI. Localized concentrations of copper and lead were detected for 4 of the samples, and these concentrations are believed to be related to high concentrations of munitions debris at the sampling locations.

1.2.10 CONTAMINANT MIGRATION ROUTES

Migration of MC may occur naturally through surface soil erosion, plant or animal uptake, or by human activities. Hawaiian rains are essentially free of the industrial acids and other chemicals typically associated with dissolving metals in soils, and therefore metals do not migrate easily through subsurface soil to the groundwater.

1.2.11 RECEPTORS

Potential human receptors include future onsite residents and construction workers, current and future offsite residents, and current and future recreational users. Human exposure routes are incidental ingestion of and dermal contact with soil. Recreational users are expected to have intermittent frequency of exposure on the site and will most likely be exposed to MC in the surface soil only. Future residents would have the most frequent and intimate exposure to surface and subsurface soil on the site, followed by construction or maintenance contractors.

Although chemicals from MEC items may have leached into the surface soil, the nature of local rainwater is not conducive to migration of heavy metals contaminants through subsurface soil to the groundwater. Hawaiian rains are essentially free of the industrial acids and other chemicals typically associated with dissolving metals in soils, and therefore metals do not migrate easily through subsurface soil to the groundwater.

Because the maximum penetration depth of munitions used at WVIA is 2-feet bgs, it is unlikely for MC to have migrated to depths greater than 3-feet bgs. In addition, groundwater at the site quickly empties into Waikane Stream because of the steep terrain and underlying rock strata, and is transported to the Pacific

Ocean approximately one mile downstream. This significantly reduces the potential for human exposure to MC in groundwater.

Ecological receptors include terrestrial plants (e.g., *Ohi'a* scrub) and animals living on or near the range. Terrestrial fauna may include soil invertebrates, mammals, and birds. Mammals observed at WVTA, including domestic dog, small Indian mongoose, domestic cat, and feral pig, are not native species, and are considered pests that potentially compete for native species habitat. Given this, native birds rather than mammals are considered species of concern for the ecological risk assessment. Exposure routes for birds typically include ingestion of soil, dermal contact with soil, inhalation of dust, and ingestion of plants and/or prey organisms that may assimilate or bioaccumulate MC. The majority of plant uptake, if occurring, is expected to occur from near surface adsorption through the root system, since MC presence is expected to be limited to the top 12 inches of soil.

1.2.12 NEARBY POPULATIONS

The EA indicates that the population of the Waikane community was 726 (U.S. Census 2000). The EA also indicated that the Waikane community had experienced some growth since the census, but that the family units closest to the project site have remained the same (Social Research Pacific, Inc.) Observations during the SI field activities were that there are approximately a dozen residences within a mile of WVTA, and that local residents frequently use the site for hunting boar and riding all-terrain vehicles.

1.2.13 BUILDINGS NEAR/WITHIN SITE

No buildings are located within the 187-acre MRS of WVTA. A residence is located adjacent to the boundary fence at the southeastern corner of the MRS. The next closest residence is located approximately 500 yards farther south.

1.2.14 UTILITIES ON OR NEAR SITE

No utilities are known to exist within the vicinity of the MRS.

1.2.15 LAND USE

The WVTA is currently unused and undeveloped. Approximately 52 acres (less than 28 percent) of the southern portion of the project site were leased for agricultural purposes prior to land acquisition by the federal government. The State of Hawaii land use classification for this leased area was Agriculture. Roughly 17 acres (33 percent) of this leased area was farmed with edible crops. Five vacant living units existed within the leased area. The remaining 135 acres are lands designated by the State of Hawaii Land Use Commission as Conservation and were within the area designated as the Waiahole Forest Reserve.

The EE/CA report indicates that the City and County of Honolulu has produced a Master Plan to develop the FUDS property adjacent to WVTA (874 acres) into the Waikane Valley Nature Park. The plan involves establishment of trails, rest and picnic areas, and lookouts to view surrounding landmarks, a ceremonial gathering place (halau), re-vegetation areas for native plants, stream ecology study areas, ponds for aquatic wildlife studies, agricultural fields, parking areas, and a visitor orientation area.

The majority of the acreage within Waikane Valley consists of inaccessible terrain that cannot be developed due to steep gulches, canyons, rocky outcrops, and mountains rising over 2,200 feet above sea level. However, evidence shows that the whole of Waikane Valley has been used, and will continue to be used, by sportsmen hunting wild boar and other game.

1.2.16 ACCESS CONTROLS OR RESTRICTIONS

The 187-acre MRS is fenced along the western, southern, and eastern boundaries. The eastern and western boundary fences terminate at higher elevations where the terrain is too steep for fence construction. The northern boundary is defined by the mountain ridge. The MRS fence is clearly marked with warning signs. Access is limited by dense vegetation, rugged terrain, a fence with three gates that remain locked, and warning signs. There is an entrance gate and access road to the WVTA located off of Waikane Valley Road approximately one mile west of the MRS. This gate remains locked to control access, but many of the local property owners have keys to the gate lock. Since the site is over 10 miles distance from MCB Hawaii, United States Marines security forces do not patrol the site constantly. Trespassers cut holes in the fence in order to access the restricted area by vehicle or on foot.

2.0 SUMMARY OF FIELD ACTIVITIES

This section documents the approach, methods, and operational procedures USAE employed to execute the SI. From 1 October to 30 October 2008, the SI Field Team conducted MEC reconnaissance operations within the 187-acre MRS. From 14 to 21 October 2008, the subcontractor Wil Chee Planning conducted soil sampling.

Fieldwork was conducted in accordance with the approved Work Plan by a USAE team consisting of a Site Manager, Senior UXO Supervisor, a dual-hatted UXO Safety Officer/Quality Control Specialist, a UXO Technician III, three UXO Technicians II, two UXO Technicians I, and an Emergency Medical Technician. Two environmental technicians from subcontractor Wil Chee Planning conducted the soil sampling with support from USAE UXO Technicians. Fieldwork consisted of mobilization, boundary surveying, limited vegetation clearance as needed, and an instrument-assisted reconnaissance survey of the MRS to identify any evidence of MEC.

2.1 VISUAL SURVEY

During the SI fieldwork, the USAE Team surveyed the MRS for the purpose of confirming the presence of MEC and collecting physical data on munitions location, type, and density, where applicable. The reconnaissance overview map at Figure A-2 depicts the MRS and the instrument-assisted ground reconnaissance areas surveyed.

The survey design goal was to inspect 36 cells and approximately 10 acres of transects. Survey transects were represented on design drawings as running in straight lines across the site, with the work plans explaining that actual transects and grids would be determined in the field because straight-line transects and evenly-spaced grids would be impossible to accomplish in the steep terrain. During field operations, the reconnaissance team found that it was more practical to survey transects in an up-down direction rather than to follow contour lines. The field team also found that the steep terrain and dense vegetation made it impossible to always establish 100 foot by 100 foot cells, and adjusted sizes and locations of cells as necessary to obtain the required acreage and to ensure representative coverage of the 187-acre site.

During design, areas of the site above the 700-foot elevation contour were considered inaccessible for SI purposes, and the higher portions of the site were originally excluded from survey. During field execution, survey teams were able to run several transects to the northern boundary at the top of the ridge, at higher than 1000 feet in elevation.

During the reconnaissance survey, 9.55 acres in transects and 42 cells amounting to 5.2 acres were surveyed, for a total of 14.75 acres. This acreage exceeded the scoped requirement of 14 acres. Data collected during the reconnaissance, along with existing archival data, is used to determine the amount and location of areas requiring further investigation. Figure A-2 depicts the MRS and actual areas in which instrument-assisted ground reconnaissance was conducted. Daily and weekly status reports from the field effort are included in Appendix C.

2.1.1 DATA ASSESSMENT AND PLANNING

The scope of the MEC inspection was to conduct reconnaissance survey with the aid of metal detectors of at least 14 acres out of the total 187 acres to the highest elevations possible. The Work Plan goal was to inspect 36 cells totaling 8.3 acres and 10 acres of transects, for a total of 18.3 acres. The reconnaissance survey was designed to address the accessible areas of the MRS, and to collect soil samples. The reconnaissance teams were only expected to reach as high as the 700-foot elevation because of the difficult terrain, but during the actual survey they were able to extend to 900 feet in several locations.

2.1.2 INSTRUMENT TEST PLOT AND DAILY INSTRUMENT CHECKS

To ensure the quality of the reconnaissance survey data relative to anomaly detection, USAE established an instrument test plot within the southeast corner of the MRS. The test plot was used to evaluate and select the optimal detection instrument and appropriate instrument settings for the site. The test plot included two inert MK2 hand grenades, two inert 37mm projectiles, one inert 60mm Drill mortar, one inert 81mm Drill mortar, one inert 2.36 inch Anti-Tank Rocket, and one inert 75mm projectile, buried in horizontal orientation at various depths. The site management team evaluated the performance and suitability of both the Schonstedt GA-52cx hand-held magnetometer and Minelab Explorer II hand-held all metals detector within the selected munitions seed items specific settings for an instrument-assisted survey.

The Site Management Team reviewed the instrument test results and selected the Minelab Explorer II based on site geology and detection performance demonstrated during the on-site initial instrument test. After the initial instrument test, the team tested the metal detectors each workday at the test plot prior to field activities. This test included a functions check as recommended by the instrument manufacturer and the location check at the test plot.

The Initial Instrument Test and Daily Instrument Checks were also performed with the Trimble GeoXT handheld global positioning system (GPS). In order to ensure consistent and reliable data, instrument tests were performed each morning at the instrument test plot prior to commencing survey operations.

2.1.3 MEC DATA COLLECTION

USAE began the instrument aided reconnaissance survey of the MRS on 6 October 2008. The survey team was equipped with a Minelab Explorer II handheld metal detector to assist in detecting magnetic material potentially obscured by surface vegetation and debris. For data collection, navigation, and GPS tracking, the team used the ruggedized GPS/data collection tool with integrated Geographical Information System (GIS) software and site topographical map overlain with idealized survey transects and cells. Through a series of check-selection and pull-down menus, the GPS/data collection tool provided the ability to digitally record the information collected. The team recorded the following data during the survey:

- The size, type, and location coordinates of each MEC item encountered
- The location and type of any MPPEH, munitions debris, or significant site feature
- The number of surface and subsurface anomaly contacts
- The actual traversed survey tracks
- The actual surveyed cell locations.

At the end of each workday, the USAE Site Manager downloaded, post processed and transferred the electronic survey data to the USAE GIS Manager. The USAE GIS Manager downloaded and retains the electronic data in the USAE GIS Server. The GIS Manager incorporated the electronic data into the Waikane Valley GIS project and created maps to graphically represent the survey data (See Appendix A).

The USAE Team surveyed a total of 14.75 acres within the MRS, completing the instrument-aided reconnaissance survey on 30 October 2008. Figure A-2 provides an overview of the survey. Specific findings of the survey are detailed in Section 3 and Figures A-3 and A-4.

2.2 SOIL SAMPLE COLLECTION

Soil sample collection for the MRS was conducted from 14 through 21 October 2008. The sample collection team consisted of two Environmental Technicians (from subcontractor Wil Chee Planning) collecting samples and two UXO Technicians from USAE providing escort and anomaly avoidance

support. Prior to sampling, the UXO Technicians identified any surface anomalies, and swept each sample location with a metal detector to ensure there were no subsurface magnetic anomalies. If a subsurface magnetic anomaly was encountered, it was assumed to be possible MEC and the sample location was relocated.

Concurrent surface soil sampling for evidence of MC was conducted as part of the field effort. Given the topography of the site and expected depth of MC resulting from the type of munitions known to be used at the site, the design for soil sampling for MC constituents at the MRS consisted of the following:

- Five 10-point composite samples collected within ravines situated along the north valley wall.
- Thirty 10-point composite samples collected in the area downgradient of the north valley wall ravines and scarps toward Waikane Stream and the valley floor.
- Ten discrete samples collected at surface MEC discoveries.
- Five quality control (QC) sample (10 percent of the total primary soil samples).

Composite soil samples were collected at 35 locations throughout the MRS (Figure A-7). Due to heavy vegetation, mountainous topography, and presence of MEC at the MRS, systematic gridding to establish sampling nodes was not possible. Instead, a central sampling node was established at each of the 35 locations and an area of up to 50-feet in diameter was sampled by collecting a 10-point composite sample. Using disposable scoops, two ounces of soil was collected from 0 to 6 inches below ground surface at the center node and placed in a foil-lined mixing bowl. Nine additional increments were also collected at locations radiating outwards between 10 and 50 feet from the center node and placed in the same foil-lined mixing bowl. The soil was then thoroughly mixed using the plastic scoop and gloved hands until a consistent physical appearance was achieved. The composite sample was then transferred from the bowl to a sample container for shipment to the off-site analytical laboratory. A total of 35 primary and 4 QC soil samples were collected from these areas.

Additional biased soil sampling was also employed during the field survey as surface MEC discoveries were made. A total of 10 discrete soil samples and 1 QC sample were collected from 0 to 6 inches below ground surface using disposable plastic scoops. Ten discrete soil samples were collected as described below:

- <u>MEC036</u> Collected from target area where small arms bullet projectiles and 3.5 inch HEAT rockets were visibly present.
- <u>MEC037</u> Collected from target area where small arms bullet projectiles and 3.5 inch HEAT rockets were visibly present.
- <u>MEC038</u> Collected adjacent and downgradient from one, 3.5 inch HEAT rocket.
- MEC040 Collected adjacent and downgradient from one, 2.36 inch HEAT rocket warhead.
- <u>MEC042</u> Collected from a target area where small arms bullet projectiles and 3.5 inch HEAT rockets were visibly present.
- <u>MEC043</u> Collected from a target area where small arms bullet projectiles and 3.5 inch HEAT rockets were visibly present.
- <u>MEC044</u> Collected adjacent and downgradient from one, 3.5 inch HEAT rocket. Located within a ravine area where many 3.5 inch rocket remnants are present.
- <u>MEC046</u> Collected adjacent and downgradient from one, 3.5 inch HEAT rocket. Located inside Grid 18.
- <u>MEC049</u> Collected adjacent and downgradient from one, 3.5 inch HEAT rocket. Located within a ravine area where many 3.5 inch HEAT rocket remnants are present.
- <u>MEC050</u> Collected adjacent and downgradient from one, 3.5 inch HEAT rocket.

Field QC soil samples consisted of co-located field duplicates collected and analyzed at a frequency of 10 percent of the primary soil samples (i.e., 1 QC sample for every 10 primary samples). A total of 5 co-

located field duplicates were collected as follows: 4 from the 35 sampling locations below the north valley wall and 1 from a discrete MEC discovery area. Co-located field samples were acquired by collecting soil increments up to 6 inches from the original increment location in the same manner as the primary soil sample.

2.2.1 SUMMARY OF ANALYTICAL RESULTS

Fifty soil samples (45 primary, and 5 QC duplicates) were collected during this site investigation and submitted for laboratory analysis. The analytical laboratory, Curtis and Tompkins, used standard analytical methods as outlined in the USEPA publication SW-846, *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods* (USEPA, 1998). Primary and QC analytical results are presented in table format in Appendix B. Soil samples were analyzed for the following:

- Nitroaromatics and Nitroamines by USEPA Method 8330
- Heavy Metals (aluminum, antimony, barium, chromium, copper, iron, lead, nickel, and zinc) by USEPA Method 6010B

Analytical results were screened against the PALs which consisted of the revised 2009 Hawaii Department of Health (HDOH) Environmental Action Levels (EALs), or USEPA Region 9 2009 residential Regional Screening Levels (RSLs), whichever was more stringent. The HDOH EALs consider both ecological endpoints and human health endpoints. Given this, the screening against EALs is considered to be consistent with the objectives and requirements of Tier 1 (Screening Risk Assessment, or SRA) of the U.S. Department of Navy's overall tiered framework for ecological risk assessment (Navy, 2003).

In order to differentiate between naturally-occurring background levels of MC at WVTA, the analytical results for metals in the soil samples were also compared to the 95th percentile background concentrations of metals from the *Environmental Background Analysis of Metals in Soil at Navy Oahu Facilities*, Pacific Division, Naval Facilities Engineering Command (Earth Tech, 2006). Koolau soils described in Section 1.2.2 are covered under this background analysis. The Koolau volcanic series is the type of Caprock from which the soil at Waikane Valley was derived.

A comparison of analytical results to PALs and background levels is presented in Appendix B, 2008 Summary Table of Analytical Results. For all but four samples (MEC019, MEC021, MEC042, and MEC043), the results indicate the soil sample concentrations are well below the screening criteria (background concentration and PALs), as shown in the Summary Table.

This space is intentionally left blank.

3.0 SITE INSPECTION FINDINGS3.1 MUNITIONS AND EXPLOSIVES OF CONCERN

Significant evidence of MEC was discovered on the ground surface (Figure A-3), and visual evidence of MD appeared in similar distribution to the MEC (Figure A-4). A total of 70 UXO items were found, including 1 2.36-inch shoulder fired HEAT rocket warhead, 66 3.5-inch shoulder fired HEAT rockets, and 3 HEAT rifle grenades. MD consisted mostly of debris from 2.36-inch and 3.5-inch rockets, rifle grenades, and expended small arms rounds, along with one base section from a 75 mm projectile and an expended M32 percussion primer from a 60mm mortar ignition cartridge. No other evidence of mortars or projectiles was found.

During the reconnaissance, numbers and locations of surface and subsurface anomalies were collected on GPS/data collection tools. USAE analyzed the ground reconnaissance results in order to establish contour maps for surface and subsurface density distribution. A multiplier (total site acreage divided by acreage surveyed) was applied to the surface and subsurface counts. The surface and subsurface counts were then multiplied by the calculated multiplier. By applying this multiplier, the surface and subsurface counts better represent actual conditions throughout the entire site, not just the areas surveyed. The reconnaissance data is then run through the Density function inside Spatial Analyst, a module of ArcGIS. This density function analyzes each point in the reconnaissance data, searches for other data points within a pre-determined radius and uses the values to interpolate density contours for the entire area that was surveyed. The resulting density data can then have colors assigned to density ranges and can be displayed on a map (see Figures A-5 and A-6).

Since the spatial density maps are based on interpolation of data, the color contours cannot be relied on alone for location of target areas. For example, some contours on the eastern and southern boundaries extend outside the boundaries of WVTA when in fact no reconnaissance was performed outside the boundaries. The purpose for developing the contours was to determine approximately where the denser concentrations of MEC may exist. USAE compared the contour data to hard evidence of MEC and personal observations of the Site Manager to outline four distinct target areas (Figure A-8 and Photos D-24 and D-25).

The suspected target locations are characterized by steep slopes, severe erosion, and various degrees of vegetation densities. It was noted during the survey that, over the years since munitions were last fired into these suspected target locations, severe erosion has caused significant movement of the MEC and MD from original locations on higher ground where targets were once situated to the lower valleys and flat land areas to the south. Traversing the terrain within the suspected target locations is very difficult. A majority of the steep slopes are inaccessible, but most of the valleys within these locations, and the flat land areas below the targets south towards Waikane stream are accessible.

3.2 MUNITIONS CONSTITUENTS

The analysis of soil samples reveals a potential for copper and lead contamination above PALs within very localized areas (MEC019, MEC021, MEC042, and MEC043). The localized concentrations of copper and lead are believed to be related to high concentrations of munitions debris and the results of past operational practices (see Figure A-7). Validated analytical results are presented in Appendix B.

3.2.1 NITROAROMATICS AND NITROAMINES

No nitroaromatics or nitroamines were detected at concentrations exceeding the PALs. In addition, all laboratory reporting limits were below the respective PALs for each nitroaromatic and nitramine compound.

3.2.2 METALS

<u>Aluminum (Al)</u>

All fifty samples (45 primary and 5 QC) contained detectable concentrations of aluminum ranging from 25,000 milligrams per kilogram (mg/kg) to 73,000 mg/kg, below the PAL of 77,000 mg/kg. All laboratory reporting limits for aluminum were below PALs.

The 95th percentile background concentration of aluminum found in Koolau volcanic soils is 93,900 mg/kg, suggesting that detections of aluminum may be a result of naturally occurring processes (Earth Tech, 2006). Based on these factors, aluminum is not considered a chemical of potential concern (COPC) for this site.

Antimony (Sb)

Seven samples (5 primary and 2 QC) contained detectable concentrations of antimony ranging from 0.2 mg/kg to 4.3 mg/kg, below the PAL of 6.3 mg/kg. All laboratory reporting limits for antimony were below PALs.

The 95th percentile background concentration of antimony found in Koolau volcanic soils is 6.9 mg/kg, suggesting that detections of antimony may be a result of naturally occurring processes (Earth Tech, 2006). Based on these factors, antimony is not considered a COPC for this site.

<u>Barium (Ba)</u>

All fifty samples (45 primary and 5 QC) contained detectable concentrations of barium ranging from 14 mg/kg to 120 mg/kg, below the PAL of 750 mg/kg. All laboratory reporting limits for barium were below PALs.

The 95th percentile background concentration of barium found in Koolau volcanic soils is 181 mg/kg, suggesting that all detections of barium may be a result of naturally occurring processes (Earth Tech, 2006). Based on these factors, barium is not considered a COPC for this site.

Chromium (Cr)

All fifty samples contained concentrations of chromium ranging from 210 mg/kg to 400 mg/kg, below the PAL of 500 mg/kg. All laboratory reporting limits for chromium were below PALs.

The 95th percentile background concentration of chromium found in Koolau volcanic soils is 483 mg/kg, suggesting that all detections of chromium may be a result of naturally occurring processes (Earth Tech, 2006). Based on these factors, chromium is not considered a COPC for this site.

<u>Copper (Cu)</u>

Four samples (3 primary and 1 QC) contained concentrations of copper which exceed the PAL of 230 mg/kg. Primary samples MEC019, MEC042, MEC043, and QC sample MEC021 contained copper at respective concentrations of 350 mg/kg, 1,300 mg/kg, 360 mg/kg, and 250 mg/kg. The remaining forty-six samples contained concentrations of copper ranging from 62 mg/kg to 190 mg/kg, below the PAL of 230 mg/kg. All laboratory reporting limits for copper were below PALs.

The 95th percentile background concentration for copper in Koolau volcanic soils is 183 mg/kg. Based on these factors, copper detected in concentrations exceeding the PAL of 230 mg/kg is considered a COPC for this site. To further evaluate the potential for ecological risk from copper, an assessment consistent with the objectives and requirements of Step 3a of Tier 2 (Baseline Ecological Risk Assessment, or

BERA) of the Navy's overall tiered process was conducted, and is provided as Appendix F. The results indicate that risk to ecological receptors is *de minimis* and meets the HDOH regulatory limits for copper.

<u>Iron (Fe)</u>

All fifty samples (45 primary and 5 QC) contained concentrations of iron which exceed the PAL of 55,000 mg/kg. Detection of iron ranged in concentration from 64,000 mg/kg to 140,000 mg/kg. All laboratory reporting limits for iron were below PALs.

The 95th percentile background concentration of iron found in Koolau volcanic soils is 177,000 mg/kg, suggesting that detections of iron may be a result of naturally occurring processes (Earth Tech, 2006). Based on these factors, iron is not considered a COPC for this site.

<u>Lead (Pb)</u>

Two primary samples contained concentrations of lead which exceed the PAL of 200 mg/kg. Samples MEC019 and MEC042 contained lead at respective concentrations of 350 mg/kg and 960 mg/kg. In addition, forty-one samples (36 primary and 5 QC) contained lead at concentrations ranging from 0.25 mg/kg to 120 mg/kg, below the PAL of 200 mg/kg. All laboratory reporting limits for lead were below PALs.

The 95th percentile background concentration of lead found in Koolau volcanic soils is 100 mg/kg. Based on these factors, lead detected in concentrations exceeding the PAL of 200 mg/kg is considered a COPC for this site. To further evaluate the potential for ecological risk from lead, an assessment consistent with the objectives and requirements of Step 3a of Tier 2 (Baseline Ecological Risk Assessment, or BERA) of the Navy's overall tiered process was conducted, and is provided as Appendix F. The results indicate that risk to ecological receptors is *de minimis* and meets the HDOH regulatory limits for lead.

Nickel (Ni)

Twelve primary samples contained concentrations of nickel ranging from 150 mg/kg to 230 mg/kg, exceed the PAL of 150 mg/kg. The remaining thirty-eight samples (33 primary and 5 QC) contained nickel at concentrations ranging from 33 mg/kg to 140 mg/kg, below the PAL of 150 mg/kg. All laboratory reporting limits for nickel were below PALs.

The 95th percentile background concentration of nickel found in Koolau volcanic soils is 346 mg/kg, suggesting that detections of nickel may be the result of naturally occurring processes. Based on these factors, nickel is not considered a COPC for this site.

<u>Zinc (Zn)</u>

All fifty samples (45 primary and 5 QC) contained detectable concentrations of zinc ranging from 50 mg/kg to 190 mg/kg, below the PAL of 600 mg/kg. All laboratory reporting limits for zinc were below PALs.

The 95th percentile background concentration of zinc found in Koolau volcanic soils is 197 mg/kg, suggesting that detections of nickel may be the result of naturally occurring processes. Based on these factors, zinc is not considered a COPC for this site.

4.0 REVISED CONCEPTUAL SITE MODEL

The conceptual site model (CSM) (Figure A-8) describes the site and its environmental setting and presents information regarding MEC and MC contaminant sources, MEC and MC migration pathways, and receptor exposure pathways potentially present at the MRS. The data collected during this SI has been used to revise the CSM, and to confirm or deny the preliminary conclusions presented with the Preliminary CSM during work plan development.

4.1 SOURCE AREA AND SOURCE MEDIA

The preliminary assessment identified the source areas for WVTA as impact areas on the steep slopes above Waikane Stream. Source media was assumed to be the following types of MEC:

- Mortars, 60mm and 81mm
- Rockets, 2.36 inch and 3.5 inch
- Grenades, Smoke and HE
- Projectiles, HE
- Signal Flares
- Small Arms.

During the SI, the entire suspect area was investigated and sampled for the continued presence of source media (e.g., impacted soils and munitions) and sampled for the continued presence of MC.

The SI confirmed presence of small arms, rifle grenades, and 2.36-inch and 3.5-inch rockets as source media at WVTA. In addition, evidence gathered during the reconnaissance survey indicates that 4 distinct target areas were used within the MRS. These target areas are shown on Figure A-8. The targets were apparently used for practice firing of rockets and rifle grenades. The 75 mm base plate and percussion primer for a mortar ignition cartridge found during the SI were apparently kick-outs from detonations at other targets on the adjacent FUDS property.

The preliminary CSM considered aluminum, antimony, barium, chromium, copper, iron, lead, nickel, and zinc as potential MC because of their use in production of the above source media. Nitroamines and nitroaromatics were potential MC because of their use as propellants and explosives.

SI sampling results for all analytes showed that four samples (MEC019, MEC021, MEC042, and MEC043) exceeded the 230 mg/kg PAL for copper (maximum concentration 1,300 mg/kg) and two of those four samples (MEC019 and MEC042) exceeded the 200 mg/kg PAL for lead (maximum concentration 960 mg/kg. None of the samples exceeded PALs for explosives. The 4 samples were taken from points shown on Figure A-7, and are located within the target areas identified in Figure A-8.

4.2 RELEASE PROFILE, EXPOSURE MEDIA, AND EXPOSURE ROUTES

4.2.1 MUNITIONS AND EXPLOSIVES OF CONCERN

The release profile for the potential MEC contamination at or below the ground surface is identified to be MEC transported through human activities, surface water run-off, or soil erosion. The potential exposure media would include surface soil, subsurface soil, and inland surface water sediments. Transport pathways leading to potential exposure to on-site receptors tend to result in reduced MEC exposure at receptor points distant from the site. The target areas identified during the SI are located in steep, unstable areas subject to erosion. The exposure route for MEC hazards is exclusively direct contact.

4.2.2 MUNITIONS CONSTITUENTS

The release profile for the potential MC contamination is identified as MC transported with soil erosion, surface water, or groundwater. The potential exposure media would include surface soils, subsurface soil, and inland surface water sediments.

Transport pathways leading to potential exposure to on-site receptors also tend to result in reduced MC concentrations at receptor points distant from the MRS. Although chemicals from MEC items may have leached into the soil, conditions at the site are not conducive to migration of heavy metals contaminants through subsurface soil to the groundwater. In addition, groundwater at the site quickly empties into Waikane Stream because of the steep terrain and underlying rock strata, and is transported to the Pacific Ocean approximately one mile downstream. This significantly reduces the potential for human exposure to MC in groundwater.

Chemical transport with groundwater may result in MC entering the Waikane Stream, which is downgradient from the four sampling locations which exceeded PALs. Attenuation processes are likely to reduce chemical concentrations to the point that exposure at the Stream is insignificant, and therefore this pathway is considered incomplete for all on-site receptors. The potential risks to ecological receptors associated with surface water and sediment will be further evaluated during a Remedial Investigation (RI).

4.3 RECEPTORS

4.3.1 HUMAN

The CSM evaluates three potential human receptor groups: (1) future onsite residents and construction workers, (2) current and future offsite residents, and (3) current and future recreational users. There are currently no onsite residents.

4.3.2 ECOLOGICAL

The ecological receptor CSM evaluates two potential receptor groups: (1) terrestrial wildlife, and (2) aquatic wildlife. No nitrates exceeding PALs were found during the SI. To further evaluate the potential for ecological risk from copper and lead, an assessment consistent with the objectives and requirements of Step 3a of Tier 2 (Baseline Ecological Risk Assessment, or BERA) of the Navy's overall tiered process was conducted, and is provided as Appendix F. The Hawaiian short-eared owl, or pueo, was selected as the assessment endpoint because it is a species of concern in the State of Hawaii, may at times forage on small animals at WVTA, and is therefore a potential receptor of contaminants occurring there. The pueo would be expected to experience a high-end exposure to any potential MC due to its position in the food web, and therefore is considered a conservative representation of other birds using the site.

4.4 PATHWAY ANALYSIS

Figure A-8 represents the revised CSM that illustrates both MEC and MC source-receptor interactions at WVTA.

4.4.1 HUMAN

Analysis of the profile information allowed USAE to identify source-receptor interactions (exposure pathways) for the MRS. For MEC, exposure pathways at WVTA include source, access, activity and receptor. For MC, exposure pathways include source, and exposure medium, and exposure route, and receptor.

For the source area (targets) identified in Figure A-8, the MEC contaminants are mortars, rockets, grenades, and small arms. MEC exists on the surface and subsurface. If disturbed or handled

inappropriately, the MEC items could pose a serious explosive hazard. Interaction for the MEC component of this CSM requires an exposure route (access) and exposure media. Current access to the source area is somewhat restricted by heavy vegetation, rough terrain, and a chain-link fence, but there is ample evidence that humans access the source area. Activities, which can bring receptors into contact with potential MEC are boar hunting, all-terrain vehicle riding, recreational use, and potential future residential or construction activities. All on-site receptors have the potential for exposure.

For the MC source area (targets) identified in Figure A-8, the COPC are copper and lead. The sourcereceptor interaction requires an exposure medium and an exposure route. The MC exposure media for this MRS has been identified as surface soil, subsurface soil, surface water/sediments, and groundwater. Surface soil, subsurface soil, and surface water/sediment exposure routes are dermal contact and incidental ingestion. Inhalation of windblown particulates is not considered a potentially complete exposure route because of the wet climate, heavy vegetation, and high canopy which provides protection from the wind. The potential risks to human receptors associated with surface water and sediment will be further evaluated during the RI.

Excavation conducted by future onsite residents, construction workers, and recreational users (or trespassers) may result in direct contact with exposure to MEC and exposure to MC contaminated subsurface soil. Serious erosion of the target areas has occurred in the past and further erosion is anticipated in the future, but there is no evidence that this previous erosion has caused migration of MEC to Waikane Stream, where it would be subject to transport off site. The exposure pathway to off-site receptors is considered incomplete because of the attenuating effect of distance from the site.

Hawaiian rains are essentially free of the industrial acids and other chemicals typically associated with dissolving metals in soils, and therefore metals do not migrate easily through subsurface soil to the groundwater. Although a drinking water aquifer is located below this site, groundwater at the site passes quickly into Waikane Stream because of the steep terrain, and empties into the Pacific Ocean approximately a mile downstream. Since metals in soil have a low affinity for dissolving in the local waters, and since the groundwater passes quickly through the site and to the ocean, this pathway is considered incomplete.

4.4.2 ECOLOGICAL

Analysis of the profile information allowed USAE to identify source-receptor interactions (exposure pathways) for the MRS. Onsite ecological receptors may be exposed to MEC lying on the surface or in the root zone. Terrestrial animals are subject to exposure to MEC hazards, either by traveling across the surface or burrowing.

Foraging activities of onsite terrestrial ecological receptors (such as the short-eared owl) may result in direct contact exposure to contaminated soil, and burrowing activities may result in direct contact exposure to contaminated subsurface soil. The pathway is incomplete for terrestrial animals to contact MC in on-site groundwater, since metals have a low affinity for dissolving in the local waters, and since the groundwater passes quickly through the site and to the ocean. The potential risks to ecological receptors associated with surface water and sediment will be further evaluated during the RI.

The BERA results indicate that risk to ecological receptors is *de minimis* and meets the HDOH regulatory limits for copper and lead. Therefore, any residual risk from these metals would be limited to potential human exposures.

5.0 MUNITIONS RESPONSE SITE PRIORITIZATION PROTOCOL

In 2001, Congress directed that the DoD identify and then prioritize their munitions response sites (MRSs). The protocol was published as a rule on 5 October 2005 (35 CFR Part 179). The protocol was designed to: 1) maximize use of the latest MRS-specific data, and 2) be applied early in the munitions response process. The protocol assigns a relative priority to each location in the DoD's inventory of defense sites known or suspected of containing UXO, DMM, or MC, and prescribes procedures for prioritizing the defense sites and general component responsibilities.

The site priority ranking is based on the risk posed by potential hazards captured in data entered for three hazard evaluation modules of the munitions response site prioritization protocol (MRSPP): explosive hazard evaluation (EHE) module, chemical warfare materiel (CWM) hazard evaluation (CHE) module, and the health hazard evaluation (HHE) module. Separate MRSPP tables (EHE Tables 1 through 10, CHE Tables 11 through 20, HHE Tables 21 through 28, MRS Priority Table 29, and MRS Background Information Table A) were completed.

MRS priorities range from 1 (highest priority) to 8 (lowest priority). Alternative module rates can include *evaluation pending, no longer required,* or *no known or suspected explosive (explosive, CWM, and/or MC) hazard.* Only sites with a CHE rating of A qualify for a MRS priority of 1. The Waikane Valley Training Area was not known or suspected to have CWM. MRS priorities were initially assigned to the site in 2007. Updated MRS priority tables are presented in Appendix E and summarized below.

Table 5-1: Summary of MRS Priority or Alternative MRS Rating

Munitions Response Site	EHE	CHE	HHE	MRS
	Priority	Priority	Priority	Priority
Former Waikane Valley Impact Area (UXO 0022)	3			3

Note:

-- No known or suspected CWM, or HHE hazard, as applicable

6.0 CONCLUSIONS AND RECOMMENDATIONS6.1 CONCLUSIONS

SI activities were conducted at WVTA. Field activities included an instrument-aided reconnaissance and collection of surface soil samples. The visual inspection entailed inspection of a total of 14.75 acres.

The survey team found substantial evidence of MEC remaining at the MRS. The heaviest concentrations of MEC are associated with four target areas identified on Figure A-8. The suspected target locations are characterized by steep slopes, severe erosion, and lack of vegetation. The steepest slopes are inaccessible except by rappelling, but the areas below the targets are accessible. The following MEC items, which were considered as UXO because they were fired and fuzed, were found:

- 2.36-inch HEAT rocket warhead 1 UXO
- 3.5-inch HEAT rockets 66 UXO
- HEAT rifle grenades 3 UXO.

MD consisted mostly of debris from 2.36-inch and 3.5-inch rockets, rifle grenades, and expended small arms rounds, along with one base plate from a 75 mm projectile and a percussion primer for a mortar ignition cartridge. No other evidence of mortars or projectiles was found.

A total of 50 surface soil samples were collected, including 35 composite samples collected between Waikane stream and the north wall, 10 discrete samples at locations of MEC finds, and 5 QC samples. The samples were tested for explosives (nitroaromatics and nitroamines) and heavy metals (aluminum, antimony, barium, chromium, copper, iron, lead, nickel, and zinc). The analytical results were compared against criteria specified in Section 3 of this report, which included EPA Region 9 RSLs, HDOH EALs, and soil background criteria. SI sampling results for all analytes showed that four samples (MEC019, MEC021, MEC042, and MEC043) exceeded the 230 mg/kg PAL for copper (maximum concentration 1,300 mg/kg) and two of those four samples (MEC019 and MEC042) exceeded the 200 mg/kg PAL for lead (maximum concentration 960 mg/kg). The localized concentrations of copper and lead are believed to be related to high concentrations of munitions debris and the results of past operational practices (Figure A-7). The results of the BERA indicate that risk to ecological receptors is *de minimis* and meets the HDOH regulatory limits for copper and lead. Therefore, any residual risk from these metals would be limited to potential human exposures. The results indicate no detectable concentrations of explosive MC.

6.2 **RECOMMENDATIONS**

Historical data and survey results support the need for further munitions response at the MRS under the MMRP. An RI is recommended, consisting of a 100% surface sweep of MEC areas identified by this SI and shown on Figure A-8. This surface sweep should focus on accessible terrain north of the Waikane stream within or below the suspected target locations, clearing the areas of all surface MEC and MD.

Following the surface clearance, a subsurface anomaly investigation should be completed within the surface-cleared areas in order to determine depth of penetration and density of MEC within each target area. Grids of 50 feet by 50 feet, with 8 grids spread across the target (a total of 2 acres for the 4 targets) will be sufficient to characterize the MEC hazard at the targets. Within these grids, 100 percent of the anomalies should be investigated to depth of detection using hand-held metal detectors.

Soil samples should also be taken near the sites of previous Samples MEC019, MEC021, MEC042, and MEC043 to establish the extent of the localized copper and lead impacts. Sediment samples should be taken at Waikane Stream to determine whether copper or lead have reached the stream. Upon the completion of the RI, a feasibility study, if needed, should explore the various remediation alternatives for dealing with the residual risk.

7.0 REFERENCES

- Juvik, Sonia P. and James O. Juvik, eds. et al. (Juvik and Juvik), Atlas of Hawaii, Third Edition. Department of Geography, University of Hawaii at Hilo, November 1998.
- Marine Corps Base Hawaii. 2004. Draft Environmental Assessment (EA) for the Proposed United States Marine Corps (USMC) Jungle Warfare Training Waikane Valley, Oahu, Hawaii. September.
- United States Army Engineering and Support Center, Huntsville. 2006. Draft Engineering Evaluation/Cost Analysis (EE/CA) Report Plan, Former Waikane Valley Training Area, Island of Oahu, Hawaii.
- United States Department of Agriculture, Soil Conservation Service (USDA SCS), Soil Survey of Islands of Kauai, Oahu, Maui, Molokai, and Lanai, State of Hawaii. In cooperation with the University of Hawaii Agricultural Experiment Station, August 1972.
- United States Environmental Protection Agency (USEPA). 1997. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846

United States Geological Survey. 1999. Ground Water Atlas of the United States, HA 730-N.

Hawaii Department of Health, 1999. Island of Oahu Underground Injection Control Areas.

End of document

SITE INSPECTION REPORT MUNITIONS RESPONSE PROGRAM WAIKANE VALLEY TRAINING AREA KANEOHE, HAWAII

APPENDIX A. SITE MAPS AND FIGURES

This appendix contains the following figures:

- Figure A-1. Location Map
- Figure A-2. Reconnaissance Overview Map
- Figure A-3. MEC (UXO) Surface Findings Map
- Figure A-4. Munitions Debris Surface Findings Map
- Figure A-5. Estimated MEC/MD Surface Density Map
- Figure A-6. Estimated Subsurface Anomaly Density Map
- Figure A-7. Soil Sample Location Map
- Figure A-8. Conceptual Site Model

APPENDIX B. MC DATA SUMMARY TABLE AND DATA VALIDATION REPORTS

This appendix contains the following tables:

- Summary Table of Analytical Results
- Data Validation Reports.
- Environmental Assessment sampling results 9 May 2003
- Environmental Assessment sampling results 16 June 2003

	Project	Project	MEC001	MEC002	MEC003	MEC004	MEC005	MEC006	MEC007	MEC008	MEC009	MEC010	MEC011	MEC012	MEC013	MEC014	MEC015	MEC016
	concentrations	Limit	10/14/2008	10/14/2008	10/14/2008	10/14/2008	10/14/2008	10/14/2008	10/14/2008	10/15/2008	10/15/2008	10/15/2008	10/15/2008	10/15/2008	10/15/2008	10/15/2008	10/15/2008	10/15/2008
	(mg/kg)	(mg/kg)	Sd	PS	PS	PS	Sd	PS	PS	Sd	PS	PS	QC	PS	Sd	PS	PS	PS
Ĩ			15	20	16	18	13	18	16	16	16	18	18	14	15	16	18	10
RL	93.900	77.000 ¹	160	210	170	061	140	190	170	021	170	190	190	150	160	021	190	200
esult			29,000	34,000	30,000	34,000	35,000	30,000	33,000	46,000	73,000	36,000	33,000	46,000	52,000	46,000	35,000	42,000
JDL			0.24	0.32	0.26	0.29	0.22	0.3	0.26	0.26	0.27	0.29	0.3	0.23	0.25	0.26	0.29	0.31
RL	6.9	6.3	0.82	1.1	0.89	0.98	0.76	-	0.94	0.88	0.94	0.96	-	0.81	0.91	0.91	-	1.1
ADI			0.055	007 007	0.058	0.065	0.040	0.068	0.050	0.06	0.061	0.066	0.068	0.051	0.057	0.050	0.065	000
RL	181	750	0.41	0.53	0.45	0.49	0.38	0.51	0.47	0.0	0.47	0.48	0.51	0.4	0.45	0.45	0.5	0.53
tesult			77	69	75	63	19	26	79	120	45	52	52	6L	83	75	71	68
4DL		001	0.05	0.066	0.053	0.06	0.045	0.062	0.054	0.054	0.055	0.06	0.062	0.047	0.052	0.054	0.059	0.064
RL acult	483	000	0.41	0.53	0.45	0.49	0.38	0.51 270	0.47	0.44	220	0.48	0.51	0.4	0.45	0.45	0.5	0.53
4DL			0.084	0.11	0.09	0.0	0.075	0.1	0.091	0.092	0.093	0.1	0.1	0.079	0.087	00c	0.1	0.11
RL	183	230	0.41	0.53	0.45	0.49	0.38	0.51	0.47	0.44	0.47	0.48	0.51	0.4	0.45	0.45	0.5	0.53
tesult			88	94	100	110	120	66	100	120	110	79	85	100	120	110	78	110
4DL		4 4 4 4 1	14	19	15	17	13	18	15	15	16	17	18	13	15	15	17	18
RL	177,000	55,000	160	210	170	120,000	040	00 000	170	170 e1 000	110,000	00 000	06 000	150	01 000	75 000	000	200
ADI			04,000	/8,000	0.000	1.20,000	000/6	000,26	000///	0.005	0.007	0.11	96,000	0.00/	0.001	000,67	000,c8	0.11
RL	100	200	0.41	0.53	0.45	0.49	0.38	0.51	0.47	0.44	0.47	0.48	0.51	0.4	0.45	0.45	6.2	0.53
esult			0.26 J	1.5	2.7	3.5	ND	QN	1.6	0.33 J	5.1	7.1	8.2	5.3		4.5	QN	7.2
JDL			0.071	0.094	0.076	0.085	0.064	0.088	0.077	0.077	0.079	0.086	0.088	0.067	0.074	0.077	0.084	0.091
RL	346	150	0.41	0.53	0.45	0.49	0.38	0.51	0.47	0.44	0.47	0.48	0.51	0.4	0.45	0.45	0.5	0.53
tesult			74	77	72	81	120	86	81	150	170	76	94	190	150	130	96	160
4DL	t0;	002	0.13	0.17	0.14	0.15	0.11	0.16	0.14	0.14	0.14	0.15	0.16	0.12	0.13	0.14	0.15	0.16
RL	197	000	0.1 666	1.2	1.8 85	7	C:1	7 53	80	1.8	48 68	78	7	8/	100	00	7	1.2
TINGA]	00	<i>C</i> /	62	6	*	76	00	60	00	0/	00	ŧ	100	66		DC T
4DL			0.032	0.032	0.032	0.032	0.031	0.031	0.031	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032
RL		0.25	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
tesult			ŊŊ	ND	ND	Ŋ	ND	QN	ND	ŊŊ	Ð	Q	Ð	ND	ND	ND	Ŋ	ND
4DL		ç	0.058	0.057	0.057	0.057	0.056	0.056	0.056	0.057	0.057	0.057	0.057	0.057	0.058	0.057	0.057	0.057
RL		0.2 ⁻	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
ADI			0.013	0.013	0.013	0013	0.013	0.013	0.013	0.013	0.013	0013	0.013	0.013	0.013	0.013	0.013	0.013
RL		0.2^{2}	0.01	0.2	0.2	0.2	0.01	0.02	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
esult			QN	ND	ŊD	ΩN	ND	QN	ND	Q	Ð	Ð	₽	Q	ND	QN	QN	QN
JDL			0.018	0.018	0.018	0.018	0.017	0.017	0.017	0.017	0.017	0.018	0.017	0.017	0.018	0.018	0.017	0.018
RL		2.7	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
tesult	T		UD 1000	ND 0.021	ND 0.021	ND 0.021	ND 0021	UD 1500	ND 0021	ND	ND 0.021	ON 150 0	UN 1200	ND 120 0	ND	ND	ND 0.021	ND 0021
RL		2.6	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
esult			QN	ND	ŊD	QN	ND	QN	ND	Q	Ð	Ð	Ð	Ð	ND	QN	QN	QN
MDL			0.06	0.059	0.059	0.059	0.058	0.058	0.058	0.059	0.059	0.059	0.059	0.058	0.059	0.059	0.059	0.059
RL		100	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
tesult			QN D	DND	UD 0012	ON DIA D	DN DI	ON DI	DND	UN 2100	UN P100	QN 5	0.092 J b	UN DI DI	ON 100	DN DI D	UN DI DI	Q
RI		0.11	/ 10:0	0.01/	0.01/	0.01	/10:0	0.01 /	0.01/	/ 10:0	/ 10:0	0.0	/ 10:0	0.7	/10.0	/10:0	0.7	0.7
esult			Q	n DN	RD N	DN	DN	0.019 J b	QN	Q	Ð	0.021 J b	Ð	n da	QN	QN	n da	Ð
4DL			0.043	0.043	0.043	0.043	0.042	0.042	0.042	0.042	0.042	0.043	0.042	0.042	0.043	0.043	0.043	0.043
RL		0.0032	0.4	0.4	0.4	0.4	0.39	0.39	0.39	0.4	0.39	0.4	0.39	0.39	0.4	0.4	0.4	0.4
ADL			0.044	0.044	0.044	0.044	0.043	0.043 0.043	0.043	a t 90.0 0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044
RL		6.7	0.4	0.4	0.4	0.4	0.39	0.39	0.39	0.4	0.39	0.4	0.39	0.39	0.4	0.4	0.4	0.4
tesult			QN	ND	ŊŊ	QN	ND	QN	ND	QN	Ð	Q	Ð	Q	ND	ND	QN	ND
MDL			0.067	0.067	0.067	0.067	0.066	0.066	0.066	0.067	0.066	0.067	0.066	0.066	0.067	0.067	0.067	0.067
KL ecult		77.0	0.4 ND	0.4 UN	0.4 0.060.1 h	0.4 ND	0.39	0.39	0.39 ND	4.0 UN	95.0 UN	0.4 UN	0.39 UN	0.39 ND	0.4 ND	0.4 ND	0.4 ND	0.4 UD
ADI.			0.043	0.043	0.043	0.043	0.042	0.040	0.047	0.047	0.047	0.043	0.042	0.047	0.043	0.043	0.043	0.043
RL		0.02	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
tesult			QN	0.08 J b	ND	QN	ND	QN	ND	QN	ND	ND	ND	ND	ND	ND	ND	ND
MDL			0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015
KL		9. 4	0.7	2:0 CIN	0.2 UN	270 CIN	0.2 ND	0.2 ND	0.2 ND	7.0 VIN	7:0 N	7'N	7.0 V	7:0	770 ND	770 ND	7:0 VIN	2:0 UN
4DL			0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028
RL		49	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
tesult		T	QN OF COLOR	UN 01000	ND A M70	UN 0000	DN ND	ON EFee o	DND C	UN ON	ON PERSON OF	ON OF C	ON PERSON OF	ON PErce o	UN 0L00 0	UN 0000 0	ND 0 0070	UN 0100 0
ADL RL		0.68	0.00/9	0.00/8	0.0078	0.00/8	0.007 /	0.007/	0.0077	0.00/8	0.007	0.00/8	0.0077	0.007	0.00/8	0.00/8	0.00/8	0.00/8
esult		;	Ð	QN	Ð	QN	QN	Ð	QN	Ð	Ð	Ð	Ð	Ð	QN	QN	QN	Ŋ
1																		

and 4-amino-2.6-dinitrotoluene are 0.095 nese levels are below both the analytical roject action levels will be set at the EAL exists

b. The target analyte detection is below one half the reporting limit. These estimated detections are qualified not only with a J, but also with a b.

C: Presence confirmed, but relative percent difference between columns exceeds 40%.
 J: The quantitation is an estimation
 PS: Primary sample
 PS: Primary sample
 OC: Quality control sample
 OC: Quality control sample
 Dold values exceed the background value and the Project Action Limit
 Background values are the 95th percentile from the Environmental Background analysis of Meals is not at Navy Cahur Facilities, Pacific Division, Naval Facilities Engineering Command 2006.

Samula Number	
Sample Date	
Sample Type	
EPA Method SW6010B (mg/kg)	2
Aluminum	Z I Z
Antimony	
Barium	
Chromium (total)	ž V I ž
Copper	N N N
Iron	2 2
Lead	2 2
Nickel	2
Zinc	2 2
EPA Method SW8330B (mg/kg)	
2-Amino-4,6-Dinitrotoluene	2 7 2
4-Amino-2,6-Dinitrotoluene	2 2
1,3-Dinitrobenzene	× - ×
2,4-Dinitrotoluene	2 2
2,6-Dinitrotoluene	
HMX	2
Nitrobenzene	2 2
2-Nitrotoluene	2 2
3-Nitrotoluene	2 2
4-Nitrotoluene	> - 3
RDX	2 2
1,3,5-Trinitrobenzene	
Trinitrophenylmethylnitramine	
2,4,6-Trinitrotoluene	ž > T ž
¹ : EPA Region 9 residential RSL, no HD	OHE
² : The HDOH EALs for 1,3-dinotrobenz mg/kg and 0.12 mg/kg respectively. Sir method and laboratory detection limits,	ene, a ce the the pro
laboratory quantitation limit of 0.2 mg/kg	_

Project background	Project Action	MEC017	MEC018	MEC019	MEC020	MEC021	MEC022	MEC023	MEC024	MEC025	MEC026	MEC027	MEC028	MEC029	MEC030	MEC031	MEC032	MEC033	MEC034
concentrations	Limit (mo/ka)	10/15/2008	10/16/2008	10/16/2008	10/16/2008	10/16/2008	10/16/2008	10/16/2008	10/16/2008	10/16/2008	10/16/2008	10/16/2008	10/16/2008	10/16/2008	10/16/2008	10/16/2008	10/16/2008	10/16/2008	0/20/2008
(Su Sm)	(9 ₄₁ ,9 ₁₁₁)	Sd	PS	PS	Sd	QC	PS	Sd	Sd	PS	PS	PS	Sd	SA	SA	QC	PS	Sd	Sd
		16	15	16	18	19	18	17	18	17	22	14	20	14	18	17	19	19	18
93,900	77,000 ¹	170	160	160	190	200	190	180	190	180	230	150	210	150	190	180	200	200	180
		46,000	44,000	44,000	45,000	48,000	34,000	51,000	38,000	25,000	36,000	37,000	28,000	49,00	35,000	27,000	27,000	42,000	61,000
		0.27	0.25	0.25	0.29	0.31	0.29	0.28	0.29	0.28	0.35	0.23	0.32	0.23	0.29	0.28	0.31	0.31	0.29
6.9	6.3	0.93	0.91	0.85	- 5	- 1	- ;	0.98	0.96	16.0	1.2	0.81		0.82	0.94	0.94	1.1		0.94
		0.061	0.057	L/CD	0.066	0.069	0.067	0.063	0.065	0060	0.079	0.053	0.073	0.053	0.065	0.064	0.071	0.069	L C.U
181	750	0.46	0.45	0.42	0.5	0.51	0.51	0.49	0.48	0.45	0.6	0.4	0.54	0.41	0.47	0.47	0.54	0.51	0.47
		28	82	17	35	40	59	57	30	39	50	72	73	94	65	55	70	100	85
		0.055	0.052	0.053	0.06	0.063	0.061	0.057	0.06	0.057	0.072	0.049	0.067	0.049	0.06	0.058	0.065	0.063	0.059
483	500	0.46	0.45	0.42	0.5	0.51	0.51	0.49	0.48	0.45	0.6	0.4	0.54	0.41	0.47	0.47	0.54	0.51	0.47
		290	270	310	310	330	200	250	240	240	190	140	140	170	140	140	150	180	260
	000	0.093	0.087	0.089	0.1	0.11	0.1	0.097	0.1	0.096	0.12	0.082	0.11	0.082	0.1	0.098	0.11	0.11	0.1
183	230	0.46	0.45	0.42 250	0.5	0.51	0.51	0.49	0.48	0.45	0.6	0.4	0.54	0.41	0.47	0.47	0.54	0.51	0.47
		16	150	31	190	052	83	8/	06 5	16	93 20	83	. 01	110	200	84	83	110	100
177 000	55 000 ¹	170	CI 160	CI 160	190	200	190	180	190	180	020	150	210	150	190	180	200	200	180
000111	000,00	100,000	80.000	120.000	110.000	110.000	83.000	87.000	77.000	86.000	82.000	81.000	85.000	81.000	83.000	65.000	79.000	0007	100.000
		0.097	0.091	0.092	0.11	0.11	0.11	0.1	0.1	0.1	0.13	0.085	0.12	0.085	0.1	0.1	0.11	0.11	0.1
100	200	0.46	0.45	0.42	0.5	0.51	0.51	0.49	0.48	0.45	0.6	0.4	0.54	0.41	0.47	0.47	0.54	0.51	0.47
		4.8	47	350	120	84	6.3	2.5	3.6	1.5	0.39 J	0.37 J	0.54 J	1.6	0.25 J	0.6	2	3.7	ND
		0.079	0.074	0.075	0.086	0.09	0.087	0.082	0.085	0.081	0.1	0.069	0.095	0.069	0.085	0.082	0.092	0.09	0.084
346	150	0.46	0.45	0.42	0.5	0.51	0.51	0.49	0.48	0.45	0.6	0.4	0.54	0.41	0.47	0.47	0.54	0.51	0.47
		\$	160	08	100	120	11	180	98	/0	91.0	06	80	180	80	/3	13	120	180
197	600	0.14	ct.0	CT:0	ct.u ر	01.0	ct.0	ct.0	CI.U	1.8	0.10	1.16	11.0	71.0	ct.0	6 I	01.0	01.0	61.0
	2	23	120	66	2 93	- 66	- 92	78	60	80	83	57	99	120	74	67	69	140	73
		0.032	0.032	0.031	0.032	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.031	0.049	0.018	0.018	0.018	0.032
	0.25	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.19	0.2	0.2	0.2	0.19	0.19	0.19	0.19	0.2	0.2
		QN	Ð	QN	ND	QN	ΟN	Q	Ð	ND	ΟN	ND	ND	Q	Q	ND	QN	QN	ND
	ç	0.058	0.057	0.056	0.057	0.039	0.039	0.039	0.039	0.038	0.039	0.039	0.039	0.056	0.045	0.038	0.038	0.039	0.057
	0.2^{2}	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.19	0.2	0.2	0.2	0.19	0.19	0.19	0.19	0.2	0.2
		Q ie	Q iog	Q ^{Seg}	QN 000	QN ON	QN You o	Q yog	Q Joog	DN	DN D	UD 0	ON 3100 0	QN STOR	Q	UN D	ND	ND 20012	QN 0
	0.72	0.013	0.0	0.015	0.015	01000	0.0040	0.0040	0.0	0.10	0.0046	0.0040 0.0	0.0040	0.015	0.10	01.0	0.10	0.0045	0.015
	7:0	TON OT	7: (N	TIN	7.0 ND	CIN	7:0	TIN CIN	7. GN	CT-O	0.2 UN	7.0	710	GN GN	Gro G	CT-0	CI N	710 ND	UN
		0.018	0.017	0.017	0.018	0.02	0.021	0.021	0.021	0.02	0.021	0.02	0.021	0.017	0.027	0.02	0.02	0.02	0.017
	2.7	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.19	0.2	0.2	0.2	0.19	0.19	0.19	0.19	0.2	0.2
		Q	QN	Ŋ	ND	ND	ND	QN	QN	ND	ND	ND	ND	QN	QN	ND	ND	Ŋ	ND
		0.031	0.031	0.031	0.031	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.03	0.026	0.022	0.022	0.022	0.031
	2.6	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.19	0.2	0.2	0.2	0.19	0.19	0.19	0.19	0.2	0.2
		0050	UN 0.050	UN 0.050	0.050	0015	0015	ND 0015	ND 0015	ND 0014	ND	9 f 7/0/0	0.015	UN 0.050	CIN COLO	UN 0014	UN 0014	ND 0014	0.050
	100	6 C U	0.0	0.0	500.0	C10/0	0.0	C10:0	C10:0	0.10	C10:0	10.0	0.0	0.10	0.10	0.10	0.10	10.0	600.0 0 0
	001	TO N	TO R	TO N	ND	7.0 ND	TIN ON	TO ON	TO ON	0.039 J b	770 ND	70 ND	TI ON	Ê, Q	E E	E CR	DN DI	TO N	ND
		0.017	0.017	0.017	0.017	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.017	0.026	0.016	0.016	0.016	0.017
	0.11	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.19	0.2	0.2	0.2	0.19	0.19	0.19	0.19	0.2	0.2
		0.035 J b	0.025 J b	Ð	ND	ND	ND	Q	0.043 J b	ND	ŊŊ	ND	Q	Q	Q	ND	ND	ŊŊ	ND
		0.043	0.042	0.42	0.043	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.042	0.027	0.028	0.028	0.028	0.042
	0.0032	0.4	0.39	0.39	0.4	0.39	0.4	0.4	0.4	0.39	0.4	0.39	0.39	0.39	0.38	0.39	0.39	0.39	0.39
		UN 2011	UN 1	0.061 J b	0.082.1 b	UN 500	UN 500	UN PO P	9 F I 10	UN 0000	UN 500	UN 0 000	UN 500	UN 000	ND	0000	000 0020	UN 000	ND 0.011
	67	0.044	0.044	0.39	0.044	0.39	0.04	0.04	0.04	95 U.U	0.04	95 U	0.04	0.39	0.38	95 U.U	95 U.U	95 U.U	0.044
		Ð	Ð	Ð	Ð	Q	QN	QN	0.091 J b	QN	0.23 C J	QN	QN	Ð	Ð	Ð	QN	QN	QN
		0.067	0.066	0.066	0.067	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.065	0.049	0.028	0.028	0.028	0.066
	0.22	0.4	0.39	0.39	0.4	0.39	0.4	0.4	0.4	0.39	0.4	0.39	0.39	0.39	0.38	0.39	0.39	0.39	0.39
		QN	QN	Ŋ	ND	ND	ND	QN	ŊŊ	ND	0.27 C J	ND	QN	QN	0.11 C J	QN	ND	ND	ND
		0.043	0.042	0.042	0.043	0.021	0.021	0.021	0.021	0.02	0.021	0.02	0.021	0.042	0.025	0.02	0.02	0.02	0.042
	0.02	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.19	0.2	0.2	0.2	61.0	0.19	0.19	0.19	0.2	0.2
				0.015	0.015	UN 2000	UN 7000	UN 7000	L COLO	UN 7000	UN 2000	UN 700.0	UN 0		0018	UN 7000	UN 7000	UN 7000	
	5.4	0.0	C10:0	0.7	0.0	0.02	0.0	0.7	0.027	0.19	0.0	0.0	0.0	0.19	0.10	0.19	0.19	0.27	CT0.0
		Ð	Ð	Ð	Ð	0.041 J b	0.042 J b	Ð	e e	Q	Ð	Q	0.027 J b	Ð	Ð	Q	Q	Q	QN
		0.028	0.028	0.028	0.028	0.028	0.029	0.029	0.029	0.028	0.029	0.028	0.029	0.028	0.028	0.028	0.028	0.028	0.028
	49	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.19	0.2	0.2	0.2	0.19	0.19	0.19	0.19	0.2	0.2
		0.0078	UN		0.0078	UN UN	UN 000	003	0031	UN 0.03	ND 003	UN 500	003	UN 0.0076	UN 0.005	UN 0.02	0 f 7 c0 0	ND 0.03	0.0077
	0.68	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.19	0.2	0.2	0.2	0.19	0.19	0.19	0.19	0.2	0.2
	2	Ę	Ð	Ð	, Q	; Q	, Q	Ð	Ð	Q	- Q	e Q	Ð	Ð	Ð	Q	Q	Q	; Đ
	ĺ																		1

b. The target analyte detection is below one half the reporting limit. These estimated detections are qualified not only with a J, but also with a b.

C: Presence confirmed, but relative percent difference between columns exceeds 40% J: The quantitation is an estimation PS: Primary sample OC: Quality control sample OC: Quality control sample bid values sceed the background value and the Project Action Limit Background values are the 95th percentile from the Environmental Background analysis of Meetals no si at Navy Oahu Facilities, Pacific Division, Navai Facilities Engineering Command 2006.

Sample Number		Project	Project
Sample Date		background concentrations	Action Limit
Sample Type		(mg/kg)	(mg/kg)
EPA Method SW 6010B (mg/kg)			
Aluminum	MDL RL Result	93,900	77,000 ¹
Antimony	MDL RL Result	6.9	6.3
Barium	MDL RL Result	181	750
Chromium (total)	MDL RL Result	483	500
Copper	MDL RL Result	183	230
lron	MDL RL Result	177,000	55,000 ¹
Lead	MDL RL Result	100	200
Nickel	MDL RL Result	346	150
Zinc	MDL RL Result	197	600
EPA Method SW8330B (mg/kg)			
2-Amino-4,6-Dinitrotoluene	MDL RL Result		0.25
4-Amino-2,6-Dinitrotoluene	MDL RL Result		0.2^{2}
1,3-Dinitrobenzene	MDL RL Result		0.2^{2}
2,4-Dinitrotoluene	MDL RL Result		2.7
2,6-Dinitrotoluene	MDL RL Result		2.6
XMH	MDL RL Result		100
Nitrobenzene	MDL RL Result		0.11
2-Nitrotoluene	MDL RL Result		0.0032
3-Nitrotoluene	MDL RL Result		6.7
4-Nitrotoluene	MDL RL Result		0.22
RDX	MDL RL Result		0.02
1,3,5-Trinitrobenzene	MDL RL Result		5.4
Trinitrophenylmethylnitramine	MDL RL Result	1	49
2,4,6-Trinitrotoluene	MDL RL Result		0.68
¹ : EPA Region 9 residential RSL, no HC	DOH EAL exist	- - - - -	
The HUCH EALS for 1,3-anot open mg/kg and 0.12 mg/kg respectively. Sir method and laboratory detection limits,	the project act	ino-2,6-dintrototuer s are below both the ion levels will be set	e are 0.095 analytical at the
laboratory quantitation limit of 0.2 mg/k	J holf thor	The second second second	in of contract

	_																																																															
MEC050	10/21/2008	Sd	2	c1 160	51,000	0.24	0.82 ND	0.055	0.41	58	0.05	0.41	0.005	0.00	16	14	160	78,000	0.088	0.41	-	0.072	1.4.1	013	91	1.0	71	0.032	0.2	ND	0.057	0.2	Q.	0.013	770 VIN	0.017	0.2	Q	0.031	0.2	Q	0.059	0.2	Ð	0.017	7.0 VIN	0.042	0.39	ND	0.044	0.39	UN 0.066	0.000	GN CN	0.042	0.2	ND	0.015	0.2	Ð,	0.028	7:0 VIN	0.0077	0.2
MEC049	10/21/2008	PS	:	140	46,000	0.22	0.81 UN	0.05	0.4	59	0.046	0.4	250	0.07	7.0	13	140	93,000	0.08	0.4	0.71	0.065	0.4	012	71.0	1.0	8	0.032	0.2	ND	0.057	0.2	Ð	0.013	7:0 VIN	0.017	0.2	Q	0.031	0.2	Q	0.059	0.2	Ð	0.017	7.0 VIN	0.042	0.39	ND	0.044	0.39	UN 0.066	0.000	GN CN	0.042	0.2	ND	0.015	0.2	Ð,	0.028	7:0	0.0077	0.2
MEC048	10/21/2008	QC	ĉ	1/	41,000	0.28	0.94 0.54 1	0.064	0.47	59	0.058	0.47	270	0.47 74.0	120	16	180	110,000	0.1	0.47	3.3	0.082	0.47	015	01.0	1.7	5	0.031	0.2	ND	0.056	0.2	UN .	0.013	2'0 VID	0.017	0.2	QN	0.031	0.2	ND	0.058	0.2	QN	0.017	2.0 CIN	0.042	0.39	0.055 J b	0.043	0.39	UN	0.39	dN	0.042	0.2	ND	0.015	0.2	UN .	0.028	7'N	0.0077	0.2
MEC047	10/21/2008	PS		18 190	40,000	0.29	96:0 ND	0.067	0.48	60	0.061	0.48	270	0.1	0.40	17	190	110,000	0.11	0.48	3.8	0.087	0.48	0.15	01.0	80 80	8	0.032	0.2	ND	0.057	0.2	ND	0.013	0.2 ND	0.017	0.2	DN	0.031	0.2	ND	0.059	0.2	ND	0.017	2.U	0.042	0.4	0.073 J b	0.044	0.4	000	0.00	UN	0.042	0.2	ND	0.015	0.2	UN .	0.028	U.2 ND	0.0078	0.2
MEC046	10/21/2008	PS	:	14	27,000	0.24	0.77 ND	0.053	0.38	19	0.049	0.38	210	0.082	63	14	150	130,000	0.085	0.38	4.4	0.069	0.38	0.15	1.5	53		0.032	0.2	ND	0.057	0.2	DN	0.013	0.2 ND	0.017	0.2	ND	0.031	0.2	ND	0.059	0.2	ND	0.017	2.U VIN	0.042	0.4	ND	0.044	0.4	0.067	0.00/	DN	0.042	0.2	ND	0.015	0.2	UN .	0.028	0.2 ND	0.0078	0.2
MEC045	10/21/2008	PS	L,	cl 061	32,000	0.23	0.96 ND	0.094	0.48	54	0.029	0.48	170	0.067	77	18	190	75,000	0.087	0.48	7.1	0.059	0.48	20 0.31	10.0	70		0.032	0.2	ND	0.057	0.2	UN 0	0.013	2'0 VIN	0.017	0.2	ND	0.031	0.2	ND	0.059	0.2	ND	0.017	2.0	0.043	0.4	ND	0.044	0.4	0.067	0.00/	dN	0.042	0.2	ND	0.015	0.2	UN .	0.028	U.2 ND	0.0078	0.2
MEC044	10/20/2008	PS	č	24 250	33,000	0.38	1.3	0.087	0.63	23	0.079	0.63	220	0.43	180	22	250	110,000	0.14	0.63	53	0.11	0.03	0.0	2.0	6	74	0.032	0.2	ND	0.058	0.2	UN .	0.013	2.0 ND	0.018	0.2	QN	0.031	0.2	ND	0.06	0.2	Q	0.017	2'0 CIN	0.043	0.4	ND	0.045	0.4	0.068	0.000	dN	0.043	0.2	ND	0.016	0.2	UN .	0.029	7'N	0.0079	0.2
MEC043	10/20/2008	PS	:	140	72,000	0.22	0.75 ND	0.05	0.37	16	0.046	0.37	200	0.07	360	13	140	120,000	0.08	0.37	77	0.065	0.37	012	15	130	001	0.032	0.2	ND	0.057	0.2	Q	0.013	7:0	0.018	0.2	Ð	0.031	0.2	Ŋ	0.059	0.2	Ð	0.017	70	0.043	0.4	ND	0.044	0.4	0.067	0.00/	đ	0.043	0.2	ND	0.015	0.2	Q.	0.028	7:0	0.0078	0.2
MEC042	10/20/2008	PS	ç	310	42,000	0.19	0.66	0.043	0.33	36	0.039	0.33	230	3.3 15	1.300	28	310	100,000	3.4	10	996	0.056	0.33	0.01	0.1	190	170	0.032	0.2	ND	0.057	0.2	Ð	0.013	7.0 VIN	0.017	0.2	Ð	0.031	0.2	Q	0.059	0.2	Ð	0.017	7.0 VIN	0.043	0.4	ND	0.044	0.4	UN 0.067	0.00/	GN CN	0.043	0.2	ND	0.015	0.2	Ð,	0.028	7:0 VIN	0.0078	0.2
MEC041	10/20/2008	QC	ç	180	45,000	0.29	0.98	0.065	0.49	15	0.059	0.49	310	0.1	86	17	180	140,000	0.1	0.49	6.2	0.084	0.49	00	61:0	4 V	70	0.032	0.2	ND	0.058	0.2	Ð,	0.013	770 VIN	0.018	0.2	Q	0.031	0.2	Ŋ	0.059	0.2	Ð	0.017	7'N	0.043	0.4	ND	0.044	0.4	0.067	0.00/	t Q	0.043	0.2	ND	0.015	0.2	Q .	0.028	770 VIN	0.0078	0.2
MEC040	10/20/2008	PS	ţ	1/	40,000	0.23	0.94 ND	0.091	0.47	14	0.028	0.47	320	C00.0	69	17	180	130,000	0.084	0.47	11	0.057	0.47	/1	0.0	1.7	3	0.032	0.2	ND	0.058	0.2	QN	0.013	0.2	0.018	0.2	ND	0.031	0.2	ND	0.059	0.2	ND	0.017	0.2 ND	0.043	0.4	ND	0.044	0.4	0.067	0.00/	dN	0,043	0.2	ND	0.015	0.2	QN .	0.028	2.0 ND	0.0078	0.2
MEC039	10/20/2008	PS		c1 160	52,000	0.25	0.88 ND	0.056	0.44	50	0.051	0.44	210	0.080	120	14	160	97,000	0.089	0.44	2.7	0.073	90 1	0.13	81	80	8	0.031	0.19	ND	0.056	0.19	DN 0	0.013	61.0 ND	0.017	0.19	ND	0.03	0.19	ND	0.058	0.19	QN	0.017	91.0 ND	0.042	0.39	ND	0.043	0.39	UN 0.065	0.39	QN N	0.042	0.19	ND	0.015	0.19	QN	0.028	61.0 ND	0.0076	0.19
MEC038	10/20/2008	PS		c1 160	41,000	0.24	0.82 ND	0.055	0.41	84	0.05	0.41	190	0.084	80	14	160	68,000	0.087	0.41	QN	0.071	150	0.13	91	1.0	2	0.032	0.2	ND	0.057	0.2	QN 0	0.013	7.0 VIN	0.018	0.2	ND	0.031	0.2	ND	0.059	0.2	ND	0.017	0.2 ND	0.043	0.4	ND	0.044	0.4	0.067	0.00/	dN D	0.043	0.2	ND	0.015	0.2	QN	0.028	7.0 VIN	0.0078	0.2
MEC037	10/20/2008	PS	:	140	59,000	0.22	0.71 UD	0.05	0.36	40	0.046	0.36	320	0.077	120	13	140	110,000	0.08	0.36	QN	0.065	0.30	010	71.0	1.4	0,	0.032	0.2	ND	0.057	0.2	QN	0.013	70 VIN	0.017	0.2	ND	0.031	0.2	ND	0.059	0.2	ND	0.017	7'D	0.042	0.39	ND	0.044	0.39	0.066	0.000	QN N	0.042	0.2	ND	0.015	0.2	QN	0.028	770 VIN	0.0077	0.2
MEC036	10/20/2008	PS	\$	12	50,000	0.19	0.7	0.044	0.35	20	0.04	0.35	400	0.068	110	28	310	140,000	0.07	0.35	QN	0.057	011	0.1	1.0	+:- 20	02	0.032	0.2	ND	0.057	0.2	QN	0.013	2.0 UN	0.018	0.2	ND	0.031	0.2	ND	0.059	0.2	QN	0.017	2.0 UN	0.043	0.4	ND	0.044	0.4	UN 0.067	0.00/	dN	0.043	0.2	ND	0.015	0.2	QN	0.028	2.0 UN	0.0078	0.2
MEC035	10/20/2008	PS	ţ	1/	42,000	0.28	0.98 UN	0.065	0.49	36	0.059	0.49	300	960.0 0.40	66	17	180	91,000	0.1	0.49	0.32 J	0.083	0.49	0.15	CT-0	7 02	2	0.032	0.2	ND	0.057	0.2	QN	0.013	7.0 VIN	0.017	0.2	ND	0.031	0.2	ND	0.059	0.2	QN	0.017	0.7 VIN	0.042	0.4	ND	0.044	0.4	0.067	0.00/	dN N	0,042	0.2	ND	0.015	0.2	QN .	0.028	7.0 VIN	0.0078	0.2
Project	Limit	(mg/kg)	ſ	77.000 ¹		(6.3		750			500		230	2		55,000 ¹			200		12.0	0CT		600	000			0.25			0.2^{2}		2002	-770		2.7			2.6			100		110	1170		0.0032			6.7		0.22	1		0.02			5.4		40	44		0.68

estimated

eeds 40%

round analysi ngineering

Sample Number		Project
Sample Date		concentrations
Sample Type		(mg/kg)
EPA Method SW6010B (mg/kg)		
Aluminum	MDL RL Result	93,900
Antimony	MDL RL Result	6.9
Barium	MDL RL Result	181
Chromium (total)	MDL RL Result	483
Copper	MDL RL Result	183
Iron	MDL RL Result	177,000
Lead	MDL RL Result	100
Nickel	MDL RL Result	346
Zinc	MDL RL Result	261
EPA Method SW8330B (mg/kg)		
2-Amino-4,6-Dinitrotoluene	MDL RL Result	
4-Amino-2,6-Dinitrotoluene	MDL RL Result	
1,3-Dinitrobenzene	MDL RL Result	
2,4-Dinitrotoluene	MDL RL Result	
2,6-Dinitrotoluene	MDL RL Result	
ХМН	MDL RL Result	
Nitrobenzene	MDL RL Result	
2-Nitrotoluene	MDL RL Result	
3-Nitrotoluene	MDL RL Result	
4-Nitrotoluene	MDL RL Result	
RDX	MDL RL Result	
1,3,5-Trinitrobenzene	MDL RL Result	
Trinitrophenylmethylnitramine	MDL RL Result	
2,4,6-Trinitrotoluene	MDL RL Result	
¹ : EPA Region 9 residential RSL, no HC	JOH EAL exis	2
The HDOH EALs for 1,3-dinotrobenz	ene, and 4-ar	nino-2,6-dinitrotolue

Ð

Z-O

0.2 ND

0.2 ND

0.2 ND

7 DN

0.2 ND

0.2 ND

0.2

0.2 ND

0.2 ND

0.19 ND

0.2 ND

ND N

0.2 ND

R R

mgkg and 0.12 mg/kg respectively. Since these levels are below both the analytical method and laboratory detection limits, the project action levels will be set at the laboratory quantitation limit of 0.2 mg/kg

b: The target analyte detection is below one half the reporting limit. These detections are qualified not only with a J, but also with a b.

C: Presence confirmed, but relative percent difference between columns exceed.
 J: The quantitation is an estimation
 PS: Primary sample
 QC: Quality control sample
 QC: QUALITY control

LDC Report# 19747A40

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Waikane Training Area
Collection Date:	October 14 through October 16, 2008
LDC Report Date:	November 26, 2008
Matrix:	Soil
Parameters:	Explosives
Validation Level:	Standard
Laboratory:	Curtis & Tompkins, Ltd.

Sample Delivery Group (SDG): 207059

Sample Identification

MEC001	MEC021
MEC002	MEC022
MEC003	MEC023
MEC004	MEC024
MEC005	MEC025
MEC006	MEC026
MEC007	MEC027
MEC008	MEC028
MEC009	MEC029
MEC010	MEC030
MEC011	MEC031
MEC012	MEC032
MEC013	MEC033
MEC014	MEC020MS
MEC015	MEC020MSD
MEC016	MEC033MS
MEC017	MEC033MSD
MEC018	
MEC019	
MEC020	

Introduction

This data review covers 37 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8330 for Explosives.

This review follows the Project Procedures Manual, U.S. Navy Environmental Restoration Program, NAVFAC Pacific (DON 2007) and the U.S. Department of Defense Quality Systems Manual for Environmental Laboratories, Final Version (January 2006).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

Initial calibration of compounds was performed for the primary (quantitation) column and confirmation column as required by the method.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

b. Calibration Verification

Calibration verification was performed at the required frequencies. The percent differences (%D) of amounts in continuing standard mixtures were within the 15.0% QC limits.

The percent differences (%D) of the second source calibration standard were less than or equal to 15.0% for all compounds.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No explosive contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Extraction Date	Compound	Concentration	Associated Samples
QC467146-BLK1	10/26/08	4-Nitrotoluene	79 ug/Kg	MEC001 MEC002 MEC003 MEC004 MEC005 MEC007 MEC007 MEC009 MEC010 MEC010 MEC010 MEC012 MEC013 MEC013 MEC014 MEC015 MEC016 MEC017 MEC018 MEC019 MEC020

Sample concentrations were compared to concentrations detected in the method blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated method blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
MEC002	4-Nitrotoluene	89 ug/Kg	89U ug/Kg
MEC003	4-Nitrotoluene	69 ug/Kg	69U ug/Kg
MEC005	4-Nitrotoluene	68 ug/Kg	88∪ ug/Kg
MEC006	4-Nitrotoluene	74 ug/Kg	74U ug/Kg

No field blanks were identified in this SDG.

IV. Accuracy and Precision Data

a. Surrogate Recovery

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

b. Matrix Spike/(Matrix Spike) Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

c. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

V. Target Compound Identification

Raw data were not reviewed for this SDG.

VI. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria with the following exceptions:

Sample	Compound	Finding	Criteria	Flag	A or P
MEC002	4-Nitrotoluene RDX	2nd column confirmation was not performed for these compounds.	All compounds must be confirmed on the 2nd column per the DOD QSM.	NJ (all detects) NJ (all detects)	Ρ.
MEC003 MEC005	4-Nitrotoluene	2nd column confirmation was not performed for this compound.	All compounds must be confirmed on the 2nd column per the DOD QSM.	NJ (all detects)	Ρ
MEC006	Nitrobenzene 2-Nitrotoluene 4-Nitrotoluene	2nd column confirmation was not performed for these compounds.	All compounds must be confirmed on the 2nd column per the DOD QSM.	NJ (all detects) NJ (all detects) NJ (all detects)	Ρ
MEC008 MEC009 MEC013 MEC019 MEC020	2-Nitrotoluene	2nd column confirmation was not performed for this compound.	All compounds must be confirmed on the 2nd column per the DOD QSM.	NJ (ali detects)	Ρ
MEC010	Nitrobenzene 2-Nitrotoluene	2nd column confirmation was not performed for these compounds.	All compounds must be confirmed on the 2nd column per the DOD QSM.	NJ (all detects) NJ (all detects)	Р
MEC011	HMX 2-Nitrotoluene	2nd column confirmation was not performed for these compounds.	All compounds must be confirmed on the 2nd column per the DOD QSM.	NJ (all detects) NJ (all detects)	Ρ

Sample	Compound	Finding	Criteria	Flag	A or P
MEC017 MEC018	Nitrobenzene	2nd column confirmation was not performed for this compound.	All compounds must be confirmed on the 2nd column per the DOD QSM.	NJ (all detects)	P
MEC021 MEC022 MEC028	1,3,5-Trinitrobenzene	2nd column confirmation was not performed for this compound.	All compounds must be confirmed on the 2nd column per the DOD QSM.	NJ (all detects)	Ρ
MEC024	Nitrobenzene 2-Nitrotoluene 3-Nitrotoluene	2nd column confirmation was not performed for these compounds.	All compounds must be confirmed on the 2nd column per the DOD QSM.	NJ (all detects) NJ (all detects) NJ (all detects)	Ρ
MEC025	нмх	2nd column confirmation was not performed for this compound.	All compounds must be confirmed on the 2nd column per the DOD QSM.	NJ (all detects)	Ρ
MEC026	4-Nitrotoluene 3-Nitrotoluene	2nd column confirmation was not performed for these compounds.	All compounds must be confirmed on the 2nd column per the DOD QSM.	NJ (all detects) NJ (all detects)	Ρ
MEC027	2,6-Dinitrotoluene	2nd column confirmation was not performed for this compound.	All compounds must be confirmed on the 2nd column per the DOD QSM.	NJ (all detects)	Ρ
MEC032	Tetryl 4-Nitrotoluene	2nd column confirmation was not performed for these compounds.	All compounds must be confirmed on the 2nd column per the DOD QSM.	NJ (all detects) NJ (all detects)	Р

The sample results for detected compounds from the two columns were within 40.0% relative percent differences (RPD) with the following exceptions:

Sample	Compound	RPD	Flag	A or P
MEC030	4-Nitrotoluene	41	J (all detects)	A

Raw data were not reviewed for this SDG.

VII. System Performance

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

Samples MEC010 and MEC011, samples MEC020 and MEC021, and samples MEC030 and MEC031 were identified as field duplicates. No explosives were detected in any of the samples with the following exceptions:

	Concentration (ug/Kg)		
Compound	MEC010	MEC011	RPD (Limits)
Nitrobanzane	21	200U	200 (≤100)
2-Nitrotoluene	110	76	37 (≤100)
нмх	200U	92	200 (≤100)

	Concentrat		
Compound	MEC020	MEC021	RPD (Limits)
2-Nitrotoluene	82	390U	200 (≤100)
1,3,5-Trinitrobenzene	2000	41	200 (≤100)

	Concentration (ug/Kg)		
Compound	MEC030	MEC031	RPD (Limits)
4-Nitrotoluene	110	390U	200 (≤100)

Waikane Training Area Explosives - Data Qualification Summary - SDG 207059

SDG	Sample	Compound	Flag	A or P	Reason
207059	MEC030	4-Nitrotoluene	J (all detects)	A	Compound quantitation and CRQLs (RPD)
207059	MEC002	4-Nitrotoluene RDX	NJ (all detects) NJ (all detects)	Ρ	Compound quantitation and CRQLs
207059	MEC003 MEC005	4-Nitrotoluene	NJ (all detects)	P	Compound quantitation and CRQLs
207059	MEC006	Nitrobenzene 2-Nitrotoluene 4-Nitrotoluene	NJ (all detects) NJ (all detects) NJ (all detects)	Ρ	Compound quantitation and CRQLs
207059	MEC008 MEC009 MEC013 MEC019 MEC020	2-Nitrotoluene	NJ (all detects)	Ρ	Compound quantitation and CRQLs
207059	MEC010	Nitrobenzene 2-Nitrotoluene	NJ (all detects) NJ (all detects)	P	Compound quantitation and CRQLs
207059	MEC011	HMX 2-Nitrotoluene	NJ (all detects) NJ (all detects)	Ρ	Compound quantitation and CRQLs
207059	MEC017 MEC018	Nitrobenzene	NJ (all detects)	Ρ	Compound quantitation and CRQLs
207059	MEC021 MEC022 MEC028	1,3,5-Trinitrobenzene	NJ (all detects)	Ρ	Compound quantitation and CRQLs
207059	MEC024	Nitrobenzene 2-Nitrotoluene 3-Nitrotoluene	NJ (all detects) NJ (all detects) NJ (all detects)	Р	Compound quantitation and CRQLs
207059	MEC025	нмх	NJ (all detects)	Ρ	Compound quantitation and CRQLs
207059	MEC026	4-Nitrotoluene 3-Nitrotoluene	NJ (all detects) NJ (all detects)	Ρ	Compound quantitation and CRQLs
207059	MEC027	2,6-Dinitrotoluene	NJ (all detects)	P	Compound quantitation and CRQLs

SDG	Sample	Compound	Flag	A or P	Reason
207059	MEC032	Tetryl 4-Nitrotoluene	NJ (all detects) NJ (all detects)	P	Compound quantitation and CRQLs

Waikane Training Area Explosives - Laboratory Blank Data Qualification Summary - SDG 207059

SDG	Sample	Compound	Modified Final Concentration	A or P
207069	MEC002	4-N≹rotoluene	89U ug/Kg	A
207059	MEC003	4-N#rotoluene	69U ug/Kg	A
207059	MEC005	4-N#rotoluene	68U ug/Kg	A
207059	MEC006	4-Nitrotoluane	74U ug/Kg	A

Waikane Training Area Explosives - Field Blank Data Qualification Summary - SDG 207059

No Sample Data Qualified in this SDG

	Nitroaromatics and	Nitroamines b	Y HPLC
Lab #:	207059	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC001	Batch#:	144100
Lab ID:	207059-001	Sampled:	10/14/08
Matrix:	Soil	Received:	10/21/08
Units:	ug/Kg	Prepared:	10/26/08
Basis:	as received	Analyzed:	10/28/08
Diln Fac:	1.000		

Analyte	Résult	A RL H	MDLG MDL
НМХ	ND	200	60
RDX	ND	200	43
1,3,5-Trinitrobenzene	ND	200	15
1,3-Dinitrobenzene	ND	200	13
Nitrobenzene	ND	200	17
Tetryl	ND	200	28
2,4,6-Trinitrotoluene	ND	200	7.9
2-Amino-4,6-dinitrotoluene	ND	200	32
4-Amino-2,6-dinitrotoluene	ND	200	58
2,4-Dinitrotoluene	ND	200	18
2,6-Dinitrotoluene	ND	200	31
2-Nitrotoluene	ND	400	43
4-Nitrotoluene	ND	400	67
3-Nitrotoluene	ND	400	44
Surrogate	%REC Limits	Line Ma	
1,2-Dinitrobenzene	93 69-120		

NAVFAC PACIFIC VALIDATED

ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

1/11/28

57,0

	Nitroaromatics and	Nitronmines b	y HPLC
Lab #:	207059	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC002	Batch#:	144100
Lab ID:	207059-002	Sampled:	10/14/08
Matrix:	Soil	Received:	10/21/08
Units:	ug/Kg	Prepared:	10/26/08
Basis:	as received	Analyzed:	10/28/08
Diln Fac:	1.000		

Analyte '	Result	RL	MDL
НМХ	ND U	200	59
RDX	80 J b 🚺 🖈 🗸	1) 200	43
1,3,5-Trinitrobenzene	ND U	200	15
1,3-Dinitrobenzene	ND	200	13
Nitrobenzene	ND	200	17
Tetryl	ND	200	28
2,4,6-Trinitrotoluene	ND	200	7.8
2-Amino-4,6-dinitrotoluene	ND	200	32
4-Amino-2,6-dinitrotoluene	ND	200	57
2,4-Dinitrotoluene	ND	200	18
2,6-Dinitrotoluene	ND	200	31
2-Nitrotoluene	ND 🗸	400	43
4-Nitrotoluene	,89 J b 🔰 🛛 🖓 🕻 🖻	b) 400	67
3-Nitrotoluene	ND U	400	44
Surrogate	SREC Limits		
1,2-Dinitrobenzene	92 69-120		

 $1 - 1 \leq 1$

NAVFAC PACIFIC VALIDATED

1/1908

58.0

	Nitroaromatics and	Nitroamines b	À Hbrc
Lab #:	207059	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC003	Batch#:	144100
Lab ID:	207059-003	Sampled:	10/14/08
Matrix:	Soil	Received:	10/21/08
Units:	ug/Kg	Prepared:	10/26/08
Basis:	as received	Analyzed:	10/28/08
Diln Fac:	1.000		

Analyte	Result	Weinerser and	MDL MDL
НМХ	ND V	200	59
RDX	ND	200	43
1,3,5-Trinitrobenzene	ND	200	15
1,3-Dinitrobenzene	ND	200	13
Nitrobenzene	ND	200	17
Tetryl	ND	200	28
2,4,6-Trinitrotoluene	ND	200	7.8
2-Amino-4,6-dinitrotoluene	ND	200	32
4-Amino-2,6-dinitrotoluene	ND	200	57
2,4-Dinitrotoluene	ND	200	18
2,6-Dinitrotoluene	ND	200	31
2-Nitrotoluene	ND 🖞	400	43
4-Nitrotoluene	69 J b	U(₽) 400	67
3-Nitrotoluene	ND 🗸	400	44
			·······

 Surrogate
 %REC
 Dimits

 1,2-Dinitrobenzene
 92
 69-120

J= Estimated value b= See narrative ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

NAVFAC PACIFIC VALIDATED

1 11928

59.0

	Ni trosroma	ics and Nitroamines	by HPLC
Lab #:	207059	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC004	Batch#:	144100
Lab ID:	207059-004	Sampled:	10/14/08
Matrix:	Soil	Received:	10/21/08
Units:	ug/Kg	Prepared:	10/26/08
Basis:	as received	Analyzed:	10/28/08
Diln Fac:	1.000	-	

Analyte Manalyte	Result	ANT	MDL V V MILLE
НМХ	ND V	200	59
RDX	ND	200	43
1,3,5-Trinitrobenzene	ND	200	15
1,3-Dinitrobenzene	ND	200	13
Nitrobenzene	ND	200	17
Tetryl	ND	200	28
2,4,6-Trinitrotoluene	ND	200	7.8
2-Amino-4,6-dinitrotoluene	ND	200	32
4-Amino-2,6-dinitrotoluene	ND	200	57
2,4-Dinitrotoluene	ND	200	18
2,6-Dinitrotoluene	ND	200	31
2-Nitrotoluene	ND	400	43
4-Nitrotoluene	ND	400	67
3-Nitrotoluene	ND	400	44
Surrogate	%REC Limits	TEN.	
1,2-Dinitrobenzene	92 69-120		

NAVFAC PACIFIC VALIDATED

ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

n (119-8

60.0

	Nitroaromatics and	Nitroamines b	y HPLC
Lab #:	207059	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC005	Batch#:	144100
Lab ID:	207059-005	Sampled:	10/14/08
Matrix:	Soil	Received:	10/21/08
Units:	ug/Kg	Prepared:	10/26/08
Basis:	as received	Analyzed:	10/28/08
Diln Fac:	1.000	-	

派出到他们。那时是Analyte的问题。	Result	ARE RITER WERE	MDL.
HMX	ND V	200	58
RDX	ND	200	42
1,3,5-Trinitrobenzene	ND	200	15
1,3-Dinitrobenzene	ND	200	13
Nitrobenzene	ND	200	17
Tetryl	ND	200	28
2,4,6-Trinitrotoluene	ND	200	7.7
2-Amino-4,6-dinitrotoluene	ND	200	31
4-Amino-2,6-dinitrotoluene	ND	200	56
2,4-Dinitrotoluene	ND	200	17
2,6-Dinitrotoluene	ND	200	31
2-Nitrotoluene	ND 🗸	390	42
4-Nitrotoluene	68 J	(B) 390	66
3-Nitrotoluene	ND 🗸	390	43
		······································	
Surrogate	SREC Limits	A AND RANAL	

1,2-Dinitrobenzene 81 69-120

J= Estimated value ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

NAVFAC PACIFIC VALIDATED

2 11928

.

	Nitroaromatics an	• Nitroamines b	Y HPLC
Lab #:	207059	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC006	Batch#:	144100
Lab ID:	207059-006	Sampled:	10/14/08
Matrix:	Soil	Received:	10/21/08
Units:	ug/Kg	Prepared:	10/26/08
Basis:	as received	Analyzed:	10/28/08
Diln Fac:	1.000	-	

Analyte		Result Andrea	RL	MDL
НМХ	ND	V	200	58
RDX	ND	- E	200	42
1,3,5-Trinitrobenzene	ND		200	15
1,3-Dinitrobenzene	ND	\$	200	13
Nitrobenzene		19 J b J (* TI)	200	17
Tetryl	ND	И	200	28
2,4,6-Trinitrotoluene	ND	1	200	7.7
2-Amino-4,6-dinitrotoluene	ND		200	31
4-Amino-2,6-dinitrotoluene	ND		200	56
2,4-Dinitrotoluene	ND		200	17
2,6-Dinitrotoluene	ND	V II- (LT)	200	31
2-Nitrotoluene		78 J b A L T	390	42
4-Nitrotoluene		74 J b V (🖻)	390	66
3-Nitrotoluene	ND	N	390	43
A WATER IT SUMPLY TORS		212 0 0414 0 0414		
Surrogate	&REC	Limits	的记录图书的公书研究公共	
1,2-Dinitrobenzene	93	69-120		

NAVFAC PACIFIC VALIDATED

2 11908

Nitroaromatics and Nitroamines by HPLC					
Lab #:	207059	Location:	Waikane Training Area		
Client:	Wil Chee Planning	Prep:	EPA 8330		
Project#:	UXOA-007	Analysis:	EPA 8330		
Field ID:	MEC007	Batch#:	144100		
Lab ID:	207059-007	Sampled:	10/14/08		
Matrix:	Soil	Received:	10/21/08		
Units:	ug/Kg	Prepared:	10/26/08		
Basis:	as received	Analyzed:	10/29/08		
Diln Fac:	1.000		 , ,		

Analyte	Result	energy of the State of the second	MDL C S
НМХ	ND V	200	58
RDX	ND	200	42
1,3,5-Trinitrobenzene	ND	200	15
1,3-Dinitrobenzene	ND	200	13
Nitrobenzene	ND	200	17
Tetryl	ND	200	28
2,4,6-Trinitrotoluene	ND	200	7.7
2-Amino-4,6-dinitrotoluene	ND	200	31
4-Amino-2,6-dinitrotoluene	ND	200	56
2,4-Dinitrotoluene	ND	200	17
2,6-Dinitrotoluene	ND	200	31
2-Nitrotoluene	ND	390	42
4-Nitrotoluene	ND	390	66
3-Nitrotoluene	ND	390	43
			10
Surrogate	%REC Limits		FARTER AND AND
1,2-Dinitrobenzene	90 69-120	ATALLT	A CERTIFICATION AND AND AND AND AND AND AND AND AND AN

ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

NAVFAC PACIFIC VALIDATED

m 11938

	Nitroaromatics and	Nitroamines by	Y HPLC
Lab #:	207059	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC008	Batch#:	144100
Lab ID:	207059-008	Sampled:	10/15/08
Matrix:	Soil	Received:	10/21/08
Units:	ug/Kg	Prepared:	10/26/08
Basis:	as received	Analyzed:	10/29/08
Diln Fac:	1.000		

Analyte	Result	19	MDL
нмх	ND V	200	59
RDX	ND	200	42
1,3,5-Trinitrobenzene	ND	200	15
1,3-Dinitrobenzene	ND	200	13
Nitrobenzene	ND	200	17
Tetryl	ND	200	28
2,4,6-Trinitrotoluene	ND	200	7.8
2-Amino-4,6-dinitrotoluene	ND	200	32
4-Amino-2,6-dinitrotoluene	ND	200	57
2,4-Dinitrotoluene	ND	200	17
2,6-Dinitrotoluene	ND 🖌	200	31
2-Nitrotoluene	59 J	bNJ(*T) 400	42
4-Nitrotoluene	ND 🕌	400	67
3-Nitrotoluene	ND 🌙	400	44

Surrogate [*]	*REC	Limits	~ 一世间的推进中	使新政治和中国的 主义的资源	
1,2-Dinitrobenzene	91	69-120			

NAVFAC PACIFIC VALIDATED

MA1988

	Nitroaromatics a	and Nitroamines b	y BPLC
Lab #:	207059	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC009	Batch#:	144100
Lab ID:	207059-009	Sampled:	10/15/08
Matrix:	Soil	Received:	10/21/08
Units:	ug/Kg	Prepared:	10/26/08
Basis:	as received	Analyzed:	10/29/08
Diln Fac:	1.000		

Analyte H	¥ * K • F	Result	RL	radiantic and the second
HMX	ND	И	200	59
RDX	ND	- i -	200	42
1,3,5-Trinitrobenzene	ND		200	15
1,3-Dinitrobenzene	ND		200	13
Nitrobenzene	ND		200	17
Tetryl	ND		200	28
2,4,6-Trinitrotoluene	ND		200	7.7
2-Amino-4,6-dinitrotoluene	ND		200	32
4-Amino-2,6-dinitrotoluene	ND		200	57
2,4-Dinitrotoluene	ND		200	17
2,6-Dinitrotoluene	ND	V III	200	31
2-Nitrotoluene		100 Ј Ы (ј (*)	390	42
4-Nitrotoluene	ND	N	390	66
3-Nitrotoluene	ND	¥	390	44

Salar Surrogate	*****	Limits	1 Jan 19	ensure.
1,2-Dinitrobenzene	91	69-120		

NAVFAC PACIFIC VALIDATED

211908

	Nitroaromati	cs and Nitroamines	by HPLC
Lab #:	207059	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC010	Batch#:	144100
Lab ID:	207059-010	Sampled:	10/15/08
Matrix:	Soil	Received:	10/21/08
Units:	ug/Kg	Prepared:	10/26/08
Basis:	as received	Analyzed:	10/29/08
Diln Fac:	1.000	-	

Analyte	- 1 ₆₁ -	Resült	all the th	法。在如RLEL,当时的	MARINE MOL SHARE
НМХ	ND	V		200	59
RDX	ND	1		200	43
1,3,5-Trinitrobenzene	ND			200	15
1,3-Dinitrobenzene	ND	*		200	13
Nitrobenzene		21 J	b/J(+TL	200	17
Tetryl	ND	U		200	28
2,4,6-Trinitrotoluene	ND	1		200	7.8
2-Amino-4,6-dinitrotoluene	ND			200	32
4-Amino-2,6-dinitrotoluene	ND			200	57
2,4-Dinitrotoluene	ND			200	18
2,6-Dinitrotoluene	ND	¥	N. C. T	200	31
2-Nitrotoluene		110 J	bNJ(+V)	400	43
4-Nitrotoluene	ND	V	- /	400	67
3-Nitrotoluene	ND	Y		400	44
					· · · · · · · · · · · · · · · · · · ·
Surrogate &RE	C	Limits	1		

1,2-Dinitrobenzene 92 69-120

١.

J= Estimated value b= See narrative ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

NAVFAC PACIFIC VALIDATED

2 111938

66.0

	Nitroaromatics and	Nitroamines b	Y HPLC
Lab #:	207059	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC011	Batch#:	144100
Lab ID:	207059-011	Sampled:	10/15/08
Matrix:	Soil	Received:	10/21/08
Units:	ug/Kg	Prepared:	10/26/08
Basis:	as received	Analyzed:	10/29/08
Diln Fac:	1.000	-	

Analyte	Result	读就法。杂韵谋译RL	HALL HAR
HMX	92 J b	J (* 1) 200	59
RDX	ND V	200	42
1,3,5-Trinitrobenzene	ND	200	15
1,3-Dinitrobenzene	ND	200	13
Nitrobenzene	ND	200	17
Tetryl	ND	200	28
2,4,6-Trinitrotoluene	ND	200	7.7
2-Amino-4,6-dinitrotoluene	ND	200	32
4-Amino-2,6-dinitrotoluene	ND	200	57
2,4-Dinitrotoluene	ND	200	17
2,6-Dinitrotoluene	ND 🕇	200	31
2-Nitrotoluene	76 Ј Б 🚺	(*1) 390	42
4-Nitrotoluene	ND U	390	66
3-Nitrotoluene	ND 🖌	390	44
Surrogate Main	%REC 'Limits	A CALL CALL	The second se
1,2-Dinitrobenzene	90 69-120		*31 *201/201/01/01 #20

NAVFAC PACIFIC VALIDATED

1 11909

	Nitroaromatics and	Nitroamines b	y HPLC
Lab #:	207059	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC012	Batch#:	144100
Lab ID:	207059-012	Sampled:	10/15/08
Matrix:	Soil	Received:	10/21/08
Units:	ug/Kg	Prepared:	10/26/08
Basis:	as received	Analyzed:	10/29/08
Diln Fac:	1.000		i

D D D D D	200 200 200 200	58 42 15
D D D D	200 200 200	42 15
D D D	200 200	15
D D	200	10
D		13
	200	17
D	200	28
D	200	7.7
D	200	32
D	200	57
D	200	17
D	200	31
D	390	42
D	390	66
D 🖌	390	44
gan - where state and	TAL STATISTICS AND AN ANY IS	
		ID 200 ID 200 ID 200 ID 200 ID 200 ID 200 ID 390 ID 390 ID 390

91

69-120

1,2-Dinitrobenzene

NAVFAC PACIFIC VALIDATED

ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

n 111928

	Nitroaromatics and	Nitroamines by	Y HPLC
Lab #:	207059	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC013	Batch#:	144100
Lab ID:	207059-013	Sampled:	10/15/08
Matrix:	Soil	Received:	10/21/08
Units:	ug/Kg	Prepared:	10/26/08
Basis:	as received	Analyzed:	10/29/08
Diln Fac:	1.000	-	

Analy Co. 48	Re	sult all a state RL	MDL
нмх	ND	U 200	59
RDX	ND	200	43
1,3,5-Trinitrobenzene	ND	200	15
1,3-Dinitrobenzene	ND	200	13
Nitrobenzene	ND	200	17
Tetryl	ND	200	28
2,4,6-Trinitrotoluene	ND	200	7.8
2-Amino-4,6-dinitrotoluene	ND	200	32
4-Amino-2,6-dinitrotoluene	ND	200	58
2,4-Dinitrotoluene	ND	200	18
2,6-Dinitrotoluene	ND	¥ 200	31
2-Nitrotoluene		63 J b (J (+ T) 400)	43
4-Nitrotoluene	ND 🕻	400	67
3-Nitrotoluene	ND	400	44

Surrogate	S. S. SREC :	Limits	学生,我们 并非是一次。	FOR AL
1,2-Dinitrobenzene	90	69-120		

NAVFAC PACIFIC VALIDATED

211908

69.0

	Nitroaromatics and	Nitroamines b	Y HPLC
Lab #:	207059	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC014	Batch#:	144100
Lab ID:	207059-014	Sampled:	10/15/08
Matrix:	Soil	Received:	10/21/08
Units:	ug/Kg	Prepared:	10/26/08
Basis:	as received	Analyzed:	10/29/08
Diln Fac:	1.000	-	

Analyte	Pêsûlt	RL	MDL
нмх	ND	200	59
RDX	ND	200	43
1,3,5-Trinitrobenzene	ND	200	15
1,3-Dinitrobenzene	ND	200	13
Nitrobenzene	ND	200	17
Tetryl	ND	200	28
2,4,6-Trinitrotoluene	ND	200	7.8
2-Amino-4,6-dinitrotoluene	ND	200	32
4-Amino-2,6-dinitrotoluene	ND	200	57
2,4-Dinitrotoluene	ND	200	18
2,6-Dinitrotoluene	ND	200	31
2-Nitrotoluene	ND	400	43
4-Nitrotoluene	ND	400	67
3-Nitrotoluene	ND ¥	400	44
Surroga te	%REC Limits		
1,2-Dinitrobenzene	88 69-120		

NAVFAC PACIFIC VALIDATED

ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

111908

10.0

	Nitroaromatics and	Nitroamines b	Y HPLC
Lab #:	207059	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC015	Batch#:	144100
Lab ID:	207059-015	Sampled:	10/15/08
Matrix:	Soil	Received:	10/21/08
Units:	ug/Kg	Prepared:	10/26/08
Basis:	as received	Analyzed:	10/29/08
Diln Fac:	1.000		

Analyte	Result	1. 「「「「」」」。 「「」」、 「」」、 「」」、 「」」、 「」」、 「」、 「」	MD L
нмх	ND V	200	59
RDX	ND	200	43
1,3,5-Trinitrobenzene	ND	200	15
1,3-Dinitrobenzene	ND	200	13
Nitrobenzene	ND	200	17
Tetryl	ND	200	28
2,4,6-Trinitrotoluene	ND	200	7.8
2-Amino-4,6-dinitrotoluene	ND	200	32
4-Amino-2,6-dinitrotoluene	ND	200	57
2,4-Dinitrotoluene	ND	200	17
2,6-Dinitrotoluene	ND	200	31
2-Nitrotoluene	ND	400	43
4-Nitrotoluene	ND	400	67
3-Nitrotoluene	ND 🗸	400	44
Surrogate	Rec. Limitsk	WIRLEY	ALL REPORT OF A

89

69-120

1,2-Dinitrobenzene

NAVFAC PACIFIC VALIDATED

ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

r 11190 C

	Nitroaromatics and	Nítroamines b	Y HPLC
Lab #:	207059	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC016	Batch#:	144100
Lab ID:	207059-016	Sampled:	10/15/08
Matrix:	Soil	Received:	10/21/08
Units:	ug/Kg	Prepared:	10/26/08
Basis:	as received	Analyzed:	10/29/08
Diln Fac:	1.000		

Analyte	Kesült.	「あって」を調整です。 ないがいれる い	M LANGE WILL STREET
НМХ	ND U	200	59
RDX	ND	200	43
1,3,5-Trinitrobenzene	ND	200	15
1,3-Dinitrobenzene	ND	200	13
Nitrobenzene	ND	200	17
Tetryl	ND	200	28
2,4,6-Trinitrotoluene	ND	200	7.8
2-Amino-4,6-dinitrotoluene	ND	200	32
4-Amino-2,6-dinitrotoluene	ND	200	57
2,4-Dinitrotoluene	ND	200	18
2,6-Dinitrotoluene	ND	200	31
2-Nitrotoluene	ND	400	43
4-Nitrotoluene	ND	400	67
3-Nitrotoluene	ND 🗸	400	44
Surrogate	%REC Limits	ALC RELEASE	TEPHONE CON

89

69-120

1,2-Dinitrobenzene

NAVFAC PACIFIC VALIDATED

ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

R 111908

72.0

	Nitroaromatics and	Nitroamines by	y HPLC
Lab #:	207059	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC017	Batch#:	144100
Lab ID:	207059-017	Sampled:	10/15/08
Matrix:	Soil	Received:	10/21/08
Units:	ug/Kg	Prepared:	10/26/08
Basis:	as received	Analyzed:	10/29/08
Diln Fac:	1.000		

Analyte	R	esult de la co	RL	"BERMOL
НМХ	ND	V	200	59
RDX	ND.		200	43
1,3,5-Trinitrobenzene	ND		200	15
1,3-Dinitrobenzene	ND	1	200	13
Nitrobenzene		35 J b/ J (+ VI)	200	17
Tetryl	ND	U	200	28
2,4,6-Trinitrotoluene	ND	1	200	7.8
2-Amino-4,6-dinitrotoluene	ND		200	32
4-Amino-2,6-dinitrotoluene	ND		200	58
2,4-Dinitrotoluene	ND		200	18
2,6-Dinitrotoluene	ND		200	31
2-Nitrotoluene	ND		400	43
4-Nitrotoluene	ND		400	67
3-Nitrotoluene	ND	¥	400	4.4
LEEMandel				
Surrogate	* *REC	Limits	港道底	
1.2-Dinitrobenzene	89	69-120		

NAVFAC PACIFIC VALIDATED

N/11908

73.0

	Nitroaromatics and	Nitroamines b	y HPLC
Lab #:	207059	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC018	Batch#:	144100
Lab ID:	207059-018	Sampled:	10/16/08
Matrix:	Soil	Received:	10/21/08
Units:	ug/Kg	Prepared:	10/26/08
Basis:	as received	Analyzed:	10/29/08
Diln Fac:	1.000		

Analyte	Result		MDL A A FREE RA
НМХ	ND V	200	59
RDX	ND	200	42
1,3,5-Trinitrobenzene	ND	200	15
1,3-Dinitrobenzene	ND 🔸	200	13
Nitrobenzene	25 J b	NJ (KU) 200	17
Tetryl	ND 🔰	200	28
2,4,6-Trinitrotoluene	ND	200	7.7
2-Amino-4,6-dinitrotoluene	ND	200	32
4-Amino-2,6-dinitrotoluene	ND	200	57
2,4-Dinitrotoluene	ND	200	17
2,6-Dinitrotoluene	ND	200	31
2-Nitrotoluene	ND	390	42
4-Nitrotoluene	ND	390	66
3-Nitrotoluene	ND 🗸	390	44
Surrocate de mi	SREC Limits		
1 2-Dinitrobenzene	92 69-120		1.5. 20 CTU: 1.20 PS723

NAVFAC PACIFIC VALIDATED

2111908

74.0

	Nitroaromatics and	Nitroanines by	Y HPLC
Lab #:	207059	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC019	Batch#:	144100
Lab ID:	207059-019	Sampled:	10/16/08
Matrix:	Soil	Received:	10/21/08
Units:	ug/Kg	Prepared:	10/26/08
Basis:	as received	Analyzed:	10/29/08
Diln Fac:	1.000		

Analyte	Result	RL	MDL
НМХ	ND V	200	58
RDX	ND	200	42
1,3,5-Trinitrobenzene	ND	200	15
1,3-Dinitrobenzene	ND	200	13
Nitrobenzene	ND	200	17
Tetryl	ND	200	28
2,4,6-Trinitrotoluene	ND	200	7.7
2-Amino-4,6-dinitrotoluene	ND	200	31
4-Amino-2,6-dinitrotoluene	ND	200	56
2,4-Dinitrotoluene	ND	200	17
2,6-Dinitrotoluene	ND V	200	31
2-Nitrotoluene	61 J b (*)	_) 390	42
4-Nitrotoluene	ND V	390	66
3-Nitrotoluene	ND 🙏	390	43
		a set the set of the set of the set of the	

Surrogate	Z SREC	Limits	18 N. 18 N. 19	a setting of the set of	7	4月19日466月	中心的名用 网络花
1,2-Dinitrobenzene	90	69-120					

NAVFAC PACIFIC VALIDATED

M/1938

	Nitroaromatics and	Ni Lioani nesi b	Y HPLC
Lab #:	207059	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC020	Batch#:	144100
Lab ID:	207059-020	Sampled:	10/16/08
Matrix:	Soil	Received:	10/21/08
Units:	ug/Kg	Prepared:	10/26/08
Basis:	as received	Analyzed:	10/28/08
Diln Fac:	1.000		

Analyte Pro W . Main	Result & Basic J	RL	「「「「「「「「」」」」「「「「」」」」「「「」」」」
НМХ	ND U	200	59
RDX	ND	200	43
1,3,5-Trinitrobenzene	ND	200	15
1,3-Dinitrobenzene	ND	200	13
Nitrobenzene	ND	200	17
Tetryl	ND	200	28
2,4,6-Trinitrotoluene	ND	200	7.8
2-Amino-4,6-dinitrotoluene	ND	200	32
4-Amino-2,6-dinitrotoluene	ND	200	57
2,4-Dinitrotoluene	ND	200	18
2,6-Dinitrotoluene	ND 🖌	200	31
2-Nitrotoluene	82 J bNJ (* I)	400	43
4-Nitrotoluene	ND U	400	67
3-Nitrotoluene	ND 👃	400	4.4

Surrogate 1,2-Dinitrobenzene

81 69-120

J= Estimated value b= See narrative ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

NAVFAC PACIFIC VALIDATED

2111908

76.0

	Nitroaromatics and	Nitroaminea b	Y HPLC
Lab #:	207059	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC021	Batch#:	144101
Lab ID:	207059-021	Sampled:	10/16/08
Matrix:	Soil	Received:	10/21/08
Units:	ug/Kg	Prepared:	10/26/08
Basis:	as received	Analyzed:	10/28/08
Diln Fac:	1.000		

Analyte 🐘 🏶	Re	sult	mail RU tradet.	MDL
НМХ	ND	V	200	15
RDX	ND		200	21
1,3,5-Trinitrobenzene		41 J b J (* T)	200	27
1,3-Dinitrobenzene	ND	U C	200	4.6
Nitrobenzene	ND	1	200	16
Tetryl	ND		200	28
2,4,6-Trinitrotoluene	ND		200	30
2-Amino-4,6-dinitrotoluene	ND		200	18
4-Amino-2,6-dinitrotoluene	ND		200	39
2,4-Dinitrotoluene	ND		200	20
2,6-Dinitrotoluene	ND		200	22
2-Nitrotoluene	ND		390	28
4-Nitrotoluene	ND		390	28
3-Nitrotoluene	ND	V	390	40
Surrogate	&REC L	imits	and Stury of Astronomy Star	
1,2-Dinitrobenzene	89 6	9-120		

J= Estimated value b= See narrative ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

NAVFAC PACIFIC VALIDATED

211928

77.0

30 of 244

	Nitroaromatics and	Nitroaminar, b	y HPLC
Lab #:	207059	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC022	Batch#:	144101
Lab ID:	207059-022	Sampled:	10/16/08
Matrix:	Soil	Received:	10/21/08
Units:	ug/Kg	Prepared:	10/26/08
Basis:	as received	Analyzed:	10/28/08
Diln Fac:	1.000		

Analyte /	的權權自民	asult · · · · · · · · · · · · · · · · · · ·	RL	MDL
HMX	ND	V	200	15
RDX	ND		200	21
1,3,5-Trinitrobenzene		42 J bAJ $(\downarrow VI)$	200	27
1,3-Dinitrobenzene	ND	u ()	200	4.6
Nitrobenzene	ND		200	16
Tetryl	ND		200	29
2,4,6-Trinitrotoluene	ND		200	30
2-Amino-4,6-dinitrotoluene	ND		200	18
4-Amino-2,6-dinitrotoluene	ND		200	39
2,4-Dinitrotoluene	ND		200	21
2,6-Dinitrotoluene	ND		200	22
2-Nitrotoluene	ND		400	28
4-Nitrotoluene	ND		400	28
3-Nitrotoluene	ND	<u>v</u>	400	40
Surrogate	***REC	imits	一位的利用信	PERFECTATION DEBUG PERFECTATION
1,2-Dinitrobenzene	91 (69-120		

J= Estimated value b= See narrative ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

NAVFAC PACIFIC VALIDATED

2 11908

31 of 244

70.0

	Nitroaromatics and	Nitroamines b	A HBTC
Lab #:	207059	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC023	Batch#:	144101
Lab ID:	207059-023	Sampled:	10/16/08
Matrix:	Soil	Received:	10/21/08
Units:	ug/Kg	Prepared:	10/26/08
Basis:	as received	Analyzed:	10/28/08
Diln Fac:	1.000	-	

Analyte	at Result	THE REPORT OF A PARTY OF A PARTY	MDL
НМХ	ND	200	15
RDX	ND	200	21
1,3,5-Trinitrobenzene	ND	200	27
1,3-Dinitrobenzene	ND	200	4.6
Nitrobenzene	ND	200	16
Tetryl	ND	200	29
2,4,6-Trinitrotoluene	ND	200	30
2-Amino-4,6-dinitrotoluene	ND	200	18
4-Amino-2,6-dinitrotoluene	ND	200	39
2,4-Dinitrotoluene	ND	200	21
2,6-Dinitrotoluene	ND	200	22
2-Nitrotoluene	ND	400	28
4-Nitrotoluene	ND	400	28
3-Nitrotoluene	ND 🗸	400	40
8 Surrogate	SREC Limits	and the second	an and a second and an and a second and a
1.2-Dinitrobenzene	90 69-120		

ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

NAVFAC PACIFIC VALIDATED

111908

79.0

32 of 244

	Nitroaromatics and	Nitroanines .	Puple.
Lab #:	207059	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC024	Batch#:	144101
Lab ID:	207059-024	Sampled:	10/16/08
Matrix:	Soil	Received:	10/21/08
Units:	ug/Kg	Prepared:	10/26/08
Basis:	as received	Analyzed:	10/28/08
Diln Fac:	1.000		

i mi stali Apâlyte Stali <u>ma</u>	Res	ult.	RL	MOL .
HMX	ND 🚺		200	15
RDX	ND		200	21
1,3,5-Trinitrobenzene	ND		200	27
1,3-Dinitrobenzene	ND 🗸		200	4.6
Nitrobenzene		$43 J b N J (k \downarrow)$	200	16
Tetryl	ND U		200	29
2,4,6-Trinitrotoluene	ND		200	31
2-Amino-4,6-dinitrotoluene	ND		200	18
4-Amino-2,6-dinitrotoluene	ND		200	39
2,4-Dinitrotoluene	ND		200	21
2,6-Dinitrotoluene	ND 🤟		200	22
2-Nitrotoluene	1	00 J b NJ (4VT)	400	28
4-Nitrotoluene	ND 🕻	1	400	28
3-Nitrotoluene		91 J b NJ (*1)	400	40
Surrogate	IREC Li	mits Marine a	an a	

69-120

94

J= Estimated value b= See narrative ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

NAVFAC PACIFIC VALIDATED

2 11928

80.0

33 of 244

	Nitroaromatics and	Nitrosmines b	Y HPLC
Lab #:	207059	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC025	Batch#:	144101
Lab ID:	207059-025	Sampled:	10/16/08
Matrix:	Soil	Received:	10/21/08
Units:	ug/Kg	Prepared:	10/26/08
Basis:	as received	Analyzed:	10/28/08
Diln Fac:	1.000		

Analyte	t. Her	esult	a showing the most of the set	MOL
НМХ		39 J b	1 T (+ T) 190	14
RDX	ND	И	190	20
1,3,5-Trinitrobenzene	ND	1	190	27
1,3-Dinitrobenzene	ND		190	4.5
Nitrobenzene	ND		190	16
Tetryl	ND		190	28
2,4,6-Trinitrotoluene	ND		190	30
2-Amino-4,6-dinitrotoluene	ND		190	18
4-Amino-2,6-dinitrotoluene	ND		190	38
2,4-Dinitrotoluene	ND		190	20
2,6-Dinitrotoluene	ND		190	22
2-Nitrotoluene	ND		390	28
4-Nitrotoluene	ND		390	28
3-Nitrotoluene	ND	V	390	39
Surrögate	%REC in 1	imits		and the rest of the state of the
1,2-Dinitrobenzene	91 (59-120		

J= Estimated value b= See narrative ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

NAVFAC PACIFIC VALIDATED

2/11905

34 of 244

81.0

	Nitroaromatics and	Nátroamines b	X HPLC
Lab #:	207059	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC026	Batch#:	144101
Lab ID:	207059-026	Sampled:	10/16/08
Matrix:	Soil	Received:	10/21/08
Units:	ug/Kg	Prepared:	10/26/08
Basis:	as received	Analyzed:	10/28/08
Diln Fac:	1.000		

Analyte	Result	RL .	NEW & MOLANKA REPERT
HMX	ND	200	15
RDX	ND	200	21
1,3,5-Trinitrobenzene	ND	200	27
1,3-Dinitrobenzene	ND	200	4.6
Nitrobenzene	ND	200	16
Tetryl	ND	200	29
2,4,6-Trinitrotoluene	ND	200	30
2-Amino-4,6-dinitrotoluene	ND	200	18
4-Amino-2,6-dinitrotoluene	ND	200	39
2,4-Dinitrotoluene	ND	200	21
2,6-Dinitrotoluene	ND	200	22
2-Nitrotoluene	ND 🤟	400	28
4-Nitrotoluene	270 C	J N J (*VI) 400	28
3-Nitrotoluene	230 C	J 400	40
Surrogate	%REC Limits		

69-120

89

NAVFAC PACIFIC VALIDATED

C= Presence confirmed, but RPD between columns exceeds 40%
J= Estimated value
ND= Not Detected
RL= Reporting Limit
MDL= Method Detection Limit
Page 1 of 1

N 11908

82.0

	Nitroaromatics and	Nitroamines b	Y PLC
Lab #:	207059	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC027	Batch#:	144101
Lab ID:	207059-027	Sampled:	10/16/08
Matrix:	Soil	Received:	10/21/08
Units:	ug/Kg	Prepared:	10/26/08
Basis:	as received	Analyzed:	10/28/08
Diln Fac:	1.000	_	

Analyte	Free P	lesult	RL	INDLE STREET
НМХ	ND	V.	200	14
RDX	ND		200	20
1,3,5-Trinitrobenzene	ND		200	27
1,3-Dinitrobenzene	ND		200	4.5
Nitrobenzene	ND		200	16
Tetryl	ND		200	28
2,4,6-Trinitrotoluene	ND		200	30
2-Amino-4,6-dinitrotoluene	ND		200	18
4-Amino-2,6-dinitrotoluene	ND		200	39
2,4-Dinitrotoluene	ND	V	200	20
2,6-Dinitrotoluene		72 J b N J (* IL)	200	22
2-Nitrotoluene	ND	U. Starter	390	28
4-Nitrotoluene	ND	T.	390	28
3-Nitrotoluene	ND		390	39
		- A AN.		
1 2 Disitushanagare	SREC	Limits		
1,2-Dinitrobenzene	94	69-120		

J= Estimated value b= See narrative ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

NAVFAC PACIFIC VALIDATED

2111908

	Nitroaromatics and	Nitroamines b	Y HPLC
Lab #:	207059	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC028	Batch#:	144101
Lab ID:	207059-028	Sampled:	10/16/08
Matrix:	Soil	Received:	10/21/08
Units:	ug/Kg	Prepared:	10/26/08
Basis:	as received	Analyzed:	10/29/08
Diln Fac:	1.000	_	

HMX	ND	И	200	15
RDX	ND	1	200	21
1,3,5-Trinitrobenzene		27 J b	J (*VL) 200	27
1,3-Dinitrobenzene	ND	И (200	4.6
Nitrobenzene	ND	1	200	16
Tetryl	ND		200	29
2,4,6-Trinitrotoluene	ND		200	30
2-Amino-4,6-dinitrotoluene	ND		200	18
4-Amino-2,6-dinitrotoluene	ND		200	39
2,4-Dinitrotoluene	ND		200	21
2,6-Dinitrotoluene	ND		200	22
2-Nitrotoluene	ND		390	28
4-Nitrotoluene	ND		390	28
3-Nitrotoluene	ND	1	390	40
	ND	V		40

J= Estimated value b= See narrative ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

NAVFAC PACIFIC VALIDATED

111955

84.0

37 of 244

	Nitroaromatics and	Nitroamines by	у нрьс
Lab #:	207059	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC029	Batch#:	144101
Lab ID:	207059-029	Sampled:	10/16/08
Matrix:	Soil	Received:	10/21/08
Units:	ug/Kg	Prepared:	10/26/08
Basis:	as received	Analyzed:	10/29/08
Diln Fac:	1.000		

Analyte	R	esult an est	The second second		一种物料 计注意合
HMX	ND	U	190	58	and the second
RDX	ND	ĩ	190	42	
1,3,5-Trinitrobenzene	ND		190	15	
1,3-Dinitrobenzene	ND		190	13	
Nitrobenzene	ND		190	17	
Tetryl	ND		190	28	
2,4,6-Trinitrotoluene	ND	1	190	7.	6
2-Amino-4,6-dinitrotoluene	ND		190	31	
4-Amino-2,6-dinitrotoluene	ND		190	56	
2,4-Dinitrotoluene	ND		190	17	
2,6-Dinitrotoluene	ND		190	30	
2-Nitrotoluene	ND		390	42	
4-Nitrotoluene	ND	1	390	65	
3-Nitrotoluene	ND	V	390	43	1

Surrogate	%REC	Limits	民。在北部海道的自己的自己的建立的中国主义的法律
1,2-Dinitrobenzene	93	69-120	

ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

NAVFAC PACIFIC VALIDATED

241908

38 of 244

85.0

	Nitroaromatics and	Nitroamines by	Y HPLC
Lab #:	207059	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC030	Batch#:	144101
Lab ID:	207059-030	Sampled:	10/16/08
Matrix:	Soil	Received:	10/21/08
Units:	ug/Kg	Prepared:	10/26/08
Basis:	as received	Analyzed:	10/30/08
Diln Fac:	1.000		

Analyta	R	esult	RL	MDL
НМХ	ND	U	190	22
RDX	ND	T.	190	25
1,3,5-Trinitrobenzene	ND		190	18
1,3-Dinitrobenzene	ND		190	11
Nitrobenzene	ND		190	26
Tetryl	ND		190	28
2,4,6-Trinitrotoluene	ND		190	25
2-Amino-4,6-dinitrotoluene	ND		190	49
4-Amino-2,6-dinitrotoluene	ND		190	45
2,4-Dinitrotoluene	ND		190	27
2,6-Dinitrotoluene	ND		190	26
2-Nitrotoluene	ND	V	380	27
4-Nitrotoluene		110 C J	J(*妅) 380	49
3-Nitrotoluene	ND	И	380	42
	1961-1-12		and the second	

Surrogate .	SREC.	Limits	1. · · · · · · · · · · · · · · · · · · ·	and the second	対象が	1997年1月1日日日 一個	
1,2-Dinitrobenzene	94	69-120		-			

NAVFAC PACIFIC VALIDATED

C= Presence confirmed, but RPD between columns exceeds 40%
J= Estimated value
ND= Not Detected

RL= Reporting Limit

MDL= Method Detection Limit

Page 1 of 1

	Nitroaromatics and	Nitroamines by	y HPLC
Lab #:	207059	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC031	Batch#:	144101
Lab ID:	207059-031	Sampled:	10/16/08
Matrix:	Soil	Received:	10/21/08
Units:	ug/Kg	Prepared:	10/26/08
Basis:	as received	Analyzed:	10/29/08
Diln Fac:	1.000		

	Result	RL .	'. Build a HOL <u>y</u> a M ^{ana} rang Pa
НМХ	ND	190	14
RDX	ND	190	20
1,3,5-Trinitrobenzene	ND	190	27
1,3-Dinitrobenzene	ND	190	4.5
Nitrobenzene	ND	190	16
Tetryl	ND	190	28
2,4,6-Trinitrotoluene	ND	190	30
2-Amino-4,6-dinitrotoluene	ND	190	18
4-Amino-2,6-dinitrotoluene	ND	190	38
2,4-Dinitrotoluene	ND	190	20
2,6-Dinitrotoluene	ND	190	22
2-Nitrotoluene	ND	390	28
4-Nitrotoluene	ND	390	28
3-Nitrotoluene	ND 🗸	390	39
Surrogate	GREC Limits		
1,2-Dinitrobenzene	92 69-120		

NAVFAC PACIFIC VALIDATED

ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

11 111908

87.0

	Nitroaromatics and	Nitroamines b	y IPLC
Lab #:	207059	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC032	Batch#:	144101
Lab ID:	207059-032	Sampled:	10/16/08
Matrix:	Soil	Received:	10/21/08
Units:	ug/Kg	Prepared:	10/26/08
Basis:	as received	Analyzed:	10/29/08
Diln Fac:	1.000		

Analyte	F	lesult	RL	L. F. A. HOL
НМХ	ND	И	190	14
RDX	ND		190	20
1,3,5-Trinitrobenzene	ND		190	27
1,3-Dinitrobenzene	ND		190	4.5
Nitrobenzene	ND	V	190	16
Tetryl		52 J b∦J (★IJ)	190	28
2,4,6-Trinitrotoluene	ND	u - /	190	30
2-Amino-4,6-dinitrotoluene	ND		190	18
4-Amino-2,6-dinitrotoluene	ND		190	38
2,4-Dinitrotoluene	ND		190	20
2,6-Dinitrotoluene	ND		190	22
2-Nitrotoluene	ND	V	390	28
4-Nitrotoluene		100 ЈЪ (√Ј(ХЦ))	390	28
3-Nitrotoluene	ND	<u>ч</u>	390	39
	1992			
Surrogate	AREC	Limits		

69-120

86

J= Estimated value b= See narrative ND= Not Detected . RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

NAVFAC PACIFIC VALIDATED

A 111908

41 of 244

	Nitroaromatics and	Nitroamines b	y HPLC
Lab #:	207059	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC033	Batch#:	144101
Lab ID:	207059-033	Sampled:	10/16/08
Matrix:	Soil	Received:	10/21/08
Units:	ug/Kg	Prepared:	10/26/08
Basis:	as received	Analyzed:	10/28/08
Diln Fac:	1.000		

Analyte	Result	· · · · · · · · · · · · · · · · · · ·	NDLA · · · · · · · · · · · · · · · · · · ·
НМХ	ND V	200	14
RDX	ND	200	20
1,3,5-Trinitrobenzene	ND	200	27
1,3-Dinitrobenzene	ND	200	4.5
Nitrobenzene	ND	200	16
Tetryl	ND	200	28
2,4,6-Trinitrotoluene	ND	200	30
2-Amino-4,6-dinitrotoluene	ND	200	18
4-Amino-2,6-dinitrotoluene	ND	200	39
2,4-Dinitrotoluene	ND	200	20
2,6-Dinitrotoluene	ND	200	22
2-Nitrotoluene	ND	390	28
4-Nitrotoluene	ND	390	28
3-Nitrotoluene	ND 🗸	390	39
D			
Surrogate	REC Limits		ここを、違い、小説、この感じる。

69-120

84

NAVFAC PACIFIC VALIDATED

٠

ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

L(11938 19.0

VALIDATION COMPLETENESS WORKSHEET

Level III

LUC #	15/4/M4U	_ ¥74
SDG #:	207059	
Laborat	ory: Curtis & Tompkins	, Ltd.

10747440

100.46

Date: ///13/08 Page: _/of /_____ Reviewer: ______ 2nd Reviewer: ____L

METHOD: HPLC Explosives (EPA SW 846 Method 8330)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I	Technical holding times	Δ	Sampling dates: 10/14 10/16/08
IIa.	Initial calibration	Δ	1 ² 20.990
IIb.	Calibration verification/ICV	A	101 = 15
. III.	Blanks	SW	
IVa.	Surrogate recovery		
IVb.	Matrix spike/Matrix spike duplicates	Α	
IVc.	Laboratory control samples	A	LCS
v .	Target compound identification	N	
<u>VI,</u>	Compound Quantitation and CRQLs	SW	
VII.	System Performance	N	
VIII.	Overall assessment of data	A	
IX.	Field duplicates	SW	D= 10+11, 20+21, 30+31
Χ.	Field blanks	N	

Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples: 30/L

r							
1	MEC001	11 I	MEC011	21 Z	MEC021	312	MEC031
2	MEC002	12	MEC012	22 2	MEC022	322	MEC032
3 /	MEC003	13]	MEC013	23 2	MEC023	332	MEC033
4	MEC004	14	MEC014	24 7	MEC024	34	MEC020MS
5	MEC005	15 [†]	MEC015	25 L	MEC025	35	MEC020MSD
6	MEÇ006	16	MEC016	267	MEC026	36	MEC033MS
71	MEC007	17	MEC017	272	MEC027	37	MEC033MSD
8	MEC008	₁₈ /	MEC018	28 2	MEC028	38 /	QC467146
9	MEC009	19	MEC019	29 P	MEC029	39 L	QC467150
10	MEC010	20	MEC020	307	MEC030	40	

Notes:_

8310	8330				
	0000	8151	8141	8141(Con't)	- arcus
A. Acenaphthene	A. HMX	A. 24-D		h mole -	01700
B. Acenaphthylene	B. RDX		A. UICUIOYOS	V. Fensulfothion	V. Benzene
C. Anthracene		B. 2,4-JB	B. Mevinphos	W. Bolstar	CC. Toluene
		C. 2,4,5-T	C. Demeton-O	X. EPN	EF Ethy Barrow
u. Benzo(a)anthracene	D. 1,3-Dinitrobenzene	D. 2,4,5-TP	D. Demeton-S		
E. Benzo(a)pyrene	E. Tetryi	E. Dinosah			SSS. O-Xylene
F. Benzo(b)fluoranthene	F. Nitrohenzene		E. Ethoprop	Z. Coumaphos	RRR. MP-Xylene
G. Benzo(n h I)nemiene		r. Ulchlorprop	F. Naled	A. Parathion	GG. Total Xylene
	G. 2.4.6-1 Anitrotoluene	G. Dicamba	G. Sulfotep	BB. Trichloronate	
n. Benzo(k)!luoranthene	H. 4-Amino-2,6-dinitrotoluene	H. Dalapon	H. Phorate	CC. Trichlorinata	
l. Chrysene	1. 2-Amino-4,6-dinitrotoluene	I. MCPP	L. Dimethoata		
J. Dibenz(a,h)anthracene	J. 2,4-Dinitrotoiune	J. MCPA			
K. Fiuoranthene			J. Ulazinon	EE. Def	
	N. 4,0-UINITOTOIUENE	K. Pentachiorophenol	K. Disulfoton	FF. Prowl	
L. Fluorene	L. 2-Nitrotoluene	L 2,4,5-TP (silvex)	L. Parathion-methyl	GG Ethion	
M. Indeno(1,2,3-cd)pyrene	M. 3-Nitrotoluene	M. Silvex	N Parad		
N. Naphthalene	N. 4-Nitrotoluene			HH. Tetrachlorvinphos	
0. Pharanthrand			N. Malathion	li. Sulprofos	
	ö		O. Chiorpyrtfos		
P. Pyrene	ď.		P. Fanthlon		
6	٥				
R.			u. Parathion-ethyi		
U			R. Trichloronate		
ő			S. Merphos		
			+ Sun 45		
			1. Suroros		
			U. Tokuthion		
votes:					

VALIDATION FINDINGS WORKSHEET

_METHOD: _____GC ____HPLC

cmpd_llst.wpd

HOD: CcHDC JCd Reviewer, A Mode: area reading thank? With applicable questions answeed Yr. Not applicable questions are identified as "NA". Mixe all area reading thanks and withower is a simple extinction procedure was performed for a performent of the method blank? With a simple extinction blank? Mixe all area reading that an anyor and withower if yes, please see findings below. Mixe all area reading that analyse at the method blank? Mixe all area reading that analyse of the method blank? Wise all area variation blank? Mixe all area reading that analyse at the method blank? Wise all yes, please see findings below. Mixe all area reading blank analyse at the sec attraction blank? Mixe all yes, please see findings below. Mixe all area reading blank analysis data: //2% //2% All yes, please see findings below. Mixe all area reading blank analysis data: //2% //2% All yes, please see findings below. Mixe all area reading blank analysis data: //2% //2% All yes, please see findings below. Mixe all area reading blank analysis data: //2% //2% All yes, please see findings below. Mixe all area reading blank analysis data: //2% //2% All yes, please see findings below. Mixe all area reading blank analysis data: //2% //2% All reaction blank? Mixe all area reading blank analysis data: //2% //2% All reaction blank? Mixe all area reading blank analysis data: //2% //2% All reaction blank?	16 # 1 / 14 / 4 4 0 16 # ere cone		VAL	IDATION FIN	IDINGS WOR <u>Blanks</u>	KSHEET	Page: _of
Rese qualifications below for all questions answered "Yr. Not applicable questions are identified as "NA". Nee and statistications below for all questions and when with a given method biank? Was a method biank performed with a given method biank? Was a method biank performed with a given method biank? Was a method biank performed with a given method biank? Was a method biank performed with a given method biank? Was a method biank performed with a given method biank? Was a method biank performed with a given biank. Max Gasoline and aromatics only/Was a method biank analysis data: Max Gasoline and aromatics only/Was a method biank analysis data: Max	HOD: CG	. HPLC					2nd Reviewer:
Weight and aromatics only/Was a method blank analyzed with each 24 hour batch? Wata analyzed for each analytical / matchine batch of 20 samples? Associated samples: / ー 20 Associated samples: / ー 20 Canonad Bunk to analytic date: / クスク ス ク ク ク ク ク ク ク ク ク ク ク ク ク ク ク ク	Ise see qualifications b <u>NNA</u> Were all st <u>NNA</u> Was a met <u>NNA</u> Was a met <u>NNA</u> Were any of <u>NND</u> Ontv	elow for all questi amples associated thod blank perform thod blank perform contaminants four	ons answered "N' I with a given me ned for each mat ned with each ext of in the method	. Not applicable thod blank? ix and wheneve raction batch? blanks? If yes, I	questions are id r a sample extra please see findir	dentified as "N/A". action procedure was perforr ngs below.	ned?
Compound Bink ID ample identification N 79 $874u$ a 5 6 N 79 $874u$ $68/u$ $74/u$ 9 N $19/u$ $11/u$ $11/u$ $11/u$ K extraction date: Blank analysis date: Associated samples: $$	<u>NNA</u> (Gasoline a <u>NNA</u> Was a met nkextraction date: <i>/</i> 0 ic. units: ν,9 /kg	and aromatics only thod blank analyze <u>26/0</u> 8 Blank	y)Was a method ed for each analy analysis date: <u>/</u>	blank analyzed tical / extraction	with each 24 hou batch of ∠20 sa Asso	ur batch? Imples? ociated samples: / ·	02 4
$ac_{ac} k_{b} V V^{c}$ a $b = \sqrt{2}$ c c N 77 $g = \sqrt{4}$ $b = \sqrt{4}$ $b = \sqrt{4}$ $b = \sqrt{4}$ N 77 $g = \sqrt{4}$ $b = \sqrt{4}$ $b = \sqrt{4}$ $b = \sqrt{4}$ N 77 $g = \sqrt{4}$ $b = \sqrt{4}$ $b = \sqrt{4}$ $b = \sqrt{4}$ N 79 $g = \sqrt{4}$ $b = \sqrt{4}$ $b = \sqrt{4}$ $b = \sqrt{4}$ N 1 $g = \sqrt{4}$ $b = \sqrt{4}$ $b = \sqrt{4}$ N 1 $g = \sqrt{4}$ $g = \sqrt{4}$ $g = \sqrt{4}$ N 1 $g = \sqrt{4}$ $g = \sqrt{4}$ $g = \sqrt{4}$ N 1 $g = \sqrt{4}$ $g = \sqrt{4}$ $g = \sqrt{4}$ N 1 $g = \sqrt{4}$ $g = \sqrt{4}$ $g = \sqrt{4}$ N 1 $g = \sqrt{4}$ $g = \sqrt{4}$ $g = \sqrt{4}$ N 1 $g = \sqrt{4}$ $g = \sqrt{4}$ $g = \sqrt{4}$ N 1 $g = \sqrt{4}$ $g = \sqrt{4}$ $g = \sqrt{4}$ N 1 $g = \sqrt{4}$ $g = \sqrt{4}$ $g = \sqrt{4}$ N 1 $g = \sqrt{4}$ $g = \sqrt{4}$ $g = \sqrt{4}$ N 1 $g = \sqrt{4}$ $g = \sqrt{4}$ $g = \sqrt{4}$ N 1 $g = \sqrt{4}$	Compound	Blank ID				Samble Identification	
N 79 $$S7/4$ $6S/4$ $74/4$ Image: Second contraction date:		80467646 -	م	З	لم	6	
kextraction date: Blank analysis date: units: Associated samples:	Ν	62	h/68	19/11	68/4	14/10	
k extraction date: Blank analysis date: Associated samples: ulits: aller aller aller							
k extraction date:							
k extraction date:							
Compound Blank ID Sample Identification Sample Identification Image: Sample Identification Image: Sample Identification Image: Sample Identification	ik extraction date: c. units:	Blank	analysis date:		Asso	ociated samples:	
	Compound	Blank ID				Sample Identification	

All contaminants within five times the method blank concentration were qualified as not detected, "U"

LDC #: <u>19747</u>440 SDG #: <u>Au co</u>uen

Compound Quantitation and Reported CRQLs VALIDATION FINDINGS WORKSHEET

Page: / of / 0 2nd Reviewer: Reviewer:

METHOD: _______

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Level 1//D Only Y N N/A Did the reported results for detected target compounds agree within 10.0% of the recalculated re

Were CRQLs adjusted for sample dilutions, dry weight factors, etc.? Did the reported results for detected target compounds agree within 10.0% of the recalculated results?

Qualifications	J/Adet											
Associated Samples	0 F											
% RPD Bet. 2 column Finding 240	244 41%)										
/ Compound Name	Z											
1 *			+	+	╞	╡				╡		

Comments: _See sample calculation verification worksheet for recalculations

•

D	5
44	ź,
17	3
19	re la
Ĭ	Ĩ
-# 	Ū.
9	SC

Compound Quantitation and Reported CRQLs VALIDATION FINDINGS WORKSHEET

Page: / of / Reviewer:

GC HPLC **METHOD:**

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Level X/D Only Y N N/A Did the reported results for detected tamet compounds arree within 10.0% of the recalculated re-

Were CRQLs adjusted for sample dilutions, dry weight factors, etc.? Did the reported results for detected tamet communds agree within 10.0% of the receivingted results?

Comments: _See sample calculation verification worksheet for recalculations

7474 ¢()	e cont
LDC #: /	sDG #: 7

Compound Quantitation and Reported CRQLs VALIDATION FINDINGS WORKSHEET

2nd Reviewer: V Page: / of / C Reviewer:

. .

_____GC ____ HPLC **METHOD:**

Please See qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Level IV/D Only Y N N/A Did the reported results for detected target compounds agree within 10.0% of the recalculated re

Were CRQLs adjusted for sample dilutions, dry weight factors, etc.? Did the reported results for detected target compounds agree within 10.0% of the recalculated results?

Qualifications	d/ FN				+ 4		
Associated Samples	2-4	×	26	27	*		
Finding	no se cand column confirmation parter mark						
Compound Name	F, L, M	4	V N	X	REN		

Comments: _See sample calculation verification worksheet for recalculations

COMQUANew.wpd

О	
2,	
4	5
N	4
Э	31
N	9
01	3
7	1
#	#
Ŋ	g
_	_

VALIDATION FINDINGS WORKSHEET **Field Duplicates**

2 Page: _______ Reviewer:

DG #: red coner	Fi	eld Duplicates		Page:
NIA Were field duplicate pairs identified to N/A Were field duplicate pairs identified to N/A Were target compounds detected	ed in this SDG? I in the field duplicate pairs(2nd reviewer:
Commonied	Concentration	("B /kg)	%RPD	Qualification
	0/	11		Parent only / All Samples
Ĭ,	31	2004	005	
7	0//	76	37	
4	2004	92	200	
	Concentration	Ky/ En ,	%RPD	Qualification
Compound				Parent only / All Samples

Composind	Concentration	fall br ,	%RPD	Qualification
	20	2/		Parent only / All Samples
۲.	82	3904	oar	
υ	2004	4/	200	
			- 1.00	

FLDUPNew.wpd

•	
5	4
47	3
2	3
6/	re
 #	۲ #
Ő	000

VALIDATION FINDINGS WORKSHEET **Field Duplicates**

Page: /of / 9

BC HPLC	Were field duplicate pairs identified in this SDG?	Were target compounds detected in the field dup
METHOD:	Y N N/A	Y/N N/A

Were target compounds detected in the field duplicate pairs?

Qualification	Parent only / All Samples					
%RPD		200				
(A len)	3 /	390 0				
Concentration (30	0//				
purious J		N				

	Concentration (%RPD	Qualification
punoduloo			Parent only / All Samples
•			
FLDUPNew.wpd			

LDC Report# 19747A4

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Waikane Training Area

Collection Date: October 14 through October 16, 2008

LDC Report Date: November 19, 2008

Matrix: Soil

Parameters: Metals

Validation Level: Standard

Laboratory:

Curtis & Tompkins, Ltd.

Sample Delivery Group (SDG): 207059

Sample Identification

MEC001	MEC021
MEC002	MEC022
MEC003	MEC023
MEC004	MEC024
MEC005	MEC025
MEC006	MEC026
MEC007	MEC027
MEC008	MEC028
MEC009	MEC029
MEC010	MEC030
MEC011	MEC031
MEC012	MEC032
MEC013	MEC033
MEC014	MEC020MS
MEC015	MEC020MSD
MEC016	MEC021MS
MEC017	MEC021MSD
MEC018	
MEC019	
MEC020	

Introduction

This data review covers 37 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Methods 6010B and 7000 for Metals. The metals analyzed were Aluminum, Antimony, Barium, Chromium, Copper, Iron, Lead, Nickel, and Zinc.

This review follows the Project Procedures Manual, U.S. Navy Environmental Restoration Program, NAVFAC Pacific (DON 2007) and the U.S. Department of Defense Quality Systems Manual for Environmental Laboratories, Final Version (January 2006).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks with the following exceptions:

PB (prep blank) Chromium 0.040 mg/Kg MEC001 Copper 0.055 mg/Kg MEC002	Method Blank ID	Analyte	Maximum Concentration	Associated Samples
Iron 2.6 mg/Kg MEC003 Lead 0.086 mg/Kg MEC004 Zinc 0.31 mg/Kg MEC005 MEC006 MEC007 MEC008 MEC009 MEC010 MEC010 MEC011 MEC012 MEC013 MEC014 MEC015 MEC016 MEC016 MEC019 MEC019	PB (prep blank)	Chromium Copper Iron Lead Zinc	0.040 mg/Kg 0.055 mg/Kg 2.6 mg/Kg 0.086 mg/Kg 0.31 mg/Kg	MEC001 MEC002 MEC003 MEC004 MEC005 MEC006 MEC007 MEC008 MEC010 MEC010 MEC010 MEC011 MEC012 MEC013 MEC014 MEC015 MEC016 MEC017 MEC018 MEC019 MEC020

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
ICB/CCB	Barium Chromium Copper Lead	2.244 ug/L 2.038 ug/L 3.406 ug/L 2.416 ug/L	MEC001 MEC002 MEC003 MEC004 MEC005 MEC006 MEC007 MEC008 MEC010 MEC010 MEC010 MEC011 MEC012 MEC013 MEC014 MEC013 MEC014 MEC015 MEC016 MEC017 MEC018 MEC019 MEC020
ICB/CCB	Aluminum Iron	46.54 ug/L 88.37 ug/L	MEC001 MEC002 MEC003 MEC004 MEC005 MEC006 MEC007 MEC009 MEC010 MEC010 MEC011 MEC012 MEC013 MEC013 MEC013 MEC014 MEC015 MEC016 MEC019 MEC020 MEC020 MEC033
PB (prep blank)	Aluminum Chromium Copper Iron	3.8 mg/Kg 0.039 mg/Kg 0.13 mg/Kg 1.8 mg/Kg	MEC021 MEC022 MEC023 MEC024 MEC025 MEC026 MEC027 MEC028 MEC029 MEC030 MEC031 MEC032 MEC033

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
ICB/CCB	Barium Chromium Copper Lead	2.392 ug/L 2.215 ug/L 4.540 ug/L 2.367 ug/L	MEC022 MEC023 MEC024 MEC025 MEC026 MEC027 MEC028 MEC029 MEC030 MEC031 MEC032 MEC033
ICB/CCB	Aluminum	43.66 ug/L	MEC022 MEC023 MEC024 MEC025 MEC026 MEC029 MEC030 MEC031 MEC032
ICB/CCB	Iron	75.92 ug/L	MEC022 MEC023 MEC024 MEC025 MEC026 MEC027 MEC028 MEC029 MEC030 MEC031 MEC032
ICB/CCB	Barium Chromium Copper Lead	2.262 ug/L 1.555 ug/L 3.315 ug/L 2.306 ug/L	MEC021

Data qualification by the initial, continuing and preparation blanks (ICB/CCB/PBs) was based on the maximum contaminant concentration in the ICB/CCB/PBs in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated method blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
MEC001	Lead	0.26 mg/Kg	0.26U mg/Kg
MEC008	Lead	0.33 mg/Kg	0.33U mg/Kg

Sample	Analyte	Reported Concentration	Modified Final Concentration
MEC026	Lead	0.39 mg/Kg	0.39U mg/Kg
MEC027	Lead	0.37 mg/Kg	0.37U mg/Kg
MEC028	Lead	0.54 mg/Kg	0.54U mg/Kg
MEC030	Lead	0.25 mg/Kg	0.25U mg/Kg

No field blanks were identified in this SDG.

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Sampies)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Flag	A or P
MEC020MS/MSD (MEC001 MEC002 MEC003 MEC004 MEC005 MEC006 MEC007 MEC007 MEC008 MEC010 MEC010 MEC010 MEC011 MEC012 MEC013 MEC014 MEC015 MEC016 MEC017 MEC018 MEC019 MEC020)	Chromium Lead Antimony	71 (80-120) 69 (80-120) 55 (80-120)	- 67 (80-120) 57 (80-120)	-	J (all detects) UJ (all non-detects)	A

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Flag	A or P
MEC020MS/MSD (MEC001 MEC002 MEC003 MEC004 MEC006 MEC007 MEC008 MEC009 MEC010 MEC010 MEC011 MEC012 MEC013 MEC013 MEC014 MEC015 MEC016 MEC017 MEC018 MEC019 MEC020)	Nickel	143 (80-120)	131 (80-120)	-	J (all detects)	A
MEC021MS/MSD (MEC021 MEC022 MEC023 MEC024 MEC025 MEC026 MEC027 MEC028 MEC029 MEC030 MEC031 MEC032 MEC033)	Lead Antimony	79 (80-120) 60 (80-120)	- 61 (80-120)	-	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	A

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Internal Standards

ICP-MS was not utilized in this SDG.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met with the following exceptions:

Diluted Sample	Analytə	%D (Limits)	Associated Samples	Flag	A or P
MEC020L	Iron	11 (≤10)	MEC001 MEC002 MEC003 MEC004 MEC005 MEC007 MEC008 MEC010 MEC011 MEC012 MEC013 MEC015 MEC016 MEC019 MEC019	J (all detects)	A

XI. Sample Result Verification

Raw data were not reviewed for this SDG.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Duplicates

Samples MEC010 and MEC011, samples MEC020 and MEC021, and samples MEC030 and MEC031 were identified as field duplicates. No metals were detected in any of the samples with the following exceptions:

	Concentration (mg/Kg)		
Analyte	MEC010	MEC011	RPD (Limits)
Aluminum	36000	33000	9 (≤100)
Barium	52	52	0 (≤100)
Chromium	230	260	12 (≤100)

	Concentra		
Analyte	MEC010	MEC011	RPD (Limits)
Copper	79	85	7 (≤100)
Iron	83000	96000	15 (≤100)
Lead	7.1	8.2	14 (≤100)
Nickel	97	94	3 (≤100)
Zinc	78	86	10 (≤100)

	Concentra		
Analyte	MEC020	MEC021	RPD (Limits)
Aluminum	45000	48000	6 (≤100)
Barium	35	40	13 (≤100)
Chromium	310	330	6 (≤100)
Copper	190	250	27 (≤100)
Iron	110000	110000	0 (≤100)
Lead	120	84	35 (≤100)
Nickel	100	120	18 (≤100)
Zinc	93	99	6 (≤100)

	Concentra		
Analyte	MEC030	MEC031	RPD (Limits)
Aluminum	35000	27000	26 (≤100)
Barium	65	55	17 (≤100)
Chromium	140	140	0 (≤100)
Copper	88	84	5 (≤100)
Iron	83000	65000	24 (≤100)

	Concentral		
Analyte	MEC030	MEC031	RPD (Limits)
Lead	0.25	0.60	82 (≤100)
Nickel	86	73	16 (≤100)
Zinc	74	67	10 (≤100)

Waikane Training Area Metals - Data Qualification Summary - SDG 207059

SDG	Sample	Analyte	Flag	A or P	Reason
207059	MEC001 MEC002 MEC003 MEC004 MEC005 MEC006 MEC007 MEC008 MEC010 MEC010 MEC011 MEC012 MEC013 MEC014 MEC015 MEC016 MEC017 MEC018 MEC019 MEC020	Chromium Lead Antimony	J (all detects) UJ (all non-detects)	A	Matrix spike/Matrix spike duplicates (%R)
207059	MEC001 MEC002 MEC003 MEC004 MEC005 MEC006 MEC007 MEC008 MEC010 MEC010 MEC010 MEC011 MEC012 MEC013 MEC013 MEC014 MEC015 MEC016 MEC017 MEC018 MEC019 MEC020	Nickel	J (all detects)	A	Matrix spike/Matrix spike duplicates (%R)
207059	MEC021 MEC022 MEC023 MEC024 MEC025 MEC026 MEC027 MEC028 MEC029 MEC030 MEC031 MEC032 MEC033	Lead Antimony	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	A	Matrix spike/Matrix spike duplicates (%R)

SDG	Sample	Analyte	Flag	A or P	Reason
207059	MEC001 MEC002 MEC003 MEC004 MEC005 MEC006 MEC007 MEC008 MEC010 MEC010 MEC010 MEC011 MEC012 MEC013 MEC014 MEC015 MEC016 MEC016 MEC019 MEC020	Iron	J (all detects)	A	ICP serial dilution (%D)

Walkane Training Area Metals - Laboratory Blank Data Qualification Summary - SDG 207059

SDG	Sample	Analyte	Modified Final Concentration	A or P
207059	MEC001	Lead	0.26U mg/Kg	A
207059	MEC008	Lead	0.33U mg/Kg	A
207059	MEC026	Lead	0.39U mg/Kg	A
207059	MEC027	Lead	0.37U mg/Kg	A
207059	MEC028	Lead	0.54U mg/Kg	A
207059	MEC030	Lead	0.25U mg/Kg	A

Walkane Training Area Metals - Field Blank Data Qualification Summary - SDG 207059

No Sample Data Qualified in this SDG

				Aluminum				
Lao ⁴ : Client: Pro'ect#:	0 0 0 Wil Chee Pl UXOA-007	lanning		Location: Prep: Anal sis:	al ane Train EPA 3050B FPA 6010B	ing Area		
Analyte: Matrix: Units:	Aluminum Soil mg/Kq			Received: Prepared:	10/21/08 10/23/08			
FedID		1 89	2	NDL DASIS	Molsture Di	http://www.astrong	Samolad	The lorged
VEC00	-20105 - 4 4 201050 - 4 4 201050 - 4 4			Yab 21	398 20.	00 14044	10/14/08	80/87/0
MECO03	SAMPLE 207059-0	102 54,000	210		538	.00 144044	10/14/08	10/28/05
MEC004	SAMPLE 207059-0	004 34,000	190		20% 20%	.00 144044	80/91/01	10/28/UE
MEC005	SAMPLE 207059-(005 35,000	140	13 drv	348 20.	144044	10/14/08	10/28/05
MEC006	SAMPLE 207059-(006 30,000	190	18 drv	518 20.	.00 144044	10/14/08	0/28/06
MEC007	SAMPLE 207059-(007 33,000	170	16 dry	478 20	.00 144044	10/14/08	10/28/06
MECU08	SAMPLE 207059-(170	16 dry	438 20.	00 144044	10/15/08	10/28/05
MECCOS MECOS	SAMPLE 20/039-0	109 /3,000	0 / T	16 dry	478 20	.00 144044	10/15/08	10/28/05
MEC011	SAMPLE 207059-0	011 33,000	190		102 198 20	. UU 144044	10/15/08	10/28/05
MEC012	SAMPLE 207059-(12 46,000	150	14 drv	386	.00 144044	10/15/08	10/28/06
MEC013	SAMPLE 207059-(113 52,000	160	15 dry	458 20	.00 144044	10/15/08	10/28/06
MEC014	SAMPLE 207059-0	014 46,000	170	16 dr <u>y</u>	458 20.	.00 144044	10/15/08	10/28/05
MECUIS	SAMPLE 207059-(015 35,000	190	18 dry	50% 20.	00 144044	10/15/08	10/28/06
MEC017	SAMPLE 207059-0	17 46,000	041		1000 1000 1000		80/21/01	10/28/05
MEC018	SAMPLE 207059-0	18 44,000	160	15 drv	400 800 800	144044		10/28/05
MEC019	SAMPLE 207059-(119 44,000	160	16 drv	418 20.	00 144044	10/16/08	10/28/08
MEC020	SAMPLE 207059-(020 45,000	190	18 drý	50% 20.	.00 144044	10/16/08	10/28/06
MEC021	SAMPLE 207059-()21 48,000	200	19 dry	518 20	.00 144046	10/16/08	10/24/06
MPC022 MPC022	SAMPLE ZU/US9-(122 34,000	06T	18 dry	518 20	.00 144046	10/16/08	10/27/06
MECO23	CAMPLE 20/039-0		180	17 dry	498 20	.00 144046	10/16/08	10/27/06
MFC004 MFC005	SAMPLE 20/03940		061 001	18 dry	488 20.	00 144046	10/16/08	L0/27/06
MEC026	SAMPLE 207059-0	26 36 000	230	1/ ary 22 dr	58% 20.	.00 144046	10/16/08	L0/27/05
1								

J= Estimated value ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 2

NAVFAC PACIFIC VALIDATED

27

ct

78 of 244

Curlis & Tompkins, Ltd.

אר ווליב

			Aluminum				学校である	ないである	
Chee Plann -007	ing		Locat Prep: Anal	10n:	Wal ane EPA 3050 FPA 6010	Training A B B	Irea		
unu Tu			Prepa	red:	10/23/08				
DabotD when	学会们、Result	IN	MDL	Basis	Moistur	a Di Tampac	Batch# Cam	and And tone	
207059-027	37,000	150	14	dry	38%	20.00	144046 10/	0/52/01 80/91	100
201020-020102	78,000	210	50	dry	548	20.00	144046 10/1	16/08 10/29/C	0 00
			14 17	dry	80.	20.00	144046 10/1	L6/08 10/27/C	œ
		140	201	dry	478	20.00	144046 10/1	L6/08 10/27/C	<u></u>
		0 8 T	1 /	dry	478	20.00	144046 10/]	16/08 10/27/C	- m
2010201020	21, UUU	200	19	dry	548	20.00	144046 10/1	6/08 10/27/0	
20/024-033	42,000	200	19	dry	51%	20.00	144046 10/1	6/08 10/28/0	
004 0000 00 4 0000	ND ND	0.3 0	0.47	as receive	g	1.000	144044	10/28/0	
774 00722	3.8 J	ۍ.U	0.47	as receive	q	1.000	144046	10/24/0	a

١

J= Estimated value ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 2 of 2 80611/2

Curtis & Tompkins, Ltd.

NAVFAC PACIFIC VALIDATED

5.0

ct

						Ba	rium				
Lab #:		207059	1 m	and the second	ALC: NOT	and the second	Location:	ALC: NOT THE OWNER.	Waikane Tr.	aining Ar	ea
Client:		Wil Chee	Plan	ning			Prep:		EPA 3050B		
Project#	:	UXOA-007		_			Analysis:		EPA 6010B		
Analyte:		Barium					Diln Fac:		1.000		
Matrix:		Soil					Received:		10/21/08		
Units:		mg/Kg					Prepared:		10/23/08		
Field ID	Туре	透過Lab ID	Res	UILE	ØRL 🥸	MDL	Basis	Mois	fire Batch?	Sampled	Analyzed
MEC001	SAMPLE	207059-001	1	77	0.41	0.055	dry	39%	144044	10/14/08	10/28/08
MEC002	SAMPLE	207059-002	2	69	0.53	0.072	dry	53%	144044	10/14/08	10/28/08
MEC003	SAMPLE	207059-003	3	75	0.45	0.058	dry	44%	144044	10/14/08	10/28/08
MEC004	SAMPLE	207059-004	1	63	0.49	0.065	dry	49%	144044	10/14/08	10/28/08
MEC005	SAMPLE	207059-005	5	19	0.38	0.049	dry	34%	144044	10/14/08	10/28/08
MEC006	SAMPLE	207059-006	5	26	0.51	0.068	dry	51%	144044	10/14/08	10/28/08
MEC007	SAMPLE	207059-007	7	79	0.47	0.059	dry	47%	144044	10/14/08	10/28/08
MEC008	SAMPLE	207059-008	3	120	0.44	0.060	dry	43%	144044	10/15/08	10/28/08
MEC009	SAMPLE	207059-009	9	45	0.47	0.061	dry	478	144044	10/15/08	10/28/08
MEC010	SAMPLE	207059-010)	52	0.48	0.066	dry	488	144044	10/15/08	10/28/08
MEC011	SAMPLE	207059-011	L	52	0.51	0.068	dry	51%	144044	10/15/08	10/28/08
MEC012	SAMPLE	207059-012	2	79	0.40	0.051	dry	38%	144044	10/15/08	10/28/08
MEC013	SAMPLE	207059-013	3	83	0.45	0.057	dry	45%	144044	10/15/08	10/28/08
MEC014	SAMPLE	207059-014	1	75	0.45	0.059	dry	45%	144044	10/15/08	10/28/08
MEC015	SAMPLE	207059-015	5	71	0.50	0.065	dry	50%	144044	10/15/08	10/28/08
MEC016	SAMPLE	207059-016	5	68	0.53	0.070	dry	53%	144044	10/15/08	10/28/08
MEC017	SAMPLE	207059-017	p	28	0.46	0.061	dry	46%	144044	10/15/08	10/28/08
MEC018	SAMPLE	207059-018	}	82	0.45	0.057	dry	45%	144044	10/16/08	10/28/08
MEC019	SAMPLE	207059-019	}	17	0.42	0.058	dry	41%	144044	10/16/08	10/28/08
MEC020	SAMPLE	207059-020)	35	0.50	0.066	dry	50%	144044	10/16/08	10/28/08
MEC021	SAMPLE	207059-021		40	0.51	0.069	dry	51%	144046	10/16/08	10/24/08
MEC022	SAMPLE	207059-022	2	59	0.51	0.067	dry	518	144046	10/16/08	10/27/08
MEC023	SAMPLE	207059-023	;	57	0.49	0.063	dry	498	144046	10/16/08	10/27/08
MEC024	SAMPLE	207059-024	l	30	0.48	0.065	dry	48%	144046	10/16/08	10/27/08
MEC025	SAMPLE	207059-025	,	39	0.45	0.062	dry	45%	144046	10/16/08	10/27/08
MEC026	SAMPLE	207059-026		50	0.60	0.079	dry	58%	144046	10/16/08	10/27/08
MEC027	SAMPLE	207059-027	I	72	0.40	0.053	dry	38%	144046	10/16/08	10/27/08
MEC028	SAMPLE	207059-028	1	73	0.54	0.073	dry	548	144046	10/16/08	10/27/08
MEC029	SAMPLE	207059-029	ŧ	94	0.41	0.053	dry	398	144046	10/16/08	10/27/08
MEC030	SAMPLE	207059-030	ł	65	0.47	0.065	dry	47%	144046	10/16/08	10/27/08
MEC031	SAMPLE	207059-031		55	0.47	0.064	dry	478	144046	10/16/08	10/27/08
MEC032	SAMPLE	207059-032		70	0.54	0.071	dry	54%	144046	10/16/08	10/27/08
MEC033	SAMPLE	207059-033		100	0.51	0.069	dry	51%	144046	10/16/08	10/27/08
	BLANK	QC466908	ND		0.25	0.035	as received		144044		10/28/08
	BLANK	QC466922	ND		0.25	0.035	as received		144046		10/24/08

ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

NAVFAC PACIFIC VALIDATED

2/11908

8.0

		Chromi un		
Lab #: 207059		Location:	Waikane Tra	ining Area
Client: Wil Chee	Planning	Prep:	EPA 3050B	
Project#: UXOA-007		Analysis:	EPA 6010B	
Analyte: Chromium		Diln Fac:	1.000	
Matrix: Soil		Received:	10/21/08	
Units: mg/Kg		Prepared:	10/23/08	
Field ID Type Lab 10	Result PL	MDL Basis	Moisture Batch#	Sampled Analyzed
MEC001 SAMPLE 207059-001	$150 \ J(\omega) 0.41$	0.050 dry	39% 144044	10/14/08 10/28/08
MEC002 SAMPLE 207059-002	170 0.53	0.066 dry	53% 144044	10/14/08 10/28/08
MEC003 SAMPLE 207059-003	160 0.45	0.053 dry	44% 144044	10/14/08 10/28/08
MEC004 SAMPLE 207059-004	390 0.49	0.060 dry	49% 144044	10/14/08 10/28/08
MEC005 SAMPLE 207059-005	340 0.38	0.045 dry	34% 144044	10/14/08 10/28/08
MEC006 SAMPLE 207059-006	270 0.51	0.062 dry	51% 144044	10/14/08 10/28/08
MEC007 SAMPLE 207059-007	170 0.47	0.054 dry	47% 144044	10/14/08 10/28/08
MEC008 SAMPLE 207059-008	220 0.44	0.054 dry	43% 144044	10/15/08 10/28/08
MEC009 SAMPLE 207059-009	320 .47	0.055 dry	47% 144044	10/15/08 10/28/08
MEC010 SAMPLE 207059-010	230 0.48	0.060 dry	48% 144044	10/15/08 10/28/08
MEC011 SAMPLE 207059-011	260 0.51	0.062 dry	51% 144044	10/15/08 10/28/08
MEC012 SAMPLE 207059-012	160 0.40	0.047 dry	38% 144044	10/15/08 10/28/08
MEC013 SAMPLE 207059-013	210 0.45	0.052 dry	45% 144044	10/15/08 10/28/08
MEC014 SAMPLE 207059-014	300 0.45	0.054 dry	45% 144044	10/15/08 10/28/08
MEC015 SAMPLE 207059-015	180 0.50	0.059 dry	50% 144044	10/15/08 10/28/08
MEC016 SAMPLE 207059-016	180 0.53	0.064 dry	53% 144044	10/15/08 10/28/08
MEC017 SAMPLE 207059-017	290 0.46	0.055 dry	46% 144044	10/15/08 10/28/08
MEC018 SAMPLE 207059-018	270 0.45	0.052 dry	45% 144044	10/16/08 10/28/08
MEC019 SAMPLE 207059-019	310 0.42	0.053 dry	41% 144044	10/16/08 10/28/08
MEC020 SAMPLE 207059-020	310 🖌 0.50	0.060 dry	50% 144044	10/16/08 10/28/08
MEC021 SAMPLE 207059-021	330 0.51	0.063 dry	51% 144046	10/16/08 10/24/08
MEC022 SAMPLE 207059-022	200 0.51	0.061 dry	51% 144046	10/16/08 10/27/08
MEC023 SAMPLE 207059-023	250 0.49	0.057 dry	49% 144046	10/16/08 10/27/08
MEC024 SAMPLE 207059-024	240 0.48	0.060 dry	48% 144046	10/16/08 10/27/08
MEC025 SAMPLE 207059-025	240 0.45	0.057 dry	45% 144046	10/16/08 10/27/08
MEC026 SAMPLE 207059-026	190 0.60	0.072 dry	58% 144046	10/16/08 10/27/08
MEC027 SAMPLE 207059-027	140 0.40	0.049 drv	38% 144046	10/16/08 10/27/08
MEC028 SAMPLE 207059-028	140 0.54	0.067 drv	54% 144046	10/16/08 10/27/08
MEC029 SAMPLE 207059-029	170 0.41	0.049 drv	39% 144046	10/16/08 10/27/08
MEC030 SAMPLE 207059-030	140 0.47	0.060 drv	47% 144046	10/16/08 10/27/08
MEC031 SAMPLE 207059-031	140 0.47	0.058 drv	47% 144046	10/16/08 10/27/08
MEC032 SAMPLE 207059-032	150 0.54	0.065 drv	54% 144046	10/16/08 10/27/08
MEC033 SAMPLE 207059-033	180 0.51	0.063 dry	51% 144046	10/16/08 10/27/08
BLANK 0C466908	0.040 7 0 25	0.032 as received	144044	10/28/08
BLANK OC466922	0.039 J 0.25	0.032 as received	144046	10/24/08

J= Estimated value RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

NAVFAC PACIFIC VALIDATED

211708

	1979 - 574				<u> </u>					
			finite and the second			t in the second				4
Lab #:		,207059				Location:		Waikane Tra	ining Are	a
Client:		Wil Chee	Planning			Prep:		EPA 3050B		
Project#	<u>:</u>	UXOA-007				Analysis:		EPA 6010B		
Analyte:		Copper				Diln Fac:		1.000		
Matrix:		Soil				Received:		10/21/08		
Units:		mg/Kg				Prepared:		10/23/08		
							The part select		A Andrew Martin and Andrew States and Andrew And	
MEC001	SAMDIE	207059-001	0 0	0 41		dar	2 OF	EUTOPEBAICEN!	Sampled	
MECOOL	CAMPLE	207059-001	00	0.41	0.084	dry	398	144044	10/14/08	10/28/08
MEC002	CAMPLE	207059-002	94	0.55	0.11	dry	538	144044	10/14/08	10/28/08
MECOOJ	CAMDIE	207059-003	100	0.45	0.090	dry	448	144044	10/14/08	10/28/08
MECOOS	CAMDIE	207059-004	120	0.49	0.10	dry	495	144044	10/14/08	10/28/08
MECOOS	CAMPLE	207059-005	120	0.50	0.075	dry	.3415 619	144044	10/14/08	10/28/08
MEC007	SAMPLE	207059-000	100	0.31	0.10	dru	218	144044	10/14/08	10/28/08
MECOOR	SAMPLE	207059-008	120	0.47	0.091	dry	4/3	144044	10/14/08	10/28/08
MECOOS	SAMPLE	207059-000	110	0.44	0.092	dry	4,35	144044	10/15/08	10/28/08
MEC010	SAMPLE	207059-010	79	0.47	0.095	dry	4/15 /QQ	144044	10/15/08	10/28/08
MEC011	SAMPLE	207059-010	85	0.40	0.10	dry	406 519	144044	10/15/08	10/28/08
MEC012	SAMPLE	207059-012	100	0.31	0.10	dry	200	144044	10/15/08	10/28/08
MEC013	SAMPLE	207059-012	120	0.40	0.075	dry	159	144044	10/15/08	10/28/08
MEC014	SAMPLE	207059-014	110	0.45	0.007	dry	436	144044	10/15/08	10/28/08
MEC015	SAMPLE	207059-015	78	0.40	0.001	dry	508	144044	10/15/00	10/20/00
MEC016	SAMPLE	207059-016	110	0.50	0.10	dry	539	144044	10/15/08	10/20/00
MEC017	SAMPLE	207059-017	81	0 46	0.093	dry	468	144044	10/15/09	10/20/00
MEC018	SAMPLE	207059-018	150	0 45	0.095	dry	400	144044	10/16/09	10/20/00
MEC019	SAMPLE	207059-019	350	0.42	0.089	dry	41%	144044	10/16/08	10/28/08
MEC020	SAMPLE	207059-020	190	0.50	0.10	dry	50%	144044	10/16/08	10/28/08
MEC021	SAMPLE	207059-021	250	0.51	0.11	dry	51%	144046	10/16/08	10/24/08
MEC022	SAMPLE	207059-022	83	0.51	0.10	dry	51%	144046	10/16/08	10/27/08
MEC023	SAMPLE	207059-023	87	0.49	0.097	dry	49%	144046	10/16/08	10/27/08
MEC024	SAMPLE	207059-024	90	0.48	0.10	drv	48%	144046	10/16/08	10/27/08
MEC025	SAMPLE	207059-025	97	0.45	0.096	drv	45%	144046	10/16/08	10/27/08
MEC026	SAMPLE	207059-026	93	0.60	0.12	drv	58%	144046	10/16/08	10/27/08
MEC027	SAMPLE	207059-027	83	0.40	0.082	drv	38%	144046	10/16/08	10/27/08
MEC028	SAMPLE	207059-028	77	0.54	0.11	drv	54%	144046	10/16/08	10/27/08
MEC029	SAMPLE	207059-029	110	0.41	0.082	drv	39%	144046	10/16/08	10/27/08
MEC030	SAMPLE	207059-030	88	0.47	0.10	dry	478	144046	10/16/08	10/27/08
MEC031	SAMPLE	207059-031	84	0.47	0.098	drv	478	144046	10/16/08	10/27/08
MEC032	SAMPLE	207059-032	83	0.54	0.11	dry	54%	144046	10/16/08	10/27/08
MEC033	SAMPLE	207059-033	110	0.51	0.11	dry	51%	144046	10/16/08	10/27/08
	BLANK	QC466908	0.055 J	0.25	0.054	as received	–	144044		10/28/08
	BLANK	QC466922	0.13 J	0.25	0.054	as received		144046		10/24/08

J= Estimated value RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

NAVFAC PACIFIC VALIDATED

111908

20.0

a de la	o sococo				Iron						
Z U Z M i I UXU	059 Chee Plann A-007	ing			Locati Prep: Analys	ion: sis:	Waikane Tr EPA 3050B EPA 6010B	aining Are	Ø		
Ir So Mq	on il /Kq				Receiv Prepai	ved: red:	10/21/08 10/23/08				
Type	Lab ID	Result		RL	MDL	Basis	Moisture	Diln Fac	Batch#	Sampled	Analvzed
SAMPLI	E 207059-001	64,000		60	14	dry	398	20.00	144044	10/14/08	10/28/08
SAMPL	E 20/059-002	000 .8/		010	19	dry	53%	20.00	144044	10/14/08	10/28/08
SAMPT		120,000		0/0	1, 1,	dry	448	20.00	144044	10/14/08	10/28/08
SAMPT	E 20/039-004	000 17T	-1 -	00	 	dry	5° 7° 7°	20.00	144044	10/14/08	10/28/08
SAMPT	E 207059-006		-1 (ο 1 Γ	ary	ት ት ት		144044	10/14/08	10/28/08
SAMPI	E 207059-007	77,000			۲ ر ۲ ر	710	8 T D 8 T D		144044	10/11/00	10/28/08
SAMPI	E 207059-008	81,000	4 ~	02	۲ ۱٬۰	212	8 C P		7 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	00/51/01	10/20/00
SAMPI	LE 207059-009	110,000	•	70	16	drv	8078 878	20.00	144044	10/15/08	10/28/08
SAMP	LE 207059-010	83,000		06	17	drv	488	20.00	144044	10/15/08	10/28/08
SAMP	LE 207059-011	96,000	-	190	18	dry	518	20.00	144044	10/15/08	10/28/08
SAMP	LE 207059-012	77,000		50	13	dry	38%	20.00	144044	10/15/08	10/28/08
SAMP	LE 207059-013	81,000		20	15	dry	458	20.00	144044	10/15/08	10/28/08
J MAC	1 1 201009-014	000,000	-1 ,	0/	Ω I	dry	45%	20.00	144044	10/15/08	10/28/08
2 MAC	1 E 20/029-015			00	1 /	dry	50% 0%	20.00	144044	10/15/08	10/28/08
AMAS	LE 207059-017		V -		τα	ary de:	50 K		144044	10/15/08	10/28/08
	15 207050-010					ary	40 L 10 C	20.00	144044	80/51/01	10/28/08
SAMP	LE 207059-019	120,000		60	۲ ۲	dry	408		144044	10/16/08	10/28/08
SAMP	T.E. 207059-020	110,000	,		17	2.47	0 4 C			10/16/00	
SAMP	LE 207059-021	110.000		000	18	4rV drv	ى ر م 4		144044	10/16/08	10/24/08
SAMP	LE 207059-022	83,000		06	17	drv	9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20.00	970771	10/16/08	10/27/08
SAMP	LE 207059-023	87,000	-	80	16	drv	498	20.00	144046	10/16/08	10/27/08
SAMP	LE 207059-024	77,000	Г	.90	17	drv	488	20.00	144046	10/16/08	10/27/08
SAMP	LE 207059-025	86,000	-1	.80	16	dry	458	20.00	144046	10/16/08	10/27/08
SAMP	LE 207059-026	82,000	~ ~	230	20	dry	58%	20.00	144046	10/16/08	10/27/08
SAMPL	170-850/07 7	000'TR		50	14	dry	388	20.00	144046	10/16/08	10/27/08
d valu Y Limi	Ω, +										
tecti	on Limit										2
											21 - 10 M

24.0

¢

103 of 244

2°6111 V

NAVFAC PACIFIC VALIDATED

_			1777 C
「大学学術である」と	cea		Batc 144046 10/16/08 10/27/08 144046 10/16/08 10/27/08 144046 10/16/08 10/27/08 144046 10/16/08 10/27/08 144046 10/16/08 10/27/08 144044 10/16/08 10/28/08 144044 10/16/08 10/28/08
	ne Training An 050B 010R	/08 /08	ture Dial n ac 200000 200000 200000 200000 100000 100000 100000 100000000
	Waika ЕРА З ЕРА А	10/21 10/23	Basts 242 242 242 242 247 8478 2478 55478 55478 55478 55478 5548 8 78 8 518 8 518 8 518 8 518 8 518 8 518 8 518 8 5 8 5
uoit	Location: Prep: Analvsis:	Received: Prepared:	日 19 14 17 17 16 4 4 45 45 45 45 45 45 45 45 45 45 45 45
			2000 2011 2000 2000 2000 2000 2000 2000
	bu		85,000 81,000 83,000 83,000 83,000 99,000 99,000 1.8 J
	17059 1 Chee Planni 0A-007	on il /Kq	207059-028 207059-029 207059-029 207059-031 207059-031 207059-033 0C466908 0C466908
	20 ₩1 UX	: S S G E	D SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE BLANK BLANK
	Lab #: Client: Projecti	Analyte Matrix: Units:	MEC028 MEC028 MEC029 MEC031 MEC031 MEC033 MEC033

J= Estimated value RL= Reporting Limit MDL= Method Detection Limit Page 2 of 2 104 of 244

N 111965

NAVFAC PACIFIC VALIDATED

CUT Curtis & Tompkins, Ltd.

26.0

					Ni	cke	ı			
Lab #:		207059				Lo	cation:	a di Asiata	Waikane Training Are	3
Client:		Wil Chee	Planning			Pre	ep:		EPA 3050B	
Project#	:	UXOA-007	-			Ana	alysis:		EPA 6010B	
Analyte:		Nickel	·····		·	Di	In Fac:		1.000	
Matrix:		Soil				Red	ceived:		10/21/08	
Units:		mg/Kg				Pre	epared:		10/23/08	
Field ID	Туре	Lab ID	Result	RL	MDL	ter y es	Basis .	Mois	ture Batch#Sampled	Analyzed
MEC001	SAMPLE	207059-001	L 74	0.41	0.071	dry	(2) (2)	39%	144044 10/14/08	10/28/08
MEC002	SAMPLE	207059-002	2 77	0.53	0.094	dry		53%	144044 10/14/08	10/28/08
MEC003	SAMPLE	207059-003	3 72	0.45	0.076	dry		448	144044 10/14/08	10/28/08
MEC004	SAMPLE	207059-004	1 81	0.49	0.085	dry	r	49%	144044 10/14/08	10/28/08
MEC005	SAMPLE	207059-005	5 120	0.38	0.064	drj	7	34%	144044 10/14/08	10/28/08
MEC006	SAMPLE	207059-006	5 86	0.51	0.088	dry		51%	144044 10/14/08	10/28/08
MEC007	SAMPLE	207059-007	81	0.47	0.077	dry	1	478	144044 10/14/08 :	10/28/08
MEC008	SAMPLE	207059-008	3 150	0.44	0.077	dry	/	43€	144044 10/15/08 :	10/28/08
MEC009	SAMPLE	207059-009	ə 170	0.47	0.079	dry	7	47%	144044 10/15/08 :	10/28/08
MECOIO	SAMPLE	207059-010) 97	0.48	0.086	dry	7	48%	144044 10/15/08 :	10/28/08
MECOII	SAMPLE	207059-011	. 94	0.51	0.088	dry	/	51%	144044 10/15/08 1	10/28/08
MEC012	SAMPLE	207059-012	2 190	0.40	0.067	dry	/	38%	144044 10/15/08 3	LO/28/08
MEC013	SAMPLE	207059-013	150	0.45	0.074	dry	/	45%	144044 10/15/08	LO/28/08
MECU14	SAMPLE	207059-014	130	0.45	0.077	dry	/	45%	144044 10/15/08 1	LO/28/08
MECUIS	SAMPLE	207059-015	96	0.50	0.084	dry	'	50%	144044 10/15/08 1	10/28/08
MECUI6	SAMPLE	207059-016	160	0.53	0.091	dry	'	53%	144044 10/15/08 1	10/28/08
MECO17	SAMPLE	207059-017	84	0.46	0.079	dry	,	46%	144044 10/15/08 1	10/28/08
MECOIB	SAMPLE	207059-018	160	0.45	0.074	dry	'	45%	144044 10/16/08 1	0/28/08
MECUIS	SAMPLE	207059-019	68	0.42	0.075	dry		41%	144044 10/16/08 1	LO/28/0B
MEC020	SAMPLE	207059-020	100	0.50	0.086	dry	′ V	50%	144044 10/16/08 1	.0/28/08
MECUZI	SAMPLE	207059-021	120	0.51	0.090	dry	,	51%	144046 10/16/08 1	0/24/08
MECO22	SAMPLE	2070594022	17	0.51	0.087	ary	,	51%	144046 10/16/08 1	.0/27/08
MECO23	CAMPLE	207059-023	180	0.49	0.082	ary	r	49%	144046 10/16/08 1	0/27/08
MECO24	CAMPLE	207039-024	98	0.48	0.085	ary	r	488	144046 10/16/08 1	.0/27/08
MECO25	CAMPLE	207059-025	/6	0.45	0.081	ary	•	45%	144046 10/16/08 1	0/27/08
MECUZO	SAMPLE	207059-026	91	0.60	0.10	dry	•	58%	144046 10/16/08 1	.0/27/08
MECU27	SAMPLE	207059-027	90	0.40	0.069	dry		38%	144046 10/16/08 1	.0/27/08
MECU20	CAMPLE	207059-028	80	0.54	0.095	dry		54%	144046 10/16/08 1	.0/27/08
MEC029	SAMPLE	207059-029	180	0.41	0.069	ary		39%	144046 10/16/08 1	0/27/08
MECODU	SAMPLE	207050-030	80 70	0.47	0.085	ary		4/8	144046 10/16/08 1	0/27/08
MECO33	SAMPLE	207059-031	13	0.47	0.082	ary		4/8	144046 10/16/08 1	0/27/08
MEC032	CAMPLE	207059-032	13	0.54	0.092	ary		548	144046 10/16/08 1	0/27/08
MECUDO	BLANK	201039-033		0.31	0.090	ary		\$1C	144046 10/16/08 1	0/27/08
	BLANK	00466022		0.25	0.045	as	received			U/28/08
	BLANK	QC466922	ND	0.25	0.045	as	received		144046 1	0/24/08

ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

1

NAVFAC PACIFIC VALIDATED

110 of 244

32.0

					Lea	P							5
Lab #: Client: Project#:	207059 Wil Chee Planni UXOA-007	ing				Locatic Prep: Analve:		Waikane T EPA 3050B	raining Ar	ea		- 	Mar are
Analyte: Matrix: Units:	Lead Soil mg/Kq					Prepare	9 9 9	10/21/08					
Field ID	Type Lab ID	α.	esuist-sampain	が 部RL の	M NAV	DL	Basis	Moistur	eelte Fa	Batch#	Sampled	art and	
MEC002	SAMPLE 207059-002		1.56 J	0.53	(X)	0.087 0.12	dry drv	98 96 98 98 98	1.000	144044 144044	10/14/08	8 10/28/(
MECO04	SAMPLE 20/059-003 SAMPLE 207059-004			0.45		0.093	drý	448	1.000	144044	10/14/08	10/28/0	0 00
MECOOS	SAMPLE 207059-005	ND	n	0.38		0.078	ary drv	498 248	1.000	144044	10/14/08	10/28/0	80
MECOU6 MECOU6	SAMPLE 207059-006	ND		0.51		0.11	dry	518	1.000	144044	10/14/05	10/28/0	ρα
MEC008	SAMPLE 207059-008		1. 62 U	0.47	2	0.094	dry	478	1.000	144044	10/14/08	10/28/0	200
MEC009	SAMPLE 207059-009		5.1	6.47	Re	C60.0	αry drv	438	0000	144044	10/15/08	10/28/0	80
MECOLO MECO11	SAMPLE 207059-010			0.48		0.11	dry	488	1.000	144044	10/15/08	10/28/0	ρα
MEC012	SAMPLE 207059-011		ית. יע	107		0.11	dry	518	1.000	144044	10/15/08	10/28/0	80
MEC013	SAMPLE 207059-013		 	0.45		0.091	dry	ل م م م	1.000	144044	10/15/08	10/28/0	80
MEC014	SAMPLE 207059-014	1	4.5	0.45		0.094	dry	45%	1.000	144044		10/28/C	ρα
MEC016 MEC016	SAMPLE ZU/US9-UIS SAMPLE 207059-016	QN	7 6 7	0.5 0.5		2.1	dr y	50%	20.00	144044	10/15/08	10/28/0	0.00
MEC017	SAMPLE 207059-017		7.8.4	20.00 96		11.0	dry dry	538	1.000	144044	10/15/08	10/28/0	8
MECO18	SAMPLE 207059-018		47	0.45		160.0	dry	408 408	1.000	144044 144044	10/15/08	10/28/0	ω a
MECOLO	SAMPLE 207059-019		350	0.42		0.092	dry	418	1.000	144044	10/16/08	10/28/0	2 00
MEC021	SAMPLE 201059-020 SAMPLE 207059-021			0.0 0.1 0.1		11.0	dry	50%	1.000	144044	10/16/08	10/28/0	8
MEC022	SAMPLE 207059-022			1.00		11.0	ary	л Г. К.	1.000	144046	10/16/08	10/24/0	8
MEC023	SAMPLE 207059-023		2.5	0.49		0.10	dry	4 9% 4 9%	1.000	144046 144046	10/16/08	10/27/0	ωa
MECO25	SAMPLE 20/059-024 SAMPLE 207050-025		3.6	0.48		0.10	drý	48%	1.000	144046	10/16/08	10/27/0	0.00
MEC026	SAMPLE 207059-026		0.39 J US	0.60	જ	0.10 0.13	dry	45% 58%	1.000 1.000	144046 144046	10/16/08 10/16/08	10/27/0	ωα

J= Estimated value ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 2 116 of 244

Joblin V

NAVFAC PACIFIC VALIDATED

4

Curtis & Tompkins, Ltd.

38.0

cb

_	-	-	-		_		 -	-	_	_	_	_	_	_	_	
	rea						ic Batch Samped Analysed	144046 10/16/08 10/27/08	144046 10/16/08 10/27/08	144046 10/16/08 10/27/08	144046 10/16/08 10/27/08	144046 10/16/08 10/27/08	144046 10/16/08 10/27/08	144046 10/16/08 10/27/08	144044 10/28/08	144046 10/24/08
	ane Training P	3050B	6010B	1/08	3/08		fsture D n Es	1.000	8 1.000	<pre>% 1.000</pre>	8 1.000	8 1.000	8 1.000	8 1.000	1.000	1.000
	Waika	EPA	EPA (10/2	10/2		Basis Moi	cy 389	cv 549	r ⁷ 399	cv 475	cv 479	rv 545	cV 515	sreceived	s received
Lead	Location:	Prep:	Analysis:	Received:	Prepared:	-	JOL	G. 0.085, di	2 0.12 (P d)	0.085 di	0.10 di	0.10 di	0.11 di	0.11 di	0.056 as	0.056 a:
							PL .	- 0.40 (B	0.54 6	0.41	0.47 0	0.47 (6	0.54	0.51	0.25	0.25
		L L					Pesu t	0.37 J VU	0.54 J C	1.6	0.25 J UJ	0.60 U	2.0	3.7	0.086 J	Δ
	207059	Vil Chee Plannin	JXOA-007	lead	Soil	ng/Kg	a Lab ID	LE 207059-027	LE 207059-028	LE 207059-029	LE 207059-030	LE 207059-031	LE 207059-032	LE 207059-033	< QC466908	< 0C466922 N
	0	2	U		ŝ	u	ID TYPE	SAMPI	SAMPI	SAMPI	SAMPI	SAMPL	SAMPI	SAMPI	BLANF	BLANK
	Lab #:	Client:	Project#	Analyte:	Matrix:	Units:	Pield	MEC027	MEC028	MEC029	MEC030	MEC031	MEC032	MECC33		

J= Estimated value ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 2 ef 2

NAVFAC PACIFIC VALIDATED

Curtis & Tompkins, Ltd.

٠

38.0

CD

1

NOS E				1000																					_			1
			Anal we ad	10/23/08	10/28/08	10/28/08	10/28/08	10/28/08	10/28/08	10/28/08	10/28/08	10/28/08	10/28/08	10/28/08	10/28/08	10/28/08	10/28/08	10/28/08	10/28/08	10/28/08	10/28/08	10/23/08	10/24/08	TU/27/08	10/2//08	10/27/08	10/27/08	~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
			Samoled	10/14/08	10/14/08	10/14/08	10/14/08	10/14/08	10/14/08	10/15/08	10/15/08	10/15/08	10/15/08	10/15/08	10/15/08	10/15/08	10/15/08	10/15/08	10/15/08	10/16/08	10/16/08	80/9T/01	80/91/01	80/91/01	10/16/08	10/16/08	10/16/08	>> >> + + + > +
A CHINE	rea		Batcht	144044	144044	144044	144044	144044	144044	144044	144044	144044	144044	144044	144044	144044	144044	144044	144044	144044	144044	144044	144046	144046	144046	144046	144046	
	ie Training Ài 150B 110B	08 08	State Notisting	39%	50% *	44%	5 T C	51%	478	438	478	488	51%	38%	45%	45%	50%	53%	40.8	45%	%° c 7* u	₩ 0 r	*TΩ	*** •	* 2 7	488	45% 828	2
	Waikar EPA 30 EPA 60	1.000 10/21/ 10/23/	Basi	dry	dr.	אג געל	drv	dr's	dr	dr	drý	dry	dry	dry	dry	dry	dry	dry	dry	dry	ary 2	ATD I	ary	ary	ary	dry	drV drV	1
2 2	on: is:	ac: ed: ed:	MDL	0.24	0.32	000	0.22	0.30	0.26	0.26	0.27	0.29	0.30	0.23	0.25	0.26	0.29	0.31	12.0	22.0		200				0.29	87.0	
timony.	Locati Prep: Analys	Diln F Receiv Prepar		2 (2)		να	0		4	8	4	و		-1		_		ſ	γ ,	-1 u	n			c	ρι	9,		
Ant			RL	0.8				1.0	6.0	0.8	0.9	6.0 0		0.0	0.0	5.0	0,		⊃ (, 	0 0 0 -				20	⊃ 0	2.0	
			esult		•																	3						
			A Statistics	QN			ND	QN	QN	QN	ND	ND	QN			a z;				N					22			
) 107 Planning 107	Уuc	(01) (01)	207059-001	207059-002	207059-004	207059-005	207059-006	207059-007	207059-008	207059-009	207059-010	207059-011	207059-012	20/059-013	50/02-07	510-650/0Z		101024-01 /	201023-010							207059-026	
	207055 Wil Cr UXOA-C	Antimc Soil mg/Kq		SAMPLE	SAMPLE	SAMPLE	SAMPLE TTANY	SAMPLE	SAMPLE	SZMDT F	SIMPLE	SAMPT F	SAMPT US		DAMPLE DAMPT	SAMPLE												
	Lab #: Client: Project#:	Analyte: Matrix: Units:	and the second	MECOOI	MEC002	MEC004	MEC005	MECO06	MEC007	MEC008	MEC009	MECOIO	MECULI	MECUIZ	MECUIS		MECOTO	MECUIS MECUIS	MECC1 /	MECCI 0 MECCI 0	MECO10	MECO21	MPC001	MFC002	MP/COLU	100004 100004 100004	MEC026 MEC026	

cb

41.0

Curtis & Tompkins, Ltd.

123 of 244

2061112

NAVFAC PACIFIC VALIDATED

J= Estimated value ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 2

A STATE OF STATE			pled Analyzed ⁴⁴¹ 6/08 10/27/08 6/08 10/27/08 6/08 10/27/08 6/08 10/27/08 6/08 10/27/08 6/08 10/27/08 10/24/08
のないのないと思い	g Area		ture Batch# Sam 144046 10/1 144046 10/1 144046 10/1 144046 10/1 144046 10/1 144046 10/1 144046 10/1 144044 10/1 144044 10/1
A State State State	Wal ane Trainin EPA 3050B EPA 6010B	1.000 10/21/08 10/23/08	Basis Mois dry 38% dry 39% dry 47% dry 47% dry 54% dry 548 as received 51%
mony	ocation: Prep: Anal sis:	Dı n Fac: Received: Pre ared:	MDL 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23
hti			(1 (2) (2) 81 (1) 10 (1) 10
	βt		Result NDD NDD NDD NDD NDD NDD NDD NDD NDD ND
all d an an	Wil Chee Plannir UXOA-007	AltLimony Soil m /K	Type Tabwrd SAMPLE 207059-02 SAMPLE 207059-02 SAMPLE 207059-02 SAMPLE 207059-02 SAMPLE 207059-03 SAMPLE 207059-03 SAMPLE 207059-03 SAMPLE 207059-03 SAMPLE 207059-03 BLANK QC466920
	La : Client: Pro'ect#: Dra vtc:	Matrix: Units:	Field ID MEC027 MEC028 MEC029 MEC030 MEC031 MEC033 MEC033

J= Estimated value ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 2 of 2

44.0

ct

Je 1119 NAVFAC PACIFIC VALIDATED

124 of 244

Curtis & Tompkins, Etd.

٦	10/27/08	10/16/08	144046	58%	dr	0.18	2.4	83	JE 207059-026	SAMPL	4EC026
-	10/27/08	10/16/08	144046	458	dry	0.14	1.8	80	E 207059-025	SAMPL	MECU25
	10/27/08	10/16/08	144046	488	dry	0.15	1.9	60	E 207059-024	SAMPL	4EC024
_	10/27/08	10/16/08	144046	498	dry	0.15	2.0	78	E 207059-023	SAMPL	MEC023
	10/27/08	10/16/08	144046	51%	drj	0.15	2.0	92	LE 207059-022	SAMPL	MEC022
	10/24/08	10/16/08	144046	51%	dry	0.16	2.0	66	E 207059-021	SAMPL	MEC021
	10/28/08	10/16/08	144044	50%	dry	0.15	2.0	69	JE 207059-020	SAMPL	MEC020
	10/28/08	10/16/08	144044	418	dry	0.13	1.7	66	LE 207059-019	SAMPL	MEC019
-	10/28/08	10/16/08	144044	458	dry	0.13	1.8	120	E 207059-018	SAMPL	MEC018
_	10/28/08	10/15/08	144044	468	dry	0.14	1.9	Ω.	E 207059-017	SAMPL	MEC017
	10/28/08	10/15/08	144044	53%	dry	0.16	2.1	130	E 207059-016	SAMPL	MEC016
-	10/28/08	10/15/08	144044	50%	dry	0.15	2.0		LE 207059-015	SAMPL	MEC015
	10/28/08	10/15/08	144044	45%	dry	0.14	1.8	66	JE 207059-014	SAMPL	MEC014
_	10/28/08	10/15/08	144044	45%	dry	0.13	1.8	100	JE 207059-013	SAMPL	MEC013
-	10/28/08	10/15/08	144044	30% 30%	drī	0.12	1.6	84	JE 207059-012	SAMPL	MEC012
-	10/28/08	10/15/08	144044	518	drj	0.16	2.0	86	JE 207059-011	SAMPL	MEC011
-	10/28/08	10/15/08	144044	488	drv	0.15	1.9	78	JE 207059-010	SAMPL	MEC010
	10/28/08	10/15/08	144044	478	drý	0.14	1.9	68	JE 207059-009	SAMPL	MEC009
-	10/28/08	10/15/08	144044	438	drv	0.14	1.8	85	JE 207059-008	SAMPL	MEC008
	10/28/08	10/14/08	144044	478	drī	0.14	1.9	80	JE 207059-007	SAMPL	MEC007
_	10/28/08	10/14/08	144044	51%	drī	0.16	2.0	52	JE 207059-006	SAMPL	MEC006
	10/28/08	10/14/08	144044	348	drī	0.11	1.5	64	JE 207059-005	SAMPL	MEC005
	10/28/08	10/14/08	144044	498	dry	0.15	2.0	83	JE 207059-004	SAMPL	MECO 4
	10/28/08	10/14/08	144044	448	dry	0.14	1.8	85	JE 207059-003	SAMPL	MEC003
	10/28/08	10/14/08	144044	53%	dry	0.17	2.1	75	LE 207059-002	SAMPL	MECO 2
Г	10/28/08	10/14/08	220221	199	dry	EI 0	9.1	99	100-650102 3	SAMPL	MECODI
	The VICE	Samo ao	re Estone	Nortstu	80 80 80	TON	T	Result	Tab ID o	Type	Field ID
					10/23/08	ared:	Prep		g	mg/K	Units:
					10/21/08	ived:	Rece			Soil	Matrix:
Ţ				n	PLA DULU	- \STS:	TPUV			NOV0	
				щ	EPA 3050		Q ч ч ч ч ч ч ч ч ч		Chee Flanning		Culenc:
			Area	Training	Waikane	tion:	Loca		159	2070	Lab #:
6.37	にいれたい	小学の日本	時代の近代								ないのであって
1.1	ういいにある	ないないない	開会でした	15		The second s				「「「「「」」	

J= Estimated value ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 2

2061112

130 of 244

NAVFAC PACIFIC VALIDATED

50.0

ct

ない日本のないと	というないななななないのであり	Zïnc		日本の時代の第	
La : Client: Pro'ect#: Ana yte: Matrix: Units:	Wil Chee Planning UXOA-007 Zinc Soil m-/K	Location: Prep: Anal sis: Din Fac: Received: Pre ared:	Wal ane Training EPA 3050B EPA 6010B 1. 10/21/08 10/23/08	Area	
MEC MEC MEC028 MEC029 MEC030 MEC031 MEC033 MEC033 MEC033	SAMPLE Sb Sb Sc Sc <th< th=""><th></th><th>Basis bistury dry dry 54% dry 47% dry 47% dry 54% dry 51% as received as received</th><th>re[*]Batc Samp 64 144046 10/16/08 144046 10/16/08 144046 10/16/08 144046 10/16/08 144046 10/16/08 144046 10/16/08 144044 10/16/08 144044</th><th>10/27/08 10/27/08 10/27/08 10/27/08 10/27/08 10/27/08</th></th<>		Basis bistury dry dry 54% dry 47% dry 47% dry 54% dry 51% as received as received	re[*]Batc Samp 64 144046 10/16/08 144046 10/16/08 144046 10/16/08 144046 10/16/08 144046 10/16/08 144046 10/16/08 144044 10/16/08 144044	10/27/08 10/27/08 10/27/08 10/27/08 10/27/08 10/27/08

J= Estimated value ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 2 of 2 NAVFAC PACIFIC VALIDATED

M1928 131 of 244

Curtis & Tompkins, Ltd.

ct

\$0.0

ALIDATION	I COMPLETENESS WORKSHEET	Г
------------------	--------------------------	---

Level III

LDC #:___ 19747A4 1 SDG #: 207059 Laboratory: Curtis & Tompkins, Ltd.

Date: 11-14-08 Page: 1 of 1 Reviewer: M 2nd Reviewer:

METHOD: Metals (EPA SW 846 Method 6010B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Technical holding times	A	Sampling dates: 10-14-08 through 10-16-08
 	Calibration	A	0
01.	Blanks	SW	
IV.	ICP Interference Check Sample (ICS) Analysis	ASIN	
V.	Matrix Spike Analysis	5w	MS/MSD
VI.	Duplicate Sample Analysis	N	
VII.	Laboratory Control Samples (LCS)	A	LCS/LCSD
VIII.	Internal Standard (ICP-MS)	N	Not utilized
.IX.	Furnace Atomic Absorption QC	N	54 64
х.	ICP Serial Dilution	SW	
XI.	Sample Result Verification	N	
XII.	Overall Assessment of Data	A	
XIII.	Field Duplicates	SW	D= 10+11, D=20+21 D=30+31
XIV.	Field Blanks	と	· · · · · · · · · · · · · · · · · · ·

A = Acceptable Note:

N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples: all

	all soil		1. J. J. 1997				
1 1	MEC001	111	MEC011	212	MEC021	31 2	MEC031
2 1	MEC002	12	MEC012	22 2	MEC022	₃₂ 2	MEC032
3 1	MEC003	13 ¹	MEC013	23 ²	MEC023	33 ²	MEC033
4 1	MEC004	14	MEC014	24 2	MEC024	34 ^I	MEC020MS
<mark>5</mark> 1	MEC005	15 ^I	MEC015	25 2	MEC025	₃₅ I	MEC020MSD
6 I	MEC006	16	MEC016	26 2	MEC026	36 P	MEC021MS
7 1	MEC007	17	MEC017	27 2	MEC027	37 ∂	MEC021MSD
8 1	MEC008	18 ^I	MEC018	28 2	MEC028	38 I	(PBS)
9 ¹	MEC009	19 1	MEC019	29 7	MEC029	₃₉ 🤉	PBS2
10 I	MEC010	20	MEC020	30 2	MEC030	40	

Notes:

LDC #: 19747Ач SDG #: <u>20705</u>9

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: 1 of 1 Reviewer: 46 2nd reviewer: 46

All circled elements are applicable to each sample.

	nd_ _4_t	Towns Analysis I've (TAI)
	Matrix	
662	5	AL SU AS AD DO CH CO COLOR CUL FO, POLMAR MAN LACHING ON AS NO TO V ON MA B OL CH
	<u> </u>	(AI, SO)AS, (Ba) Be, Cd, Ca, C/ Co, Cu, Fe, PD/Mg, Min, Hg, M/K, Se, Ag, Na, 11, V, (21, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, II, V, Zh, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, II, Si, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Me, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, T, V, Zn, Mo, B, Si, CN',
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Ma, B, Si, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Me, B, Si, CN',
		Ai, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Me, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN',
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Me, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Me, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Me, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Me, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Me, B, Si, CN',
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Me, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Me, B, Si, CN',
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Me, B, Si, CN',
	-	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Me, B, Si, CN7,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Me, B, Si, CN',
		Al Sh As Ba Ba Cd Ca Cr Co Cu Fe Po Ma Mn Ha Ni K Se Aa Na Ti V Zn Mo B Si CN.
		Al Sh As Ba Ba Cd Ca Cr Co Cr Fe Ph Ma Ma Ha Ni K Se Aa Na Ti V Za Mo B Si CN.
ICP		Al, Sb, As, Ba, Ba, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Ha, Ni, K, Se, Aa, Na, Ti, V, Zn, Mo, B, Si, CN'.
ICP Trace	5	AL SDAS, Ba Be, Cd, Ca (Cr) Co, Cu, Fe, Pb, Mg, Mn, Ha Ni) K. Se, Ag, Na, Ti, V (Zn) Mo, B. Si, CN.
ICP-MS		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Ha, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN.
GFAA		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Ma, Mn, Ha, Ni, K, Se, Ad, Na, Ti, V, Zn, Ma, B, Si, CN.
1941 CV1		

Comments: Mercury by CVAA if performed

	age:	and the second se	Analyte		र ;	ŝ	As	B	Be	8	B	ö	ვ	Cr	Ę	e e	Mg	- W		P. Z	×		8	8		-	>	Ŋ	8	Mo	20
	P ₄ Revie 2nd Revie	「「「) BIG																												
			CCB3	+				1																							
0, 33		TELEVISION INC.	CCB2		T					T																Ī			T		
6- # 1-3,	HËET	States and	ccB1						Ī																Ī		T	Ī	Ť	Ī	
t 21, Fe	VGS WORKS CCB Finding A I (diferent	(CB				ные.е				2.030	0.020		5.406	88.37												Ī	Ī	T		
excep.	te) TION FINDIA <u>P Blank/ICB/</u> iated Samples:_	Black (de	PB()				9.188				2020	60.0.0	2 0111	1. 10	21.47	9.416													T		
Met 09	VALIDA VALIDA Prej		CCB3	43.54			790.G				CHEI	8 1 1	000 0		18.20	Lco.e													T	Ī	
Met 09	(4 23 - 37 (4 23 - 33) (6 010/7000)		CCB2	43.66			8.392				3.21	6.0	002 0	00 11	11.00	D. 367															
į) SW 845 Method so otherwise no	HER HARD	CCBI				2.062				1.555		3 315														Γ		Γ		
Met 09 10-34	(#) 1 0.117 47744 ZOS9 3 Metals (EPA 5 tion units, unlee		CB				3.355				1.503		3.769	2	100 0	4.306															
	LDC #: [97 SDG #: <u>30</u> METHOD: Traci Blank concentre	A LOW DO TO	Analyte	Ŧ	ęs	Aa	8	Be	3	3	5	8	đ	1	2	q	βW	чW	¥	N	×	S,	Ag	ę	F	N	Ę	5	Mo		in Michael Annualis

concentration found in the Prep Blank and ICB/CCB for each analyte is circled on this worksheet and transferred to the PB/ICB/CCB Qualified Samples worksheet.

BLNKICB.4SW

Analyte Partimum	10/7000) Soil preparation factor applied: 50 x
Arabyte Maximum Maximum <t< th=""><th>H Associated Samples: I - ou c i Al + c cc 8 tor # 1-30 33</th></t<>	H Associated Samples: I - ou c i Al + c cc 8 tor # 1-30 33
Analyte Maximum Maximum <t< th=""><th></th></t<>	
Al 43.54 10.86 4 Sb 2.244 0.56 9 Ba 2.244 0.56 9 Ba 2.244 0.56 9 Cd 0.040 3.038 5.51 9 Ca 0.040 3.038 5.51 9 Ca 0.040 3.038 5.51 9 Ca 0.096 3.416 0.65 9 Ca 0.0086 3.416 0.60 9 9 Ma Na 9 9 9 9 9 Ma 0.086 3.416 0.60 0.766 0.33 9 Ma Na 9 9 9 9 9 9 Ma Na 1 1 1 1 1 1 Ma Na 1 1 1 1 1 1 1 1 1 1 1 1 1 1<	
SS A A A Radiust 2.2444 0.56 1 1 Bab 1 2.2444 0.56 1 1 Cid 2.2444 0.56 1 1 1 Cid 2.038 5.51 1 1 1 Cid 2.038 5.51 1 1 1 Cio 0.0040 3.406 0.85 1 1 1 Cio 0.0055 3.406 0.86 1 1 1 1 Mo 1 1 0.086 3.406 0.86 1 1 1 Mo 1 1 0.036 3.406 0.33 1 1 1 Mo 1 1 0.086 3.406 0.86 0.33 1 1 1 Mo 1 0.086 3.406 0.86 1 1 1 1 1 1 1 1	
AS B3 B4 0.56 B4 0.56 B4 D <thd< th=""> <thd< th=""> <thd< td=""><td></td></thd<></thd<></thd<>	
BB 2.2444 0.564 0.564 0.564 0.564 0.564 0.564 0.564 0.564 0.564 0.564 0.564 0.564 0.564 0.564 0.564 0.564 0.564 0.564 0.265 0.2066 0.266	
Be Image: Cd Image	
Cd Cd D.O4(0 3.038 6.51 1 1 Co $0.04(0)$ 3.038 6.51 1 1 1 Co $0.04(0)$ 3.038 6.51 1 1 1 Co 0.055 3.406 0.85 1 1 1 Fe 3.66 88.37 32.09 0.26 0.33 1 Pho 0.066 3.416 0.60 0.786 0.33 1 Ma 1 0.086 3.416 0.60 0.33 1 Ma 1 0.086 0.186 0.33 1 1 Ma 1 1 1 1 1 1 1 Ma 1 1 1 1 1 1 1 Ma 1 1 1 1 1 1 1 Ma 1	
Ca 0.040 3.038 5.51 1 1 Co 0.040 3.038 5.51 1 1 Co 0.055 3.406 0.85 1 1 1 Co 0.055 1 3.406 0.85 1 1 1 Fe 0.056 1 3.416 0.60 0.766 0.33 1 Pb 0.086 1 3.416 0.60 0.766 0.33 1 Mo 1 0.086 1 1 1 1 1 1 Mo 1 0.086 1 1 1 1 1 1 1 Mo 1	
CC 0.040 3.038 6.51 $$ $$ CC 0.055 3.406 0.85 $$ $$ CL 0.055 3.406 0.85 $$ $$ CL 0.055 $ $	
C0 C1 0.055 3.406 0.85 1 1 Fe 2.6 88.37 32.09 0.33 1 Fe 2.6 88.37 32.09 0.33 1 Ph 0.086 3.416 0.60 0.736 0.33 1 Mo 1 23.09 1.416 0.60 0.736 0.33 1 Mo 1 1 1 1 1 1 1 1 Mo 1 1 1 1 1 1 1 1 1 Mo 1 1 1 1 1 1 1 1 1 Mo 1<	
CL 0.055 3.406 0.85 3.406 0.86 3.406 0.817 33.09 Pb 2.6 88.37 33.09 0.33 0.33 Mb 0.086 3.416 0.60 0.766 0.33 Mn 1.00 0.036 0.766 0.33 0.33 Mn 1.00 1.00 1.00 0.766 0.33 Mn 1.00 1.00 1.00 1.00 1.00 Mn 1.00 1.00 1.00 1.00 1.00 1.00 Mn 1.00	
Fe 3.6 88.37 28.37 28.37 28.30 6 0.33 9 Pb 0.086 3.416 0.60 0.766 0.33 9 Ma Ma 1 1 1 1 1 1 Ma Ma 1 1 1 1 1 1 1 Ma Ma 1	
Pb 0.086 3.416 0.60 0.36 0.33 Mh Mh Mh Mh Mh Mh Mh Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Mo Ha Ha Ha Ha Ha Ha Mi Ha Ha Ha Ha Ha Ha Ha Ni Ha Ha <td< td=""><td></td></td<>	
Mg Mg Min Min Min	0 0.26 0.33
Mage	
M Se Se Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa	
All	
Ma Zr O.31 Sn O.31 1.55	
L 25 N 1.55 N	
V Zn 0.31 Sn 0.31	
Zn 0.31 1.55 8.	
Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration a qualified as not detected, "U". Note	associated ICB, CCB or PB concentration are listed above with the Identifications from the Validation Completeness Worksheet. These sample results were

BLNKSMP.4SW

Concentra	thon units, un	uess otherwi	ise noted:		preparation to	ractor applie Associated	d: 50x Samoles:	e xcept	AI CCB Fr # 3	22452 29432	2nd Reviewer: L	, 1
				۲. 			i bitan meratan "	S.S.Juroff. 1	niiktterklen 21		のないないであってないであっています。	(Provide la Constantina
Maxlmur PB*	m Maximum PB ⁴	Meximum ICB/CCB*	Blank Action	36	27	80	30		-			
		12 2 17	1m1							_		
		T										_
		2.392	09.0									_
										14		_
												-
0.039		3.215	0.55									_
												-
0.13		4.540	1.14									
1.8		75.92	18.98									-
		2.367	0.59	0.39	0.37	0.54	0.25					-
												1
												7
												-
												-
							2					-
												1
												-
												1
							۰ ۱					T
								2				Т
												T
												1
												T

BLNKSMP,4SW

6 Method 6010/7000) Sgil preparation factor applied: 50 x themise noted: ma ka Associated Samples: 3 2nd Reviewer: 45	imum Blank CCB* Action 1) I init				262 0.57				55 0.37		315 0.83		306 0.58														
hod 6010/7000) (ise noted:	Blank Action 1 imit				0.57				0.39		0.83		0.58			2										59	
 SW 846 Met Inless otherwit 	m Maximum ICB/CCB*				3.262	_			1.555		3.315		3.306														
(9747A4 <u>) 多ってのち</u> D: Trace Metals (EP/ Concentration units.」	Maximum Maximu PB* PB* PB* (100/1)																					-				_	
DC # SDG # KETHOI	Analyte	A	Sb	As	Ba	Be	8	පී	ర	8	Cr	Ъ.	đ	Mg	Mn	뫄	Mo	ï	¥	Se	Ag	еN	F	>	Z	ů	5

BLNKSMP.4SW

M747A4	207059
#	*
8	ğ

<u>Matrix Spike/Matrix Spike Duplicates</u> VALIDATION FINDINGS WORKSHEET

2nd Reviewer: L Page: 1 of 1 aviewer: MG Raviewer:

METHOD: Trace metals (EPA SW 846 Method 6010/7000)

Pieces see qualifications below for all questions answered "N". Not applicable questions are identified as "NA". <u>N NA</u> Was a matrix spike analyzed for each matrix in this SDG? N NA Y (N) NA

Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.

Y)N NA

Were all duplicate sample relative percent differences (RPD) \leq 20% for water samples and \leq 35% for solf samples? LEVEL IV ONLY:

Were receleded results accepteble? See Level IV Receledation Worksheet for recalculations. X N N/A

	Qualifications	5/03/0	T 4040 / A									*							
	Associated Semples	(130	_							2.433									
	RPD (Limits)																		
054	AKEROVELY		131 (80-120)	67 (1)	57 ()						61 (])								
MB		1001-02 11		63	55 ()	_					60 (*)								
Anahrte	ļ	: د د	ź	91	90				0	Ĵ	90								
Matrix	1.00						 				>								
di oshi/shi 🇯	1 34 /20								36/37		*				-			siments;	

MSD.452

LDC #: 19747 A4 SDG #: 207059

VALIDATION FINDINGS WORKSHEET **ICP Serial Dilution**

して ð 2nd Reviewer: Reviewer: Page:

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N/N/A

Were ICP serial dilution percent differences (%D) ≤10%? Is there evidence of negative interference? If yes, professional judgement will be used to qualify the data. LEVEL IV ONLY: Y N N/A

Were recalculated results accentable? Se

	Contraction of the second	T /A	JORAS /A												
KSRIEEL FOR recalculations.	Associated Samples	81													
	SCD () Imits)	11 \$10													
	In the second	Fe													
	Matrix	soil													
	Diluted Sample ID	20													
	e Date	80-86-01													comments.

SDILICPMS.wpd

LDC#: 19747A4 SDG#: 201059

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page: 1 of 2 Reviewer: MG 2nd Reviewer:

METHOD: Metals (EPA Method 6010B/7000)

YN NA

Were field duplicate pairs identified in this SDG?

NA Were target analytes detected in the field duplicate pairs?

	Concentrat	tion (mg/kg)	(= 100)	
Compound	10	11	RPD	
Aluminum	36000	33000	9	
Banium	52	52	0	
Chromium	230	260	12	
Copper	79	85	7	
Iron	83000	96000	15	
Lead	7.1	8.2	14	
Nickel	97	94	3	
Zinc	78	86	10	

V:\FIELD DUPLICATES\FD_inorganic\19747A4.WPD

	Concentra	tion (mg/kg)	(4100)	
Compound	20	21	RPD	
Aluminum	45000	48000	6	
Barium	35	40	13	
Chromium	310	330	6	
Copper	190	250	27	
Iron	110000	110000	0	
Lead	120	84	35	
Nickel	100	120	18	
Zinc	93	99	6	

V:\FIELD DUPLICATES\FD_inorganic\19747A4.WPD

1974744 LDC#: SDG#: _207059

VALIDATION FINDINGS WORKSHEET Field Duplicates

METHOD: Metals (EPA Method 6010B/7000)

YNNA YN NA

Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentrat	lon (mg/kg)	(4100)	(4100)
Compound	30	31	RPD	
Aluminum	35000	27000	26	
Barium	65	55	17	
Chromium	140	140	0	
Copper	88	84	5	
Iron	83000	65000	24	
Lead	0.25	0.60	82	
Nickel	86	73	16	
Zinc	74	67	10	

V:\FIELD DUPLICATES\FD_inorganic\19747A4.WPD

LDC Report# 19760A40

Laboratory Data Consultants, Inc. Data Validation Report

November 19, 2008

Project/Site Name:

Waikane Training Area

October 21, 2008

LDC Report Date:

Collection Date:

Matrix:

Soil

Parameters: Explosives

Validation Level: Standard

Laboratory:

Curtis & Tompkins, Ltd.

Sample Delivery Group (SDG): 207226

Sample Identification

MEC045

Introduction

This data review covers one soil sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8330 for Explosives.

This review follows the Project Procedures Manual, U.S. Navy Environmental Restoration Program, NAVFAC Pacific (DON 2007) and the U.S. Department of Defense Quality Systems Manual for Environmental Laboratories, Final Version (January 2006).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a, Initial Calibration

Initial calibration of compounds was performed for the primary (quantitation) column and confirmation column as required by the method.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

b. Calibration Verification

Calibration verification was performed at the required frequencies. The percent differences (%D) of amounts in continuing standard mixtures were within the 15.0% QC limits.

The percent differences (%D) of the second source calibration standard were less than or equal to 15.0% for all compounds.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No explosive contaminants were found in the method blanks.

No field blanks were identified in this SDG.

IV. Accuracy and Precision Data

a. Surrogate Recovery

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

b. Matrix Spike/(Matrix Spike) Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

c. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

V. Target Compound Identification

Raw data were not reviewed for this SDG.

VI. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

VII. System Performance

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

Waikane Training Area Explosives - Data Qualification Summary - SDG 207226

No Sample Data Qualified in this SDG

Waikane Training Area Explosives - Laboratory Blank Data Qualification Summary - SDG 207226

No Sample Data Qualified in this SDG

Waikane Training Area Explosives - Field Blank Data Qualification Summary - SDG 207226

No Sample Data Qualified in this SDG

	Nitroaromatics and	Nitroamines b	y HPLC
Lab #:	207226	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC045	Batch#:	144284
Lab ID:	207226-001	Sampled:	10/21/08
Matrix:	Soil	Received:	10/28/08
Units:	ug/Kg	Prepared:	10/30/08
Basis:	as received	Analyzed:	11/03/08
Diln Fac:	1.000	-	

Analyte	🕴 Rêsu	1t ³ RL	MDL
НМХ	ND U	200	59
RDX	ND	200	42
1,3,5-Trinitrobenzene	ND	200	15
1,3-Dinitrobenzene	ND	200	13
Nitrobenzene	ND	200	17
Tetryl	ND	200	28
2,4,6-Trinitrotoluene	ND	200	7.8
2-Amino-4,6-dinitrotoluene	ND	200	32
4-Amino-2,6-dinitrotoluene	ND	200	57
2,4-Dinitrotoluene	ND	200	17
2,6-Dinitrotoluene	ND	200	31
2-Nitrotoluene	ND	400	43
4-Nitrotoluene	ND	400	67
3-Nitrotoluene	ND 🗸	400	44

 surrogate
 %REC
 Limits*////

 1,2-Dinitrobenzene
 84
 69-120

NAVFAC PACIFIC VALIDATED

ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

VALIDATION COMPLETENESS WORKSHEET

Level III

LDC #: <u>19760A40</u> VA SDG #: <u>207226</u> Laboratory: <u>Curtis & Tompkins, Ltd.</u>

Date: _____7 Page: ___of ___ Reviewer: ____7 2nd Reviewer: ____1

METHOD: HPLC Explosives (EPA SW 846 Method 8330)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
ι.	Technical holding times	Δ	Sampling dates: 10 2 1 08
lla.	Initial calibration	A	12 20.990
IIb.	Calibration verification/ICV	A	111 = 15
III.	Blanks	<u> </u>	
IVa.	Surrogate recovery	A	
IVb.	Matrix spike/Matrix spike duplicates	N	
IVc.	Laboratory control samples	<u> </u>	us
v .	Target compound identification	N	
VI.	Compound Quantitation and CRQLs	<u>N</u>	
VII.	System Perfórmance	N	
VIII.	Overall assessment of data	<u> </u>	
IX.	Field duplicates	N	
X .	Field blanks		

Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:

						ſ	
1	MEC045	11	QC467950	21	144264	31	
2		12		22		32	
3		13	· · · · · · · · · · · · · · · · · · ·	23		33	
4		14		24		34	
5		15		25		35	
6		16		26		36	
7		17		27	· · · · · · · · · · · · · · · · · · ·	37	
8		18		28		38	
9		19		29		39	
10		20		30		40	

Notes:

LDC Report# 19760A4

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Waikane Training Area

November 19, 2008

October 21, 2008

LDC Report Date:

Collection Date:

Matrix:

Soil

Parameters:

Validation Level:

Standard

Metals

Laboratory:

Curtis & Tompkins, Ltd.

Sample Delivery Group (SDG): 207226

Sample Identification

MEC045

Introduction

This data review covers one soil sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Methods 6010B and 7000 for Metals. The metals analyzed were Aluminum, Antimony, Barium, Chromium, Copper, Iron, Lead, Nickel, and Zinc.

This review follows the Project Procedures Manual, U.S. Navy Environmental Restoration Program, NAVFAC Pacific (DON 2007) and the U.S. Department of Defense Quality Systems Manual for Environmental Laboratories, Final Version (January 2006).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
ІСВ/ССВ	Aluminum Copper Nickel	79.21 ug/L 1.614 ug/L 0.9097 ug/L	All samples in SDG 207226

Data qualification by the initial, continuing and preparation blanks (ICB/CCB/PBs) was based on the maximum contaminant concentration in the ICB/CCB/PBs in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated method blanks.

No field blanks were identified in this SDG.

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VI. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

Vili. internal Standards

ICP-MS was not utilized in this SDG.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution was not performed for this SDG.

XI. Sample Result Verification

Raw data were not reviewed for this SDG.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Duplicates

No field duplicates were identified in this SDG.

Waikane Training Area Metals - Data Qualification Summary - SDG 207226

No Sample Data Qualified in this SDG

Waikane Training Area Metals - Laboratory Blank Data Qualification Summary - SDG 207226

No Sample Data Qualified in this SDG

Waikane Training Area Metals - Field Blank Data Qualification Summary - SDG 207226

No Sample Data Qualified in this SDG

	Metals An	alytical Repor	e	
Lab #:	207226	Location:	Waikane Training Area	
Client:	Wil Chee Planning	Prep:	EPA 3050B	
Project#:	UXOA-007	Analysis:	EPA 6010B	
Field ID:	MEC045	Batch#:	144200	
Lab ID:	207226-001	Sampled:	10/21/08	
Matrix:	Soil	Received:	10/28/08	
Units:	mg/Kg	Prepared:	10/28/08	
Basis:	dry			

Moisture:

485

Analyte	Result	te statistic factor	RU	MDL	Diln Fa	Analyzed
Aluminum	32,000		190	51	20,00	11/07/08
Antimony	ND	И	0.96	0.23	1.000	L0/29/08
Barium	54		0.48	0.094	1.000	10/29/00
Chromium	170		0.48	0.029	1.000	10/29/01
Copper	77		0.48	0.067	1.000	10/29/18
Iron	75,000		190	18	20.00	11/07/01
Lead	7.1	-	0.48	0.087	1.000	10/29/11
Nickel	96		0.48	0.059	1.000	10/29/01
Zinc	79		1.9	0.31	1.000	10/29/01

NAVFAC PACIFIC VALIDATED

ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

21/208

VALIDATION COMPLETENESS WORKSHEET

Level III

LDC #: 19760A4 SDG #: 207226

Laboratory: Curtis & Tompkins, Ltd.

Date: 11-18-09 Page: 1 of 1 Reviewer: 106-2nd Reviewer: 106-

METHOD: Metals (EPA SW 846 Method 6010B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
L.	Technical holding times	A	Sampling dates: 10 - 21 - 08
U.	Calibration	A	
	Blanks	รพ	
IV.	ICP Interference Check Sample (ICS) Analysis	A	
v .	Matrix Spike Analysis	N	Client specified
VI.	Duplicate Sample Analysis	N	14 I I
VII.	Laboratory Control Samples (LCS)	A	LCS/LCSD
VIII.	Internal Standard (ICP-MS)	N	Not Utilized
IX.	Furnace Atomic Absorption QC	N	st se
Х.	ICP Serial Dilution	2	Not performed
XI.	Sample Result Verification	N	
XII.	Overall Assessment of Data	A	
XIII.	Field Duplicates	と	
XIV.	Field Blanks	2	

Note: A = Acceptable N = Not provider

N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate

FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:

1				and a second
1	MEC045	11	21	31
2	PBS	12	22	32
3		13	23	33
4		14	24	34
5		15	25	35
6		16	26	36
7		17	27	37
8		18	28	38
9		19	29	39
10		20	30	40

Notes:

LDC #: 19760A4 SDG #: 201776

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: ______ of _____ Reviewer: _______ 2nd reviewer: ______

All circled elements are applicable to each sample.

Sample (D	Matrix	Target Analyte List (TAL)
1	5	(Al, Sh) As (Be) Be, Cd, Ca (Cr) Co, (Cu, Fe, Pb) Mg, Mn, Hg(N), K, Se, Ag, Na, Ti, V, Zn) Mo, B, Si, CN',
		Al, Sb, As, Ba, Ba, Cd, Ca, Cr, Co, Cu, Fa, Pb, Mg, Mn, Hg, Ni, K, Sa, Ag, Na, Ti, V, Zn, Mo, B, Si, CN',
		Al, Sb, As, Ba, Ba, Cd, Ca, Cr, Co, Cu, Fa, Pb, Mg, Mn, Hg, Ni, K, Sa, Ag, Na, Ti, V, Zn, Ma, B, Si, CN',
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN.
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN',
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Me, B, Si, CN',
		Al, Sb, As, Be, Be, Cd, Ce, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN'
		Al, Sb, As, Ba, Ba, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Nl, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Ba, Cd, Ca, Cr, Co, Cu, Fa, Pb, Mg, Mn, Hg, Ni, K, Sa, Ag, Na, Ti, V, Zn, Mo, B, Si, CN',
		Ai, Sb, As, Ba, Ba, Cd, Ca, Cr, Co, Cu, Fa, Pb, Mg, Mn, Hg, Ni, K, Sa, Ág, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Me, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Me, B, Si, CN',
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Nl, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN',
		Al, Sb, As, Ba, Ba, Cd, Ca, Cr, Co, Cu, Fa, Pb, Mg, Mn, Hg, Ni, K, Sa, Ag, Na, Ti, V, Zn, Ma, B, Si, CN',
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN',
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Me, B, Si, CN',
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN',
		Al, Sb, As, Ba, Ba, Cd, Ca, Cr, Co, Cu, Fa, Pb, Mg, Mn, Hg, Ni, K, Sa, Ag, Na, Ti, V, Zo, Mo, B, Si, CN',
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Me, B, Si, CN',
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Ma, B, Si, CN',
		Ai, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Me, B, Si, CN',
		Analysis Method
ICP		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
ICP Trace	S	AI, SD AS (B) Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, N) K, Se, Ag, Na, TI, V, Zh, Mo, B, SI, CN,
ICP-MS		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Sl, CN,
GFAA		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, N., Ti, V, Zn, Mo, B, Si, CN,
Comments:	Mercu	v by CVAA if performed

ELEMENTS.4
age: 1 of 6 wer: 716		Analvie		t d	, ,	As a	g l	Be	8	g	ō	გ	ē	3 4		å	Mg	M	Нg	Ÿ	к	Ŝ	Ag	Na	F	,		5		Mo	8
Pe Revie 2nd Revie	「日本ののない」の	PB(L														4														
	THE REAL PROPERTY OF	CCB3					:																								
	all the second	CCB2																													des worksheet.
HEET BS A (1	No. of Lot	CCB1																										1			CCB Qualified Samp
IGS WORKS	citostop.	ICB																												T	Ted to the PB/ICB/
I - 7 - 0 I = AI/F = 10N FINDIN ION FINDIN ION FINDIN ION FINDIN Ion findites:	Blank Iden	PB ()	16.91							T	T							T	T	T	T	T								T	ricsheet and transfer
المعلمة Valibal Prep	言葉は言	CCB3	47.72																T					T							is circled on this wo
6010/7000)	市田市	CCB2																	Ī		Ī	Ī									CB for each analyte
ନ - ପୃ ଥି ୦ ଝ W 846 Method s otherwise no	A B SA	CCBI																				T		T							o Biank and ICB/CC
$P_{C} = \frac{10 - 3^{\circ}}{M_{C} + M_{C} + \frac{10 - 3^{\circ}}{M_{C} + 10$		B											1.64						0.0007			T			T						on found in the Pre
LDC #: 1976 SDG #: <u>20</u> METHOD: Trace Blank concentral		Analyte	R	å	As	Ba	Be	স্ত	g		5	3	5	å	Pb	Mg	W	5		2	~	80	BY	Na	₣	>	чz	8	Mo	4	The highest concentral

BLNKICB.4SW

DC#	19760 2072: D: Trace Me) 서서 26 stals (EPA S	3W 846 Met	thod 6010/70	VALIDATION FINDINGS 1 <u>PB/ICB/CCB QUALIFIE</u> 000) Soll preparation factor applied: <u>5</u>	WORKSHEET D SAMPLES D X . Al. Bardil		Page: 1 of A Reviewer: 105 2nd Reviewer: 100
ample	Concentrati	on units, un	less otherw	ise noted:	My Ko Associated Samp	les:		
		たな道路				Sample.	cancileation	
Analyte	Maximum PB*	Maximum PB ⁺	Maximum ICB/CCB*	Blank Action	No sa	mole was	gualified -	
R			79.21	396.0				
Sb			,					
A5								
Ba								
Be								
3								
ů								
Ъ								
8								
Ū	_		1.614	04.0				
Fe								
£								
βM	-							
ШŇ							-	
P								
Mo								
ź			1909.0	0.93				
¥						•		
e R								
Ag								
Na								-
F						-		
>								
ភ្								-
Sn								
đ								
Sample: qualified	s with analyte l as not detect	concentration ted, 'U'	is within five i	imes the asso	odated iCB, CCB or PB concentration are listed ab	iove with the identificati	ons from the Validation Complete	aness Worksheet. These sample results were
NUIC .	2 - 1 II 0 II 2 IE	ad analyes uu	A NUMBURADA	i The nignest r	UB, UCB, or PB detected in the analysis of each	element.		

BLNKSMP.4SW

LDC Report# 19794A40

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Waikane Training Area

Collection Date: October 20, 2008

LDC Report Date: December 2, 2008

Matrix:

Soil

Parameters: Explosives

Validation Level: Standard

Laboratory:

Curtis & Tompkins, Ltd.

Sample Delivery Group (SDG): 207110

Sample Identification

MEC034 MEC035 **MEC036 MEC037 MEC038 MEC039** MEC040 MEC041 MEC042 MEC043 MEC044 MEC046 MEC047 **MEC048** MEC049 **MEC050** MEC040MS MEC040MSD

Introduction

This data review covers 18 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8330 for Explosives.

This review follows the Project Procedures Manual, U.S. Navy Environmental Restoration Program, NAVFAC Pacific (DON 2007) and the U.S. Department of Defense Quality Systems Manual for Environmental Laboratories, Final Version (January 2006).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

Initial calibration of compounds was performed for the primary (quantitation) column and confirmation column as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

b. Calibration Verification

Calibration verification was performed at the required frequencies. The percent differences (%D) of amounts in continuing standard mixtures were within the 15.0% QC limits.

The percent differences (%D) of the second source calibration standard were less than or equal to 15.0% for all compounds.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No explosive contaminants were found in the method blanks.

No field blanks were identified in this SDG.

IV. Accuracy and Precision Data

a. Surrogate Recovery

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

b. Matrix Spike/(Matrix Spike) Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

c. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

V. Target Compound Identification

Raw data were not reviewed for this SDG.

VI. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria with the following exceptions:

Sample	Compound	Finding	Criteria	Flag	A or P
MEC047 MEC048	2-Nitrotoluene	2nd column confirmation was not performed for this compound.	All compounds must be confirmed on the 2nd column per the DOD QSM.	NJ (all detects)	Ρ

Raw data were not reviewed for this SDG.

VII. System Performance

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

Samples MEC047 and MEC048 and samples MEC040 and MEC041 were identified as field duplicates. No explosives were detected in any of the samples with the following exceptions:

	Concentrat	ion (ug/Kg)	· ····
Compound	MEC047	MEC048	RPD (Limits)
2-Nitrotoluene	73	55	28 (≤100)

Waikane Training Area Explosives - Data Qualification Summary - SDG 207110

SDG	Sample	Compound	Flag	A or P	Reason
207110	MEC047 MEC048	2-Nitrotoluene	NJ (all detects)	Ρ	Compound quantitation and CRQLs

Waikane Training Area Explosives - Laboratory Blank Data Qualification Summary - SDG 207110

No Sample Data Qualified in this SDG

Waikane Training Area Explosives - Field Blank Data Qualification Summary - SDG 207110

No Sample Data Qualified in this SDG

	Nitroaromati	cs and Nitroamines	by HPLC
Lab #:	207110	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC034	Batch#:	144284
Lab ID:	207110-001	Sampled:	10/20/08
Matrix:	Soil	Received:	10/23/08
Units:	ug/Kg	Prepared:	10/30/08
Basis:	as received	Analyzed:	10/31/08
Diln Fac:	1.000	-	

Analyte	Result	RL	MDL
НМХ	ND V	200	59
RDX	ND	200	42
1,3,5-Trinitrobenzene	ND	200	15
1,3-Dinitrobenzene	ND	200	13
Nitrobenzene	ND	200	17
Tetryl	ND	200	28
2,4,6-Trinitrotoluene	ND	200	7.7
2-Amino-4,6-dinitrotoluene	ND	200	32
4-Amino-2,6-dinitrotoluene	ND	200	57
2,4-Dinitrotoluene	ND	200	17
2,6-Dinitrotoluene	ND	200	31
2-Nitrotoluene	ND	390	42
4-Nitrotoluene	ND	390	66
3-Nitrotoluene	ND ₩	390	44
Surrogate	&REC Limits		
1,2-Dinitrobenzene	89 69-120		

ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1 2 1008

	Nitroaromatics and	Nitroamines b	Y HPLC
Lab #:	207110	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC035	Batch#:	144284
Lab ID:	207110-002	Sampled:	10/20/08
Matrix:	Soil	Received:	10/23/08
Units:	ug/Kg	Prepared:	10/30/08
Basis:	as received	Analyzed:	10/31/08
Diln Fac:	1.000] =	

Analyte	Result	RL .	MDI
HMX	ND V	200	59
RDX	ND	200	42
1,3,5-Trinitrobenzene	ND	200	15
1,3-Dinitrobenzene	ND	200	13
Nitrobenzene	ND	200	17
Tetryl	ND	200	28
2,4,6-Trinitrotoluene	ND	200	7.8
2-Amino-4,6-dinitrotoluene	ND	200	32
4-Amino-2,6-dinitrotoluene	ND	200	57
2,4-Dinitrotoluene	ND	200	17
2,6-Dinitrotoluene	ND	200	31
2-Nitrotoluene	ND	400	42
4-Nitrotoluene	ND	400	67
3-Nitrotoluene	ND 🔰	400	44
Surrogate	%REC Limits		
1,2-Dinitrobenzene	91 69-120		

ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

2 20105

	Nitroaromatics an	d Nitroamines	by HPLC
Lab #:	207110	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC036	Batch#:	144284
Lab ID:	207110-003	Sampled:	10/20/08
Matrix:	Soil	Received:	10/23/08
Units:	ug/Kg	Prepared:	10/30/08
Basis:	as received	Analyzed:	11/01/08
Diln Fac:	1.000	-	

Analyte	Result	RL 🕷	MDL
HMX	ND 🗸	200	59
RDX	ND	200	43
1,3,5-Trinitrobenzene	ND	200	15
1,3-Dinitrobenzene	ND	200	13
Nitrobenzene	ND	200	17
Tetryl	ND	200	28
2,4,6-Trinitrotoluene	ND	200	7.8
2-Amino-4,6-dinitrotoluene	ND	200	32
4-Amino-2,6-dinitrotoluene	ND	200	57
2,4-Dinitrotoluene	ND	200	18
2,6-Dinitrotoluene	ND	200	31
2-Nitrotoluene	ND	400	43
4-Nitrotoluene	ND	400	67
3-Nitrotoluene	ND 🗸	400	44

' Surrogate	代 ····································	Limits	TALL WILL	A State		
1,2-Dinitrobenzene	92	69-120				

ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

2/20108

	Nitroaromatics and	Nitroamines b	y HPLC
Lab #:	207110	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC037	Batch#:	144284
Lab ID:	207110-004	Sampled:	10/20/08
Matrix:	Soil	Received:	10/23/08
Units:	ug/Kg	Prepared:	10/30/08
Basis:	as received	Analyzed:	11/01/08
Diln Fac:	1.000		

Analyte	L. 把批明Result	THE RL HERE	MDL
НМХ	ND 🗸	200	59
RDX	ND	200	42
1,3,5-Trinitrobenzene	ND	200	15
1,3-Dinitrobenzene	ND	200	13
Nitrobenzene	ND	200	17
Tetryl	ND	200	28
2,4,6-Trinitrotoluene	ND	200	7.7
2-Amino-4,6-dinitrotoluene	ND	200	32
4-Amino-2,6-dinitrotoluene	ND	200	57
2,4-Dinitrotoluene	ND	200	17
2,6-Dinitrotoluene	ND	200	31
2-Nitrotoluene	ND	390	42
4-Nitrotoluene	ND	390	66
3-Nitrotoluene	ND 🗸	390	44
Surrogate	REC Limits		

1,2-Dinitrobenzene 91 69-120

NAVFAC PACIFIC VALIDATED

ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

96/00/08

	Nitroaromatics and	1 Nitroamines 1	by HPLC
Lab #:	207110	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC038	Batch#:	144284
Lab ID:	207110-005	Sampled:	10/20/08
Matrix:	Soil	Received:	10/23/08
Units:	ug/Kg	Prepared:	10/30/08
Basis:	as received	Analyzed:	11/01/08
Diln Fac:	1.000	-	

Analyte 👘 👘	Result	RL	MDL
HMX	ND V	200	59
RDX	ND	200	43
1,3,5-Trinitrobenzene	ND	200	15
1,3-Dinitrobenzene	ND	200	13
Nitrobenzene	ND	200	17
Tetryl	ND	200	28
2,4,6-Trinitrotoluene	ND	200	7.8
2-Amino-4,6-dinitrotoluene	ND	200	32
4-Amino-2,6-dinitrotoluene	ND	200	57
2,4-Dinitrotoluene	ND	200	18
2,6-Dinitrotoluene	ND	200	31
2-Nitrotoluene	ND	400	43
4-Nitrotoluene	ND	400	67
3-Nitrotoluene	ND 🗸	400	4.4
Surrögate	%REC Limits		
1,2-Dinitrobenzene	91 69-120		

ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

2/20/08

	Nitroaromatics and	itroamines b	y HPLC
Lab #:	207110	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC039	Batch#:	144284
Lab ID:	207110-006	Sampled:	10/20/08
Matrix:	Soil	Received:	10/23/08
Units:	ug/Kg	Prepared:	10/30/08
Basis:	as received	Analyzed:	11/01/08
Diln Fac:	1.000		

Analy O	Result	RL	MDL
НМХ	ND U	190	58
RDX	ND	190	42
1,3,5-Trinitrobenzene	ND	190	15
1,3-Dinitrobenzene	ND	190	13
Nitrobenzene	ND	190	17
Tetryl	ND	190	28
2,4,6-Trinitrotoluene	ND	190	7.6
2-Amino-4,6-dinitrotoluene	ND	190	31
4-Amino-2,6-dinitrotoluene	ND	190	56
2,4-Dinitrotoluene	ND	190	17
2,6-Dinitrotoluene	ND	190	30
2-Nitrotoluene	ND	390	42
4-Nitrotoluene	ND	390	65
3-Nitrotoluene	ND V	390	43
Surrogate	%REC Limits		

92

69-120

1,2-Dinitrobenzene

NAVFAC PACIFIC VALIDATED

ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

r/201.8

	Nitroaronatics and	Ni froamûnes b	W HPLC
Lab #:	207110	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC040	Batch#:	144284
Lab ID:	207110-007	Sampled:	10/20/08
Matrix:	Soil	Received:	10/23/08
Units:	ug/Kg	Prepared:	10/30/08
Basis:	as received	Analyzed:	10/31/08
Diln Fac:	1.000		

Analyte	Re	Bult	MDL
НМХ	ND L	200	59
RDX	ND	200	43
1,3,5-Trinitrobenzene	ND	200	15
1,3-Dinitrobenzene	ND	200	13
Nitrobenzene	ND	200	17
Tetryl	ND	200	28
2,4,6-Trinitrotoluene	ND	200	7.8
2-Amino-4,6-dinitrotoluene	ND	200	32
4-Amino-2,6-dinitrotoluene	ND	200	58
2,4-Dinitrotoluene	ND	200	18
2,6-Dinitrotoluene	ND	200	31
2-Nitrotoluene	ND	400	43
4-Nitrotoluene	ND	400	67
3-Nitrotoluene	ND 🗸	400	44
Surrogate	\$REC L.	imits	
1,2-Dinitrobenzene	82 6	9-120	

ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

* polot

	Nitroaromati	cs and Nitroamines	by HPLC
Lab #:	207110	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC041	Batch#:	144284
Lab ID:	207110-008	Sampled:	10/20/08
Matrix:	Soil	Received:	10/23/08
Units:	ug/Kg	Prepared:	10/30/08
Basis:	as received	Analyzed:	11/01/08
Diln Fac:	1.000	-	

Analyte Miller	Result	RL	MDL
НМХ	ND V	200	59
RDX	ND	200	43
1,3,5-Trinitrobenzene	ND	200	15
1,3-Dinitrobenzene	ND	200	13
Nitrobenzene	ND	200	17
Tetryl	ND	200	28
2,4,6-Trinitrotoluene	ND	200	7.8
2-Amino-4,6-dinitrotoluene	ND	200	32
4-Amino-2,6-dinitrotoluene	ND	200	58
2,4-Dinitrotoluene	ND	200	18
2,6-Dinitrotoluene	ND	200	31
2-Nitrotoluene	ND	400	43
4-Nitrotoluene	ND	400	67
3-Nitrotoluene	ND 🗸	400	44

Surrogate	\$REC	Limits	
1,2-Dinitrobenzene	88	69-120	

ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

30100/20

	Nitroaromatics and	Nitroamines by	Y HPLC
Lab #:	207110	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC042	Batch#:	144284
Lab ID:	207110-009	Sampled:	10/20/08
Matrix:	Soil	Received:	10/23/08
Units:	ug/Kg	Prepared:	10/30/08
Basis:	as received	Analyzed:	11/01/08
Diln Fac:	1.000		

Analyte - 1 2 - 100	Result		MDL and the Part
НМХ	ND 🗸	200	59
RDX	ND	200	43
1,3,5-Trinitrobenzene	ND	200	15
1,3-Dinitrobenzene	ND	200	13
Nitrobenzene	ND	200	17
Tetryl	ND	200	28
2,4,6-Trinitrotoluene	ND	200	7.8
2-Amino-4,6-dinitrotoluene	ND	200	32
4-Amino-2,6-dinitrotoluene	ND	200	57
2,4-Dinitrotoluene	ND	200	17
2,6-Dinitrotoluene	ND	200	31
2-Nitrotoluene	ND	400	43
4-Nitrotoluene	ND	400	67
3-Nitrotoluene	ND 🤺	400	44
Surrogate	%REC Limits		·····································

1,2-Dinitrobenzene 90 69-120

NAVFAC PACIFIC VALIDATED

ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

1 pore

	Nitroaromatics and	Nitroamines by	Y HPLC
Lab #:	207110	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC043	Batch#:	144284
Lab ID:	207110-010	Sampled:	10/20/08
Matrix:	Soil	Received:	10/23/08
Units:	ug/Kg	Prepared:	10/30/08
Basis:	as received	Analyzed:	11/01/08
Diln Fac:	1.000	-	

Analyte	Result	RL	MDL
НМХ	ND V	200	59
RDX	ND	200	43
1,3,5-Trinitrobenzene	ND	200	15
1,3-Dinitrobenzene	ND	200	13
Nitrobenzene	ND	200	17
Tetryl	ND	200	28
2,4,6-Trinitrotoluene	ND	200	7.8
2-Amino-4,6-dinitrotoluene	ND	200	32
4-Amino-2,6-dinitrotoluene	ND	200	57
2,4-Dinitrotoluene	ND	200	18
2,6-Dinitrotoluene	ND	200	31
2-Nitrotoluene	ND	400	43
4-Nitrotoluene	ND	400	67
3-Nitrotoluene	ND 🚽	400	44
Surrogate	%REC Limits		Table And
1,2-Dinitrobenzene	91 69-120		2 arranged at the

ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1 איומרן א

Nitroaromatics and Nitroamines by HPLC				
Lab #:	207110	Location:	Waikane Training Area	
Client:	Wil Chee Planning	Prep:	EPA 8330	
Project#:	UXOA-007	Analysis:	EFA 8330	
Field ID:	MEC044	Batch#:	144284	
Lab ID:	207110-011	Sampled:	10/20/08	
Matrix:	Soil	Received:	10/23/08	
Units:	ug/Kg	Prepared:	10/30/08	
Basis:	as received	Analyzed:	11/01/08	
Diln Fac:	1.000	_		

Analyte	Result	A REAL AND A REAL	MDL
НМХ	ND V	200	60
RDX	ND	200	43
1,3,5-Trinitrobenzene	ND	200	16
1,3-Dinitrobenzene	ND	200	13
Nitrobenzene	ND	200	17
Tetryl	ND	200	29
2,4,6-Trinitrotoluene	ND	200	7.9
2-Amino-4,6-dinitrotoluene	ND	200	32
4-Amino-2,6-dinitrotoluene	ND	200	58
2,4-Dinitrotoluene	ND	200	18
2,6-Dinitrotoluene	ND	200	31
2-Nitrotoluene	ND	400	43
4-Nitrotoluene	ND	400	68
3-Nitrotoluene	ND V	400	45
Surrogate State	%REC Limits	B TA FORMER	that with

69-120

1,2-Dinitrobenzene 92

NAVFAC PACIFIC VALIDATED

n/20108

ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

	Nitroaromatics and	Nitroamines b	y BPLC
Lab #:	207110	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC046	Batch#:	144284
Lab ID:	207110-012	Sampled:	10/21/08
Matrix:	Soil	Received:	10/23/08
Units:	ug/Kg	Prepared:	10/30/08
Basis:	as received	Analyzed:	11/01/08
Diln Fac:	1.000		

Analyte N. 199	Result	The RL Production	FOL BOL
НМХ	ND V	200	59
RDX	ND	200	42
1,3,5-Trinitrobenzene	ND	200	15
1,3-Dinitrobenzene	ND	200	13
Nitrobenzene	ND	200	17
Tetryl	ND	200	28
2,4,6-Trinitrotoluene	ND	200	7.8
2-Amino-4,6-dinitrotoluene	ND	200	32
4-Amino-2,6-dinitrotoluene	ND	200	57
2,4-Dinitrotoluene	ND	200	17
2,6-Dinitrotoluene	ND	200	31
2-Nitrotoluene	ND	400	42
4-Nitrotoluene	ND	400	67
3-Nitrotoluene	ND 🗸	400	44
Surro-ate	WAREC Limits	3、 " 」 法的问题的问题 1 本 " " " " " "	
1.2-Dinitrobenzene	93 69-120	<u>ן א</u>	

ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

2/20108

50.0

	Nitroaromatics and	Nitroamines b	А ныг е
Lab #:	207110	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC047	Batch#:	144284
Lab ID:	207110-013	Sampled:	10/21/08
Matrix:	Soil	Received:	10/23/08
Units:	ug/Kg	Prepared:	10/30/08
Basis:	as received	Analyzed:	11/01/08
Diln Fac:	1.000		

Analyte	Result	Siller an RL	MDL
НМХ	ND 🚺	200	59
RDX	ND	200	42
1,3,5-Trinitrobenzene	ND	200	15
1,3-Dinitrobenzene	ND	200	13
Nitrobenzene	ND	200	17
Tetryl	ND	200	28
2,4,6-Trinitrotoluene	ND	200	7.8
2-Amino-4,6-dinitrotoluene	ND	200	32
4-Amino-2,6-dinitrotoluene	ND	200	57
2,4-Dinitrotoluene	ND	200	17
2,6-Dinitrotoluene	ND 🎽	200	31
2-Nitrotoluene	73 J I	$NJ(\mp I)$ 400	42
4-Nitrotoluene	ND 🗸	400	67
3-Nitrotoluene	ND 🦆	400	44

 Surrogate
 AREC
 Limits

 1,2-Dinitrobenzene
 92
 69-120

NAVFAC PACIFIC VALIDATED

J= Estimated value b= See narrative ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

2/20108

	Nitroaromatics and	Nitroämines b	y BPLC
Lab #:	207110	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC048	Batch#:	144284
Lab ID:	207110-014	Sampled:	10/21/08
Matrix:	Soil	Received:	10/23/08
Units:	ug/Kg	Prepared:	10/30/08
Basis:	as received	Analyzed:	11/01/08
Diln Fac:	1.000		

Analyte,	Result	and the second	WE HE IN MOLE & MAN
НМХ	ND V	200	58
RDX	ND	200	42
1,3,5-Trinitrobenzene	ND	200	15
1,3-Dinitrobenzene	ND	200	13
Nitrobenzene	ND	200	17
Tetryl	ND	200	28
2,4,6-Trinitrotoluene	ND	200	7.7
2-Amino-4,6-dinitrotoluene	ND	200	31
4-Amino-2,6-dinitrotoluene	ND	200	56
2,4-Dinitrotoluene	ND	200	17
2,6-Dinitrotoluene	ND 💙	$(-7)^{200}$	31
2-Nitrotoluene	55 J b	NJ (*1) 390	42
4-Nitrotoluene	ND V	390	66
3-Nitrotoluene	ND	390	43
Surrogate	%REC Limits		the of the second s

1,2-Dinitrobenzene

69-120

91

NAVFAC PACIFIC VALIDATED

J= Estimated value b= See narrative ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

```
n /20128
```


	Nitrostomatics and	Nitroamines b	y HPLC
Lab #:	207110	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC049	Batch#:	144284
Lab ID:	207110-015	Sampled:	10/21/08
Matrix:	Soil	Received:	10/23/08
Units:	ug/Kg	Prepared:	10/30/08
Basis:	as received	Analyzed:	11/03/08
Diln Fac:	1.000	-	

Analyte Assessment	<u> </u>	esult and a PL	
нмх	ND	V 200	59
RDX	ND	200	42
1,3,5-Trinitrobenzene	ND	200	15
1,3-Dinitrobenzene	ND	200	13
Nitrobenzene	ND	200	17
Tetryl	ND	200	28
2,4,6-Trinitrotoluene	ND	200	7.7
2-Amino-4,6-dinitrotoluene	ND	200	32
4-Amino-2,6-dinitrotoluene	ND	200	57
2,4-Dinitrotoluene	ND	200	17
2,6-Dinitrotoluene	ND	200	31
2-Nitrotoluene	ND	390	42
4-Nitrotoluene	ND	390	66
3-Nitrotoluene	ND	390	44

1,2-Dinitrobenzene

69-120

92

NAVFAC PACIFIC VALIDATED

ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

16/20108

	Nitroaromatics and	Nitroamines by	g HPLC
Lab #:	207110	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 8330
Project#:	UXOA-007	Analysis:	EPA 8330
Field ID:	MEC050	Batch#:	144284
Lab ID:	207110-016	Sampled:	10/21/08
Matrix:	Soil	Received:	10/23/08
Units:	ug/Kg	Prepared:	10/30/08
Basis:	as received	Analyzed:	11/03/08
Diln Fac:	1.000		

State Analyte said (Analyte	Regult	RL	HOL .
НМХ	ND 1	200	59
RDX	ND	200	42
1,3,5-Trinitrobenzene	ND	200	15
1,3-Dinitrobenzene	ND	200	13
Nitrobenzene	ND	200	17
Tetryl	ND	200	28
2,4,6-Trinitrotoluene	ND	200	7.7
2-Amino-4,6-dinitrotoluene	ND	200	32
4-Amino-2,6-dinitrotoluene	ND	200	57
2,4-Dinitrotoluene	ND	200	17
2,6-Dinitrotoluene	ND	200	31
2-Nitrotoluene	ND	390	42
4-Nitrotoluene	ND	390	66
3-Nitrotoluene	ND 🗸	390	44
Surrogate	REC Limits	的心理的变形。专家的情况,这些	
1,2-Dinitrobenzene	92 69-120		

1,2-Dinitrobenzene

69-120

NAVFAC PACIFIC VALIDATED

ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

16/20108

VALIDATION COMPLETENESS WORKSHEET

Level III

LDC #:	<u>19794A40</u>	1
SDG #:	207110	
Laborato	v: Curtis & Tompkins.	l

Date: <u>//////08</u> Page:/_of_/ Reviewer:__<u>//</u> 2nd Reviewer:___//

Laboratory: Curtis & Tompkins, Ltd.

METHOD: HPLC Explosives (EPA SW 846 Method 8330)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
L	Technical holding times	A	Sampling dates: p/20/0¥
lla.	Initial calibration	Δ	
IIЬ.	Calibration venification/ICV	A.	$101 \leq 15$
- 111.	Blanks	A	
lVa.	Surrogate recovery	1	
IV⊅.	Matrix spike/Matrix spike duplicates	A	
íVc.	Laboratory control samples	A	10>
v .	Target compound identification	N	
VI.	Compound Quantitation and CRQLs	SW	
VII.	System Performance	N	
VIII.	Overall assessment of data	A.	
IX.	Field duplicates	SW	$D = 7 + 8^{*}$ 13+14
×.	Field blanks	N	,

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:

Note:

	5012						
۲	MEC034	11	MEC044	21	ac467950-BK	31	
2	MEC035	12	MEC046	22		32	
3	MEC036	13	MEC047	23		33	
4	MEC037	+ 14	MEC048	24		34	
5	MEC038	15	MEC049	25		35	
6	MEC039	16	MEC050	26		36	
7	MEC040	17	MEC040MS	27		37	
8	MEC041	18	MEC040MSD	28		38	
9	MEC042	19		29		39	
10	MEC043	20		30		40	

Notes:_

VALIDATION FINDINGS WORKSHEET	
	HPLC
	00 05
	METHOD:

L

8310	0000				
	0000	8151	8141	8141(Con't)	arcn8
A. Acenaphthene	A. HMX	A 24-D		h incl	GI 700
B. Acenaphthylene	B. RDX		A. UICNIORVOS	V. Fensulfothion	V. Benzene
C. Anthracene		B. 2,4-0B	B. Mevinphos	W. Boistar	CC. Toliione
	v. 1,3,3-1 mitrobenzene	C. 2,4,5-T	C. Demeton-O	X. EPN	
u. Benzo(a)anthracene	D. 1,3-Dinitrobenzene	D. 2,4,5-TP	D. Demeton-S		cc. cuiyi benzene
E. Benzo(a)pyrene	E. Tetryi	E. Dinoseb		1. Aduptios-memyr	SSS. O-Xylene
F. Benzo(b)fluoranthene	F. Nitrobenzene	F Dichlomon	c. cuoprop	Z. Coumaphos	RRR. MP-Xyiene
G. Benzo(g,h,i)peryiene	G. 24 6-Trinitextolucing		r. Naled	A. Parathion	GG. Total Xylene
H. Benzo(k)fluoranthene		G. Ulcamba	G. * Sulfotep	BB. Trichloronate	
Chreens	II. 4-4411100-2,6-dinitrotoluene	H. Dalapon	H. Phorate	CC. Trichlorinate	
	I. 2-Amino-4,6-dinitrotoluene	1. MCPP	1. Dimethoate	DD. Triffuralin	
J. Dibenz(a,h)anthracene	J. 2,4-Dinitrotolune	J. MCPA	J. Diazinon		
K. Fluoranthene	K. 2,6-Dinitrotoiuene	K. Pentachioronhenol		EE, Def	
L. Fluorene	L. 2-Nitrotolitiene		N. UISUITOTON	FF. Prowi	
M. Indeno(1.2.3-cd)pvrene		L., L,4,3-IP (SIIVEX)	L. Parathion-methyl	GG. Ethion	
N National N		M. Silvex	M. Ronnel	HH. Tetrachlorvinphos	
	N. 4-Nitrotoluene		N. Maiathion	II. Sulprofos	
O. Phenanthrene	ö		0. Chlornvrtfoe		
P. Pyrene	ai		D Earthlan		
ď	σ				
Ľ			Q. Parathion-ethyi		
			R. Trichioronate		
5			S. Merphos		
		30	T. Stirofos		
			U. Tokuthion		

Notes:

cmpd_list.wpd

LDC # 19794A4U SDG # 44 coner

Compound Quantitation and Reported CRQLs VALIDATION FINDINGS WORKSHEET

Page: / of /

CGC_HPLC **METHOD:**

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Level [V/D] Only

Y N N/A

Were CRQLs adjusted for sample dilutions, dry weight factors, etc.? Did the reported results for detected target compounds agree within 10.0% of the recalculated results?

			Γ		Ī	Γ	Γ	T	Τ	T	
Qualifications	d/ NN										
Associated Samples	13, 14										
Finding	nent and when a	Confirmation	not lar for med								
Compound Name	Γ										
#					 	 			 	-	

Comments: _See sample calculation verification worksheet for recalculations

Page: _of Reviewer:	2nd reviewer:	Qualification	Parent only / All Samples						Qualification	Parent only / Ali Samples					
ET		%RPD		XE	 				%RPD	Limit			 		
INDINGS WORKSHE d Duplicates		(Lylen	14	55					-						
VALIDATION F Fiel	n this SDG? the field duplicate pairs?	Concentration (13	73					Concentration (
-DC#: SDG#: reg coner	METHOD:GCHPLCYN/AWere field duplicate pairs identified inYN/AWere target compounds detected in	Compound		7						Сотроила					FLDUPNew.wpd

-

LDC Report# 19794A4

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Waikane Training Area
Collection Date:	October 20 through October 21, 2008
LDC Report Date:	November 21, 2008
Matrix:	Soil
Parameters:	Metals
Validation Level:	Standard
Laboratory:	Curtis & Tompkins, Ltd.

Sample Delivery Group (SDG): 207110

Sample Identification

MEC034 MEC035 MEC036 **MEC037 MEC038 MEC039** MEC040 MEC041 MEC042 MEC043 MEC044 MEC046 MEC047 MEC048 MEC049 **MEC050** MEC040MS MEC040MSD

Introduction

This data review covers 18 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 6010B for Metals. The metals analyzed were Aluminum, Antimony, Barium, Chromium, Copper, Iron, Lead, Nickel, and Zinc.

This review follows the Project Procedures Manual, U.S. Navy Environmental Restoration Program, NAVFAC Pacific (DON 2007) and the U.S. Department of Defense Quality Systems Manual for Environmental Laboratories, Final Version (January 2006).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

An initial calibration was performed.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Aluminum Chromium Iron	4.4 mg/Kg 0.019 mg/Kg 3.3 mg/Kg	All samples in SDG 207110
ICB/CCB	Aluminum	54.92 ug/L	MEC034 MEC035 MEC036 MEC037 MEC038 MEC039 MEC040 MEC041 MEC043 MEC044 MEC044 MEC044 MEC044 MEC046 MEC047 MEC048 MEC049 MEC050

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
ICB/CCB	Barium	2.649 ug/L	MEC034 MEC035 MEC036 MEC037 MEC038 MEC039 MEC041 MEC042 MEC043 MEC043 MEC044 MEC047 MEC048 MEC049 MEC050
ICB/CCB	Chromium	2.699 ug/L	MEC034 MEC035 MEC036 MEC037 MEC038 MEC039 MEC041 MEC042 MEC043 MEC046 MEC047 MEC048 MEC049 MEC050
ICB/CCB	Copper	2.842 ug/L	MEC034 MEC035 MEC036 MEC037 MEC038 MEC039 MEC041 MEC043 MEC043 MEC046 MEC047 MEC048 MEC049 MEC050
ICB/CCB	Iron	170.9 ug/L	MEC034 MEC035 MEC037 MEC038 MEC039 MEC040 MEC041 MEC043 MEC043 MEC044 MEC046 MEC047 MEC048 MEC049 MEC050

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
ICB/CCB	Lead	2.908 ug/L	MEC034 MEC035 MEC036 MEC037 MEC038 MEC039 MEC041 MEC043 MEC044 MEC047 MEC048 MEC049 MEC049 MEC050
ICB/CCB	Соррег	1.482 ug/L	MEC040
ICB/CCB	Barium	2.184 ug/L	MEC046
ICB/CCB	Chromium	2.450 ug/L	ME0044
ICB/CCB	Lead	2.771 ug/L	MEC042 MEC046

Data qualification by the initial, continuing and preparation blanks (ICB/CCB/PBs) was based on the maximum contaminant concentration in the ICB/CCB/PBs in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated method blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
MEC035	Lead	0.32 mg/Kg	0.32U mg/Kg
MEC049	Lead	0.71 mg/Kg	0.71U mg/Kg

No field blanks were identified in this SDG.

IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limita)	RPD (Limits)	Fiag	A or P
MEC040MS/MSD (All samples in SDG 207110)	Chromium Antimony	- 56 (80-120)	77 (80-120) 57 (80-120)	-	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	A

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

Vill. internal Standards

ICP-MS was not utilized in this SDG.

IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

X. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met with the following exceptions:

Diluted Sample	Analyte	%D (Limits)	Associated Samples	Flag	A or P
MEC040L	Aluminum Iron	15 (≤10) 16 (≤10)	All samples in SDG 207110	J (all detects) J (all detects)	A

XI. Sample Result Verification

Raw data were not reviewed for this SDG.

XII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIII. Field Duplicates

Samples MEC040 and MEC041 and samples MEC047 and MEC048 were identified as field duplicates. No metals were detected in any of the samples with the following exceptions:

	Concentra	Concentration (mg/Kg)		
Analyte	MEC040	MEC041	RPD (Limits)	
Aluminum	40000	45000	12 (≤100)	
Antimony	0.23U	0.78	200 (≤100)	
Barium	14	15	7 (≤100)	
Chromium	320	310	3 (≤100)	
Copper	62	86	32 (≤100)	
Iron	130000	140000	7 (≤100)	
Lead	11		56 (≤100)	
Nickel	71	66	7 (≤100)	
Zinc	65	62	5 (≤100)	

	Concentrat		
Analyte	MEC047	MEC048	RPD (Limits)
Aluminum	40000	41000	2 (≤100)
Antimony	0.29U	0.54	200 (≤100)
Barium	60	59	2 (≤100)
Chromium	270	270	0 (≤100)
Copper	140	120	15 (≤100)
Iron	110000	110000	0 (≤100)

	Concentra		
Analyte	MEC047	MEC048	RPD (Limits)
Lead	3.8	3.3	14 (≤100)
Nickel	85	85	0 (≤100)
Zinc	80	75	6 (≤100)

Waikane Training Area Metals - Data Qualification Summary - SDG 207110

SDG	Sample	Analyte	Flag	A or P	Reason
207110	MEC034 MEC035 MEC036 MEC037 MEC038 MEC040 MEC040 MEC041 MEC042 MEC043 MEC043 MEC044 MEC046 MEC047 MEC048 MEC049 MEC050	Chromium Antimony	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	A	Matrix spike/Matrix spike duplicates (%R)
207110	MEC034 MEC035 MEC036 MEC037 MEC038 MEC040 MEC040 MEC041 MEC042 MEC043 MEC044 MEC044 MEC046 MEC047 MEC048 MEC049 MEC050	Aluminum Iron	J (all detects) J (all detects)	A	ICP serial dilution (%D)

Waikane Training Area Metals - Laboratory Blank Data Qualification Summary - SDG 207110

SDG	Sample	Analyte	Modified Final Concentration	A or P
207110	MEC035	Lead	0.32U mg/Kg	A
207110	MEC049	Lead	0.71U mg/Kg	A

Waikane Training Area Metals - Field Blank Data Qualification Summary - SDG 207110

No Sample Data Qualified in this SDG
							sampled Analyzed	10/20/08 10/23/08	10/20/08 10/29/08	10/20/08 10/29/08	10/20/08 10/29/08	10/20/08 10/29/08	10/20/08 10/29/08	10/20/08 10/29/08	10/20/08 10/29/08	10/20/08 10/30/08	10/20/08 10/29/08	10/20/08 10/29/08	10/21/08 10/29/08	10/21/08 10/29/08	10/21/08 10/29/08	10/21/08 10/29/08	10/21/08 10/29/08	10/29/08
	g Area						re Dilh Fac	20.00	20.00	20.00	20.00	20.00	20.00	20,00	20.00	50.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	1.000
	kane Trainin	3050B 6010B	0107	23/08	26/08		N18.TOW ST	\$ - 1	47.4% 0000	29%	30%	398	438	478	498	248	338	60%	358	488	478	38\$	398	eived
	Wai	К 9 9 9 9 9		10/01	10/		Cars.		ary	dry	as rece													
minum	Location:	Prep: Analveic	Dat/24.	Received:	Prepared:	1 Mary			. T	77	14	15	15	17	18	29	14	24	14	18	17	14	15	0.47
alu						- <u></u>	100			1.51	140	160	160	180	180	310	140	250	150	190	180	140	160	5.0
tes in the						attended to be	<u>T</u> TA	t)				-				_	-	-	_	-			4	4 J
							61 000	42,000			59,000	41,000	52,000	40,000	45,000	42,000	72,000	33,000	27,000	40,000	41,000	46,000	51,000	4.
	207110 Mil Char 21	WIL CREE FLANNING UXOA-007	Aluminum	Soil	mg/Kg	Tune Pakern	SAMPLE 207110-001	SAMPLE 207110-002	SAMPLE 203110-003		SAMPLE ZUILU-UU4	SAMPLE 207110-005	SAMPLE 207110-006	SAMPLE 207110-007	SAMPLE 207110-008	SAMPLE 207110-009	SAMPLE 207110-010	SAMPLE 207110-011	SAMPLE 207110-012	SAMPLE 207110-013	SAMPLE 207110-014	SAMPLE 207110-015	SAMPLE 207110-016	BLANK QC467179
	Lab #: r]:co+.	Project#:	Analyte:	Matrix:	Units:	FieldTD	MEC034	MEC035	MECD36			MECU38	MEC039	MEC040	MEC041	MEC042	MEC043	MEC044	MEC046	MEC047	MEC048	MEC049	XEC050	

J= Estimated value RL= Reporting Limit MDL= Method Detection Limit Page 1 ± 1 Curtis & Tompkins, Ltd. 50

2.0

3 char / 1

NAVFAC PACIFIC VALIDATED

	3		Bar	1.um			
Lab #:	207110			Location:	Waikane Tr	aining Area	a
Client:	Wil Chee Pla	inning		Prep:	EPA 3050B		
Project#:	UXOA-007			Analysis:	EPA 6010B		
Analyte:	Barium			Batch#:	144107		
Matrix:	Soil			Received:	10/23/08		
Units:	mg/Kg			Prepared:	10/26/08		
Diln Fac:	1.000						
Field ID	KUType Hat Lab TDHM	Result	FIRL REAL	MDL Basi	Moistur	e Sampled	maiszel
MEC034	SAMPLE 207110-001	85	0.47	0.065 dry	47%	10/20/08	10/29/08
MEC035	SAMPLE 207110-002	36	0.49	0.064 dry	49%	10/20/08	10/29/08
MEC036	SAMPLE 207110-003	20	0.35	0.044 dry	29%	10/20/08	10/29/08
MEC037	SAMPLE 207110-004	40	0.36	0.050 dry	30%	10/20/08	10/29/08
MEC038	SAMPLE 207110-005	84	0.41	0.055 dry	39%	10/20/08	10/29/08
MEC039	SAMPLE 207110-006	50	0.44	0.056 dry	43%	10/20/08	10/29/08
MEC040	SAMPLE 207110-007	14	0.47	0.091 dry	47%	10/20/08	10/27/08
MEC041	SAMPLE 207110-008	15	0.49	0.065 dry	49%	10/20/08	10/29/08
MEC042	SAMPLE 207110-009	36	0.33	0.043 dry	24%	10/20/08	10/29/08
MEC043	SAMPLE 207110-010	16	0.37	0.050 dry	33%	10/20/08	10/29/08
MEC044	SAMPLE 207110-011	23	0.63	0.087 dry	60%	10/20/08	10/29/08
MEC046	SAMPLE 207110-012	19	0.38	0.053 dry	35%	10/21/08	10/30/08
MEC047	SAMPLE 207110-013	60	0.48	0.067 dry	48%	10/21/08	10/29/08
MEC048	SAMPLE 207110-014	59	0.47	0.064 dry	47%	10/21/08	10/29/08
MEC049	SAMPLE 207110-015	59	0.40	0.050 dry	38%	10/21/08	10/29/08
MEC050	SAMPLE 207110-016	58	0.41	0.055 dry	39%	10/21/08	10/29/08
	BLANK QC467179	ND	0.25	0.050 as rece	eived		10/27/08

NAVFAC PACIFIC VALIDATED

ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

2/20108

		ų	Chr	omium	A.			
Lab #:	207110		******	Locatio	on:	Waikane Tra	ining Are	a
Client:	Wil Chee Pla	nning		Prep:		EPA 3050B	2	
Project#:	UXOA-007			Analysi	s:	EPA 6010B		
Analyte:	Chromium			Batch#:		144107		
Matrix:	Soil			Receive	ed:	10/23/08		
Units:	mg/Kg			Prepare	ed:	10/26/08		
Diln Fac:	1.000							
				Sec. 19. 19. 19. 19.		de la compañía de la		1121-11-11-11-11-11-11-11-11-11-11-11-11
Field ID	Lab ID	Result	ŔL	HOL	Ba	sis Moisture	Sampled	Analyzed
MEC034	SAMPLE 207110-001	260 3(6	2) 0.47	0.059	dry	478	10/20/08	10/29/08
MEC035	SAMPLE 207110-002	300	0.49	0.059	dry	49%	10/20/08	10/29/08
MEC036	SAMPLE 207110-003	400	0.35	0.040	dry	29%	10/20/08	10/29/08
MEC037	SAMPLE 207110-004	320	0.36	0.046	dry	30%	10/20/08	10/29/08
MEC038	SAMPLE 207110-005	190	0.41	0.050	dry	39%	10/20/08	10/29/08
MEC039	SAMPLE 207110-006	210	0.44	0.051	dry	43%	10/20/08	10/29/08
MEC040	SAMPLE 207110-007	320	0.47	0.028	dry	478	10/20/08	10/27/08
MEC041	SAMPLE 207110-008	310	0.49	0.059	dry	49%	10/20/08	10/29/08
MEC042	SAMPLE 207110-009	230	0.33	0.039	dry	24%	10/20/08	10/29/08

0.37

0.63

0.38

0.48

0.47

0.40

0.41

0.046

0.079

0.049

0.061

0.058

0.046

0.050

0.015

dry

dry

dry

dry

dry

dry

dry

dry

as received

33%

60%

35%

48%

478

38%

39%

10/20/08 10/29/08

10/20/08 10/29/08

10/20/08 10/30/08

10/21/08 10/29/08

10/21/08 10/29/08

10/21/08 10/29/08

10/21/08 10/29/08

10/21/08 10/29/08

10/27/08

NAVFAC PACIFIC VALIDATED

J= Estimated value RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

MEC043

MEC044

MEC046

MEC047

MEC048

MEC049

MEC050

SAMPLE 207110-010 200

SAMPLE 207110-012 210

SAMPLE 207110-013 270

SAMPLE 207110-015 250

SAMPLE 207110-016 180

220

270

V

0.019 J 0.25

SAMPLE 207110-011

SAMPLE 207110-014

BLANK QC467179

11/20108

					Co	pper				
Lab #:		207110				Location:		Waikane Trai	ining Area	
Client:		Wil Chee	Planning			Prep:		EPA 3050B	-	
Project#	:	UXOA-007				Analysis:		EPA 6010B		
Analyte:		Copper				Batch#:		144107		
Matrix:		Soil				Received:		10/23/08		
Units:		mg/Kg		22		Prepared:		10/26/08		
Field, ID	Type	- (Lab 110 - 1	Result	RL	MDI	Basis	Mols	ture Diln; Fac	Sampled	Amerityzeioli
MEC034	SAMPLE	207110-001	100	0.47	0.10	dry	478	1.000	10/20/08	10/29/08
MEC035	SAMPLE	207110-002	99	0.49	0.099	dry	49%	1.000	10/20/08	10/29/08
MEC036	SAMPLE	207110-003	110	0.35	0.068	dry	298	1.000	10/20/08	10/29/08
MEC037	SAMPLE	207110-004	120	0.36	0.077	dry	30%	1.000	10/20/08	10/29/08
MEC038	SAMPLE	207110-005	80	0.41	0.084	dry	39%	1.000	10/20/08	10/29/08
MEC039	SAMPLE	207110-006	120	0.44	0.086	dry	43%	1.000	10/20/08	10/29/08
MEC040	SAMPLE	207110-007	62	0.47	0.065	dry	47%	1.000	10/20/08	10/27/08
MEC041	SAMPLE	207110-008	86	0.49	0.10	dry	49%	1.000	10/20/08	10/29/08
MEC042	SAMPLE	207110-009	1,300	15	3.3	dry	24%	50.00	10/20/08	10/30/08
MEC043	SAMPLE	207110-010	360	0.37	0.077	dry	33%	1.000	10/20/08	10/29/08
MEC044	SAMPLE	207110-011	180	0.63	0.13	dry	60%	1.000	10/20/08	10/30/08
MEC046	SAMPLE	207110-012	63	0.38	0.082	dry	35%	1.000	10/21/08	10/29/08
MEC047	SAMPLE	207110-013	140	0.48	0.10	dry	48%	1.000	10/21/08	10/29/08
MEC048	SAMPLE	207110-014	120	0.47	0.098	dry	478	1.000	10/21/08	10/29/08
MEC049	SAMPLE	207110-015	97	0.40	0.077	dry	38%	1.000	10/21/08	10/29/08
MEC050	SAMPLE	207110-016	91	0.41	0.085	dry	39%	1.000	10/21/08	10/29/08
	BLANK	QC467179	ND	0.25	0.035	as received		1.000		10/27/08

NAVFAC PACIFIC VALIDATED

ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

				Same addition and and a	10/20/08 10/29/08	10/20/08 10/29/08	10/20/08 10/30/08	10/20/08 10/29/08	10/20/08 10/29/08	10/20/08 10/29/08	10/20/08 10/29/08	10/20/08 10/29/08	10/20/08 10/30/08	10/20/08 10/29/08	10/20/08 10/29/08	10/21/08 10/29/08	10/21/08 10/29/08	10/21/08 10/29/08	10/21/08 10/29/08	10/21/08 10/29/08	10/29/08
	g Area			re Di Fav	20.00	20.00	50.00	20.00	20.00	20,00	20.00	20.00	50.00	20.00	20.00	20.00	20.00	20,00	20.00	20.00	1.000
	tkane Trainin A 3050B A 6010P	1107	25/08	uts Moistn	478	498	29\$	30%	398	438	478	498	248	338	608	35%	488	478	38\$	398	eived
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	144	/01	Bas	dry	as rec															
uos	Location: Prep: Analusis:	Batch#:	Prepared:	TOY	17	17	28	13	14	14	17	17	28	13	22	14	17	16	13	14	0.45
				교	180	180	310	140	160	160	180	180	310	140	250	150	190	180	140	160	5.0
				PASULE	100,000 J(A)	91,000	140,000	110,000	68,000	97,000	130,000	140,000	100,000	120,000	110,000	130,000	110,000	110,000	93,000	78,000	3.3 J
	207110 Wil Chee Planning UXOA-007	Iron Soil	mg/Kg	Type Labato	SAMPLE 207110-001	SAMPLE 207110-002	SAMPLE 207110-003	SAMPLE 207110-004	SAMPLE 207110-005	SAMPLE 207110-006	SAMPLE 207110-007	SAMPLE 207110-008	SAMPLE 207110-009	SAMPLE 207110-010	SAMPLE 207110-011	SAMPLE 207110-012	SAMPLE 207110-013	SAMPLE 207110-014	SAMPLE 207110-015	SAMPLE 207110-016	BLANK QC467179
A. A BU	Lab #: Client: Project#:	Analyte: Matrix:	Units:	Fieldyn	MEC034	MEC035	MEC036	MEC037	MECU38	MEC039	MEC040	MEC041	MEC042	MECU43	MEC044	MEC046	MEC047	MEC048	MEC049	MECOSO	

J= Estimated value RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

17.0

Curtis & Tompkins, Ltd. JO cb

20/20/2

NAVFAC PACIFIC VALIDATED

			81	ckel		
Lab #:	207110		n Pagel and a subscript of a subscript fragment	Location:	Waikane Tr	aining Area
Client:	Wil Chee Pla	anning		Prep:	EPA 3050B	
Project#:	UXOA-007	_		Analysis:	EPA 6010B	
Analyte:	Nickel			Batch#:	144107	
Matrix:	Soil			Received:	10/23/08	
Units:	mg/Kg			Prepared:	10/26/08	
Diln Fac:	1.000			-		(
	್ರ ಬ್ರಾ ಲ್ ಬ್ರಾ ಬ್ರಾ ಬ್ರಾ ಮಾ	Result	1.1.1	(DE) B	nairi Mostrana	al Stamonie de Unionista Cal
MEC034	SAMPLE 207110-001	180	0.47	0.084 dry	478	10/20/08 10/29/08
MEC035	SAMPLE 207110-002	140	0.49	0.083 dry	498	10/20/08 10/29/08
MEC036	SAMPLE 207110-003	110	0.35	0.057 dry	29%	10/20/08 10/29/08
MEC037	SAMPLE 207110-004	230	0.36	0.065 dry	30%	10/20/08 10/29/08
MEC038	SAMPLE 207110-005	150	0.41	0.071 dry	39%	10/20/08 10/29/08
MEC039	SAMPLE 207110-006	98	0.44	0.073 dry	43%	10/20/08 10/29/08
MEC040	SAMPLE 207110-007	71	0.47	0.057 dry	47%	10/20/08 10/27/08
MEC041	SAMPLE 207110-008	66	0.49	0.084 dry	49%	10/20/08 10/29/08
MEC042	SAMPLE 207110-009	130	0.33	0.056 dry	24%	10/20/08 10/29/08
MEC043	SAMPLE 207110-010	210	0.37	0.065 dry	33%	10/20/08 10/29/08
MEC044	SAMPLE 207110-011	78	0.63	0.11 dry	60%	10/20/08 10/29/08
MEC046	SAMPLE 207110-012	33	0.38	0.069 dry	35%	10/21/08 10/30/08
MEC047	SAMPLE 207110-013	85	0.48	0.087 dry	48%	10/21/08 10/29/08
MEC048	SAMPLE 207110-014	85	0.47	0.082 dry	478	10/21/08 10/29/08
MEC049	SAMPLE 207110-015	110	0.40	0.065 dry	38%	10/21/08 10/29/08
MEC050	SAMPLE 207110-016	100	0.41	0.072 dry	39%	10/21/08 10/29/08
	BLANK QC467179	ND	0.25	0.031 as re	ceived	10/27/08

NAVFAC PACIFIC VALIDATED

ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1

36 /20108

			C Sampted Analyzed	10/20/08 10/20/08	10/20/08 10/20/08	10/20/08 10/23/08	10/20/08 10/20/08	10/20/08 10/20/08		10/20/00 10/20/00 10/20/01	0//02/01 00/02/01		00/00/01 00/00/01	TU/29/05 JU/29/05	10/21/08 10/30/08	10/21/08 10/29/08	10/21/08 10/29/08	10/21/08 10/29/08	10/21/08 10/29/08	10/27/08
ing Area			DUU L	1 000	1 000	1.000	1 000	1 000							1.000	1.000	1.000	1.000	1.000	1.000
Vaikane Train 3PA 3050B 3PA 6010P	144107 10/23/08 10/26/08		18TOM BTOK	498	20%	9 Co 9 Co 8 Co	9 0° 9 0°	4.28	9 C V	0.7 F	9 04 7 7 0	9 7 7 8 7 7 8	9 0 0 0 0		50	488	478	38%	800	eceived
		á	drv b	drv V	210	drv	drv	271	7 7 7 7 7	7 7 7 7 7	אי אי ל ל	222			ary	dry	dry	dry	drv	as re
Location: Prep: Analvsis:	Batch#: Received: Prepared:	MDT	010	0.10	0.070	0.080	0.087	0.089	0.084	0.10	24.0	0.080	0 14		0.00	0.11	0.10	0.080	0.088	0.046
		RT.	u 0.47	0.49	0.35	0.36	V 0.41	0.44	0.47	0.49	10	0.37	0.63			0.48	0.41	(4) 0.40	0.41	0.25
		Resultrunes	9	0.32 J				2.7	11	6.2	960		53		r c	ກ ກິດ	ν. 	0.71	1.0	
207110 Wil Chee Planning UX0A-007	Lead Soil mg/Kg	Wivee Jab 16	SAMPLE 207110-001 ND	SAMPLE 207110-002	SAMPLE 207110-003 ND	SAMPLE 207110-004 ND	SAMPLE 207110-005 ND	SAMPLE 207110-006	SAMPLE 207110-007	SAMPLE 207110-008	SAMPLE 207110-009	SAMPLE 207110-010	SAMPLE 207110-011	SAMPTE 207110-012	0110 011/02 01/1400	CAMPIN 20/110-013	SAMPLE ZU/IIU-UI4	SAMPLE ZU/IIU-UIS	SAMPLE 20/110-016	BLANK QC467179 ND
Lab #: Client: Project#:	Analyte: Matrix: Units:	Field ID	MEC034	MEC035	MEC036	MEC037	MEC038	MEC039	MEC040	MEC041	MEC042	MEC043	MEC044	MFC046				MEC04 V	MECUDU	

J= Estimated value ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1 NAVFAC PACIFIC VALIDATED

doke/2

Curtis & Tompkins, Ltd. 50 40

	Ant	imony	
Lab #:	207110	Location:	Waikane Training Area
Client:	Wil Chee Planning	Prep:	EPA 3050B
Project#:	UXOA-007	Analysis:	EPA 6010B
Analyte:	Antimony	Batch#:	144107
Matrix:	Soil	Received:	10/23/08
Units:	mg/Kg	Prepared:	10/26/08
Diln Fac:	1.000	-	
	and the second	CONTRACTOR STREET	

Field ID	Тура	Lab ID	61623	Result	RL	PL	Basi	Moislure	Bampled	Analyzad
MEC034	SAMPLE	207110-001	-	0.50	JJ0.94	Q 0.29	dry	478	10/20/08	10/29/08
MEC035	SAMPLE	207110-002	ND		450.98	0.28	dry	498	10/20/08	10/29/08
MEC036	SAMPLE	207110-003		0.20	J J 0.70	0.19	dry	29%	10/20/08	10/29/08
MEC037	SAMPLE	207110-004	ND		U 0.71	0.22	dry	30%	10/20/08	10/29/08
MEC038	SAMPLE	207110-005	ND		0.82	0.24	dry	39%	10/20/08	10/29/08
MEC039	SAMPLE	207110-006	ND		0.88	0.25	dry	438	10/20/08	10/29/08
MEC040	SAMPLE	207110-007	ND		🗸 0.94	0.23	dry	478	10/20/08	10/27/08
MEC041	SAMPLE	207110-008		0.78	J <mark>]</mark> 0.98	0.29	dry	49%	10/20/08	10/29/08
MEC042	SAMPLE	207110-009		4.3	4 0.66	0.19	dry	248	10/20/08	10/29/08
MEC043	SAMPLE	207110-010	ND		U J0.75	0.22	dry	33%	10/20/08	10/29/08
MEC044	SAMPLE	207110-011		1.2 J	J 1.3	0.38	dry	60%	10/20/08	10/29/08
MEC046	SAMPLE	207110-012	ND	I	J 0.77	0.24	dry	35%	10/21/08	10/29/08
MEC047	SAMPLE	207110-013	ND		10.96 🎝	0.29	dry	48%	10/21/08	10/29/08
MEC048	SAMPLE	207110-014		0.54	JJ0.94	0.28	dry	478	10/21/08	10/29/08
MEC049	SAMPLE	207110-015	ND	1	10.81	0.22	dry	38%	10/21/08	10/29/08
MEC050	SAMPLE	207110-016	ND		🖞 0.82	V0.24	dry	39%	10/21/08	10/29/08
	BLANK	QC467179	ND		0.50	0.12	as received			10/27/08

NAVFAC PACIFIC VALIDATED

J= Estimated value ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1 1 20/08

			Z	Line				
Lab #:	207110			Locatio		Mailana maa		
Client:	Wil Chee P	lanning		Drope	ли .	Walkane Tra	ining Are	а
Project#:	UXOA-007	ranning		Analyei	c •	EPA JUJUB		
Analyte:	Zinc			Batch#.		144107		
Matrix:	Soil			Receive	d.	10/22/00		
Units:	mg/Kg			Prenare	d.	10/25/00		
Diln Fac:	1.000			rrepare		10/20/00		
SD2OC850	LE TRANSPORT	Result	RL	્યુગા	Elais		Sampled	Stor UN AZ TOTO
MEC034	SAMPLE 207110-001	l 73	1.9	0.15	dry	478	10/20/08	10/29/08
MEC035	SAMPLE 207110-002	2 70	2.0	0.15	dry	49%	10/20/08	10/29/08
MEC036	SAMPLE 207110-003	3 50	1.4	0.10	dry	29%	10/20/08	10/29/08
MEC037	SAMPLE 207110-004	56	1.4	0.12	dry	30%	10/20/08	10/29/08
MEC038	SAMPLE 207110-005	5 75	1.6	0.13	dry	39%	10/20/08	10/29/08
MEC039	SAMPLE 207110-006	5 80	1.8	0.13	dry	438	10/20/08	10/29/08
MEC040	SAMPLE 207110-007	65	1.9	0.30	dry	478	10/20/08	10/27/08
MEC041	SAMPLE 207110-008	62	2.0	0.15	dry	498	10/20/08	10/29/08
MEC042	SAMPLE 207110-009	190	1.3	0.10	dry	248	10/20/08	10/29/08
MEC043	SAMPLE 207110-010	130	1.5	0.12	dry	33%	10/20/08	10/29/08
MEC044	SAMPLE 207110-011	92	2.5	0.20	dry	60%	10/20/08	10/29/08
MEC046	SAMPLE 207110-012	53	1.5	0.12	dry	35%	10/21/08	10/29/08
MEC047	SAMPLE 207110-013	80	1.9	0.15	dry	48%	10/21/08	10/29/08
MEC048	SAMPLE 207110-014	75	1.9	0.15	dry	47%	10/21/08	10/29/08
MEC049	SAMPLE 207110-015	68	1.6	0.12	dry	38%	10/21/08	10/29/08
MEC050	SAMPLE 207110-016	72	1.6	0.13	dry	39%	10/21/08	10/29/08
	BLANK QC467179	ND	1.0	0.17	as rece	eived		10/27/08

NAVFAC PACIFIC VALIDATED

ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Page 1 of 1 12/2005

Level III

LDC #: <u>19794A4</u> **VAL** SDG #: <u>207110</u> Laboratory: <u>Curtis & Tompkins, Ltd.</u>

METHOD: Metals (EPA SW 846 Method 6010B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
ι	Technical holding times	A	Sampling dates: 10-20-08 + hrough 10-21-08
11.	Calibration	A	0
	Blanks	sv	
ίν.	ICP Interference Check Sample (ICS) Analysis	A	
V.	Matrix Spike Analysis	ŚW	MS/MSD
VI.	Duplicate Sample Analysis	2	
VII.	Laboratory Control Samples (LCS)	A	LCS/LCSD
VIII	Internal Standard (ICP-MS)	N	Not utilized
IX.	Furnace Atomic Absorption QC	2	14 (j
Х.	ICP Serial Dilution	s∾	
XI.	Sample Result Verification	N	
XII.	Overall Assessment of Data	A	
XIII.	Field Duplicates	sw	D = 7 + 8 $D = 13 + 14$
XIV.	Field Blanks	N	

Note: A

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:

1	MEC034	11	MEC044	21	31
2	MEC035	12	MEC046	22	32
3	MEC036	13	MEC047	23	33
4	MEC037	14	MEC048	24	34
5	MEC038	15	MEC049	25	35
6	MEC039	16	MEC050	26	36
7	MEC040	17	MEC040MS	27	37
8	MEC041	18	MEC040MSD	28	38
9	MEC042	19	PBS	29	39
10	MEC043	20		30	40

Notes:

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page:	_of
Reviewer:	MG
2nd reviewer:	~

All circled elements are applicable to each sample.

Sample ID	Motely	Terrat Angleta 1 lat (TA1)
	C .	AI SDAS BABBE CO CACO CO CU FE POMO MO HO NOK SE AN NO TI V (20) MO B SI CN.
QC 17 10	1	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Ma, Mn, Ha, Ni, K, Se, Aq, Na, Ti, V, Zn, Mo, B, Si, CN,
	¥	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Me, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fa, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN',
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN',
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN',
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, NI, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN ⁻ ,
		Al, Sb, As, Ba, Ba, Cd, Ca, Cr, Co, Cu, Fa, Pb, Mg, Mn, Hg, Ni, K, Sa, Ag, Na, Ti, V, Zn, Mo, B, Si, CN*
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Åg, Na, Ti, V, Zn, Mo, B, Si, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN [*] ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN',
		Al. Sb, As. Ba. Be. Cd, Ca. Cr, Co. Cu. Fe. Pb. Mg. Mn. Hg. Ni. K. Se. Ag. Na. Ti, V. Zn. Mo. B. Si, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN',
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN ⁻ ,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN [*] ,
		Al. Sb. As. Ba. Be. Cd. Ca. Cr. Co. Cu. Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN',
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Me, B, Si, CN',
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN',
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN',
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN',
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Me, B, Si, CN',
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN',
		Analysis Method
		Ai, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
ICP Trace	5	(Al, Sp) As, (Ba) Be, Cd, Ca, (Cr) Co, (Cu, Fe, Pb) Mg, Mn, Hg, (Vi,)K, Se, Ag, Na, Ti, V, (Zh) Mo, B, Si, CN".
ICP-MS		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN [*] ,
GFAA		Al. Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Me, B, Si, CN',

Comments: Mercury by CVAA if performed

ige: 1 of 1 wer: 416	The state of the	Analyte		t d	<u>"</u> .	S 4	B.	B	8	g	ö	ზ	ß	Fe	4	BW	W	BH	Ī	×	Se	BA	Na	F	>	Z			
Pe Revie 2nd Revie	「「「「「「」」」)84																											
	のないない	CCB3																											
	故的市场地	CCB2					T		T																				
0.08 HEET		CCBI							T	T																			
Ale +	Urbetion	ICB				2.184				0200	00				122.6					1									
TION FINDIN Blank//CB/	Blank (den	PB()								Ī	Ī											1							
VALIDA Prej Associ		CCB3				9.649				994				6.071															
10-09-08 Net 09 16010/7000		CCB2	54.92			1.450				1. 202	c	0110	\$.01 \$	61.41	306.6														
6 6 6 m I ₇) V 846 Method otherwise no		CCBI									Ī								Ī			Ī							
10 - 07-0 Me.4 0 110 Metals (EPA SV on units, unless	and the state of t	8										1.120	Volution			T	T	T			T			T					
LDC #: 1979 SDG #: <u>307</u> METHOD: Trace Blank concentrati	Ser and the second seco	Analyte	R	8	As	Ba	æ	8	ů	ð	8	3 8	3 4	e i	£ ;	BW	W	£	ž	¥ ,	97	B۷	eX i	=	>	ЧŽ	•	Wo	the Weters

BLNKICB.4SW

ניטיוט אין																											
ccB Fe for # 1, 3, 4-1																											
Associated Samples:																											
R R	5												0.71														
2	й												0.32														
se noted:	Blank Action	33.00			0.66			1	0.67		12.0	42.72	0.73														
	Maximum ICB/CCB*	54.92			9.649				2.699		643.6	170.9	806.E														
	Maximum PB ^a																										
4	Maximum PB ⁴ (molKol	4.4							0.019			3.3															
10	Analyte	А	ß	8	83	Be	8	3	ŭ	8	5	Fe	8	Mg	ų	2	No No	Z	Y	ŝ	9	р Р	E	>	5	Ę	

or PB detected in the analysis of each element. ō 5

BLNKSMP,4SW

Page: 1 of 1 Reviewer: MS	 小菜 小田川 龍山 一																											These sample results were
TION FINDINGS WORKSHEET (ICCB QUALIFIED SAMPLES (CCB QUALIFIED SAMPLES) (CCCB QUALIFIED SAMPLES) (CCCB QUALIFIED SAMPLES) $(T > \xi_X)$ $(T > \xi_X)$ $(T > \xi_X)$	- No sample was ana lifia di																											ration are listed above with the Identifications from the Validation Completeness Worksheet. T
VALIDA 6 Method 6010/7000) Soil preparation to therwise noted:	Imum Blank CCB ³ Action										82 0.37																	five times the associated ICB, CCB or PB concent on Is the highest ICB, CCB, or PB detacted in the
(979 박 <u>A</u> 년 <u>군 67110</u> :: Trace Metals (EPA SW 846 Soncentration units, unless of	Maximum Maximum Maxir PB' PB' ICB/C (molKo) (ino!) (ino										1.48																	In analyte concentrations within f not detected, "U". - The listed analyte concentratio
LDC #: SDG #: METHOD Sample C	Analyte	R	ęs	As	Ba	æ	G	Са	ŭ	8	3	Fe	9	Mg	Mn	β	Mo	Ĩ	¥	Se	₽ V	Na	F	>	Zu	Sn	В	samples wi qualified as Note : a

BLNKSMP.4SW

									-			•		
8	71 7				No. of the second		調度した		an térie.	वाली हो हो हो हो.	STATISTICS OF STREET,	Statistics.		讀
lyte	Maximum PB' ImolKoi	Maximum PB*	Maximum ICB/CCB* (13ml)]	Blank Action	1	No	nd - ps	3	ere	quali	f:ed			r
								\vdash	T					T
														Т
\neg														Т
			9 . I & H	0.55										Т
														Т
														Т
														T
			3.450	19.0										Т
														1
														Τ
														Т
			122.6	0.69										Т
+														Ť
														T
														T
														Т
\neg														Т
														T
													-	Т
														Т
\neg														Τ
														Т
-														Т
+														Т
╡														T
						•	-							ł

BLNKSMP,4SW

19794 A4	207110
	:#
8	SDG

<u>Matrix Spike/Matrix Spike Duplicates</u> VALIDATION FINDINGS WORKSHEET

<u>ک</u>ور Page: 1 of Reviewer: 2nd Reviewer:

METHOD: Trace metals (EPA SW 846 Method 6010/7000)

<u>Y (N NA</u>

- Please see qualifications below for all questions answered "N". Not applicable questions are identified as "NA", <u>V) N_NA</u> Was a matrix spike analyzed for each matrix in this SDG?

Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration by a factor Were all clupicate sample relative percent differences (RPD) \leq 20% for water samples and \leq 35% for soil samples? of 4 or more, no action was taken. (V) N NA We

Y N N/A

Were received results acceptable? See Level IV Recalculation Worksheet for recalculations.

	113	V													Ī							
	Oualfication	3/05/		,																		
	Associated Samples	01	4																8			
KBernierv KBernierv	I Ginani	17 (80-120)	57(1)							-												
KRecorect		r. 10	1001-001 95								·											
Analyte		5 5	0				8											20				
Metrix	50:1		*																			
di Oshv'shi	1/18							-														menus:
*	_		1-	t	t	\dagger		1		\uparrow	t	+		t		$^{+}$	+	+	-1	-	-	Ē

MSD.4S2

LDC #: 19794A4 SDG #: 207110

VALIDATION FINDINGS WORKSHEET **ICP Serial Dilution**

Reviewer: MG Page: 1 of 2nd Reviewer:

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Were ICP serial dilution percent differences (%D) ≤10%? Is there evidence of negative interference? If yes, professional judgement will be used to qualify the data.

Y (N/N/A

LEVEL IV ONLY: Y N N/A

Were recalculated results acceptable? See Level IV Recalculation Workshe

	militations	4																	
	9	Jalets	-																
	Account Samples	all	-7																
A REAL		(0) = 51	1(1) 91			Ī						Ī							
and and		H	Fe				Ī							Ī	Ī				
Matrix	col l		,											Ī		Ī			
Diluted Sample ID	7	-	-																
A Date	1 10-29-08						-		Ì										-

SDILICPMS.wpd

LDC#: 19794A4 SDG#: _____201110

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:	Lof 2
Reviewer:	MG
2nd Reviewer:	

METHOD: Metals (EPA Method 6010B/7000)

YN NA

Were field duplicate pairs identified in this SDG? Were target analytes detected in the field duplicate pairs?

	Concentrat	tion (mg/kg)	(≤1∞)	
Compound	7	8	RPD	
Aluminum	40000	45000	12	
Antimony	0.23U	0.78	200	
Barium	14	15	7	
Chromium	320	310	3	
Copper	62	86	32	
Iron	130000	140000	7	
Lead	11	6.2	56	
Nickel	71	66	7	
Zinc	65	62	5	

V:\FIELD DUPLICATES\FD_inorganic\19794A4.WPD

	Concentra	tion (mg/kg)	(∉ 100)	
Compound	13	14	RPD	
Atuminum	40000	41000	2	
Antimony	0.29U	0.54	200	
Barium	60	59	2	
Chromium	270	270	0	
Copper	140	120	15	
iron	110000	110000	0	
Lead	3.8	3.3	14	

LDC#: 19794A4 SDG#: 207110

VALIDATION FINDINGS WORKSHEET Field Duplicates

METHOD: Metals (EPA Method 6010B/7000)

Were field duplicate pairs identified in this SDG?

Were target analytes detected in the field duplicate pairs?

	Concentrat	(£100)		
Compound	13	14	RPD	
Nickel	85	85	0	
Zinc	80	75	6	

V:\FIELD DUPLICATES\FD_inorganic\19794A4.WPD

Memo to File

Date:	5/9/03
Project:	TO:0048 EA for proposed USMC JWTC
Sampler:	Lance Higa
Purpose:	Collect baseline soil and water samples.

Summary/Notes:

Based on info from previous archeological and UXO reports on the area, most of the ordnance uncovered in recent years (20 years to date) has been uncovered by erosion. This does not give us an over all idea of what areas were used as firing ranges, however it tell us that the stream action and rainfall has a realistic possibility to transport UXO or any residue associated with ordnance. Based on this I decided that samples collected in stream areas, might give us the best potential to determine if any explosive residue remains in the former training area. Samples were collected using a stainless steel trowel. The top one-two inches of soil were cleared away and the trowel was used to loosen the soil. The soil was then packed into the glass containers using a gloved hand. The sample was packed in wet ice for transport back to the company sample refrigerator to be chilled prior to shipment. The samples were wrapped, and placed in the refrigerator and were picked up by Colombia Labs (Tracie Sober) on 5/12/03. Note that the hold times on the water samples were critical (5 day) due to the sampling on a Friday (5/9/03).

Several notes on the sampling, I spoke to Sgt Norris (USMC EOD) and he had indicated that the area was used for hunting (unauthorized) and that the area below the proposed training area had been recently been used to make several films. (Specifically, *Tears of the Sun*). During the making of this film, Sgt Norris noted that small arms were used during the filming. If the lab results from the water sample collected near Kam Hwy. contain detections, while samples from the valley do not, the hits **may** be attributed to this event as small arms fire and pyrotechnic explosives were likely used during the filming. I also noted that the lithology near the farm area (roadside of the dogleg pool) consisted of highly weathered basalt rather than alluvium. This may indicate that the native bedrock may be shallow or exposed in this area.

-Lance Higa 5/15/03

SAMPLE INVENTORY LOG

PROJECT: EA for Proposed USMC JWTC Waikane

PERSONNEL: Lance Higa, Ty Hiraki

PAGE: 1 OF TO #: 0048

1

FPA NUMBER				SAMP	LE INFORMATIO	SPECIFIC				
EPA NUMBER		Date	Time	Location	Туре	# Per	QC Note	Depth	PROJECT SITE	COMMENTS
		E 10/0000			(soil, water, product)	Location	(S, D, X)	(feel bgs)		
	_1	5/9/2003	830	Walkane	501	1	•		Upstream Area	Western border, Stream bed
WCP	2	5/9/2003	835	Waikane	Soil	1	-	-	Upstream Area	Western Border, Stream bank
WCP	3	5/9/2003	840	Waikane	Soil	1	-		Upstream Area	West. Border, Upper stream bank (hunt. struct.)
WCP	4	5/9/2003	904	Waikane	Soil	1	-	-	Farm	Before Stream dogleg (road side bank)
WCP	5	5/9/2003	910	Waikane	Soil	1	-	-	Farm	Before Stream dogleg (valley side bank)
WCP	6	5/9/2003	913	Waikane	Soil	1	-	-	Farm	At Stream dogleg (valley side bank)
WCP	7	5/9/2003	918	Waikane	Soil	1	-	-	Farm	Downstream dogleg (valley side bank)
WCP	8	5/9/2003	920	Waikane	Soil	1	-	-	Farm	Downstream dogleg (road side bank)
WCP	9	5/9/2003	925	Waikane	Soil	1	-	-	Farm	Downstream dogleg (valley side bank)
WCP	10	5/9/2003	935	Waikane	Water	6	-	-	Farm	Upstream of dogleg pool
WCP	11	5/9/2003	945	Waikane	Water	6	-	-	Farm	At exit of dogleg pool
WCP	12	5/9/2003	1005	Waikane	Water	6	-	-	Road X-ing	After stream confluence, main and feeder.
WCP	13	5/9/2003	1015	Waikane	Water	6	-	-	Road X-ing	Before confluence, feeder stream
WCP	14	5/9/2003	1020	Waikane	Soil	1	-	-	Road X-ing	Before confluence, feeder stream. Next to road.
WCP	15	5/9/2003	1055	Waikane	Water	6	-	-	Kam. Hwy	Across street venders. Stream crossing.
WCP										
WCP										
WCP										
WCP										
WCP										
WCP										
WCP										
WCP										
WCP										
WCP										

25 samples per page

Rever ESTIMATE OF THE LOLATON OF SOIL SAMPLES

, s

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM PAGE ______ OF _____

5090 Caterpillar Road • Redding, CA 96003 • (530) 244-5227 • 800-695-7222 x10 • FAX (530) 244-4109 www.caslab.com

CAS Contact

COC#

SR #

002028

0000 0000 00

Project Name	Project Number		ANALYSIS REQUESTED (Include Method Number and Container Preservative)																
Project Manager	Report CC	Report CC					3	з	3	4	4	2]	· · ·				
Company/Address			SHI		11	/	\neg	7	7		r			7	3	7		Preservative 0. NONE 1. HCL	Кеу
100 1 10 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	N 220 # 512 X		NTAINE	/		/	/	/	/	/	/	1:	1	./	4	/		2. HNO ₃ 3. H ₂ SO ₄ 4. NaOH	
and a call of the Mary Call					1.1	ASE			· /	/ /	/ /		1-1	[]	/ /	/	/ /	5. Zn. Aceta 6. MeOH	ite
Phone #	FAX#		BERO	092	015.1	45/2	\$ }		4 / <u>4</u>	¥/2	ş/	1	2	1			/	7. NaHSO ₄ 8. Other <u>—</u>	
Samplers Signature	Sampler's Printed Name		NUM	100	\$ \$	ANNA	/2	18	Such	MET.	4	/ .	\$ <u> </u>	/	/	/	/ NITE	REMARKS/	
CLIENT SAMPLE ID	LABID DATI							Í	ĺ	1		~	<u>-</u>	<u> </u>	-				
		× 1646									``	5.	-		_				
	: (m)	2.5	•								~	1	• • • • • •	1					
Vat. 1-10-3	sht		·				1				77	4 4.							
Regered L		> <					1				×	X	·	1					
. G. 1 S		5 14 20									1.	X	·~	1					
NEW COL		y 26-6 - 5-2	1								- 7	Х	· ·						
Without 1	Ç A ji	5 08 8 1 -					••••• •				~	×	~	<u>+</u>					
		y 1987 - 1994									X	x	٧.	1					
X- ²	1.101	1 145 Sta									<	X	2	1					
NGG CHE	5/01	5 035 VAA	÷ ¥								×.	×	×.						
SPECIAL INSTRUCTIONS/COMMENTS			.	-	TURNAR	OUND I (SURC	REQUI	REMEN S APPLYj	TS		REPC	DRT RE ILs Only	QUIRE		3		INVOIO	EINFORMATION	
				RE	OUESTED	FAX DAT	īε				(LCS. 0	JP. MS	MSC as	s required	ij		TO:		
							_				_ III. Resi Summa	ults + CX aries	C and C.	alibration			10.		
				RE	OJESTEDI	REPORT	I DATE				_ IV. Data	a Validati	ion Repo	orl with P	aw Dala				
See CAPP										İ—	_ V. Speir	calized .9	Forms / (Cusiom F	leport				
SAMPLE RECEIPT: CONDITION/COX	OLER TEMP:	CUSTODY SEA	ALS: Y	' N						1	Edata		_ Yes	N	C				
RELINQUISHED BY	RECEIVED BY	RELINQUISHED	BY			RECE	IVED BI	ť			F	RELINQ	UISHE	D BY			P	ECEIVED BY	
Sgrature	Signature	Signature		Sg	halure					Signa	lure	•				Signa	t:nié		
Printed Name	Printed Name	Printed Name		Pć	ited Name					Printe	d Name					Prinb	ed Marrie		
Firm	Firm	Firm		Firr	n					Firma						Fim			
Date/Tims	Date/Time	Date/Time		Dai	eiT ne					Cater	Time					Cate	Time		

Columbia	al				Cł	A	IN [.]	OF	C S	US	STO	D	Y								SŖ	#:			
An Employee-Owneo Compa	™. ™ 13	17 South 13	th Ave. • Ke	iso, WA 9	8626	• (360)	577-72	222 •	(800) 6	i95-72	22 • F	AX (36	636	i-1068		F	PAGE	E	-	OF			_co	C #	
		90 ¹ 4				_/		, ,	15		\square	60	/	12	1		1	$\left[\right]$	/	â I		0	/	$\left[\right]$	T
	$1 + 20^4 h$					_/		8 /	BTE	[' /	815			les				ပို /	205	4	1	1
PROJECT MANAGER	et Sources	· · · ·	X				ို (ပိ				8	3	2			/		$\left \right _{\frac{1}{2}}$		ই ই				1] [
COMPANY/ADDRESS	wa a	ese est	- Costa en la	<u>in in i</u>			13			<u>ୁ</u>		9		191		Ί.		/ð		3/4-	197	1	1	1	
San Constant		11 20				ا <u>چَ</u> ا		301	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			1 8		10 ADI	10	15		Į į	000	12	/ ₹	:		1 7	' /
PHONE #	, 15X)	FAX #	- ()	۱۰۱۰ می ژ ۱۰	7	<u>لاً ا</u>		100	S à	200	24				370	1	E S			9.3	0/	1	1	:/	/
SAMPLER'S SIGNATURE				1	7	emivola)			Fuel F	With Car		esticide.		The state	CANS -	tetals, T	Vanice D							1	
SAMPLE I.D.	DATE	TIME	LAB I.D.	MATRIX	<i> ₹</i>	<i> </i> ∽	/ <u>></u> %	120	140	10	19.4	146			/ <u>°</u> ě	128	10	<u> `</u>	<u> </u> <	<u> </u>	<u>/ ~</u>	\vdash	/	—	
<u>1.2755</u>	s lakoj	645	ļ	- N	Ŀ			 	1		<u> </u>		 	 	<u> </u>						· · ·	~	X		
N. C. 2- C. 12	支持長の	1.15	-	N 2 1	j.				ļ												~	→ →	×		
201-03	×/4*05			1997	Ę.																_ <u>.</u>	~	X		
12- OIH	5,645	100		1999 - S. 1992 -	Ļ																	<u> </u>	·		
WC9-015	shiles	1935		• 33	يد توأ																×.,	\ \	, y		
																				+	*****	2			
											1										-			[
														· ~	·							ĺ			
										-65				6											
			<u> </u>		}				\vdash			متن ^ر مر	ș	<u></u>											<u> </u>
REPORT REQUIRE	EMENTS	INV(P.O. # _ Bill To:	DICE INFOR	SMATIO	N	<u>Circk</u> To	<u>e which</u> tal Met	metals als: Al	sarelo As	bean Sb B	alyzed: Ba Be	B Ca	a Cd	Co	Cr Ci	J Fe	Pb I	i Mg M	I In Mic) Ni I	K Ag	Na	Se S	Gr Tl	j Sn V Zn Hg
Blank, Surroga required	ate, as					Disso	lved Me	tals: A	l As	Sb E	Ba Be	вC	a Cd	Co	Cr C	u Fe	Pb	Mg N	In Mo	o Ni	K Aç) Na	Se :	Sr Tl	Sn V Zn Hg
ii. Report Dup., N	AS, MSD as	THOMAS			ENTE	*IND	ICATE	E STA	TE HY	/DRO	CARB	ON P	ROCE	OURE	E: Al	< C4	N W	NO	RHTV	VEST	OTH	ER:			ICLE ONE)
required	•	24	hr.	48 hr.	LNIS	I SPE	CIAL I	NSTH	UCTI	ONS/(COMM	IENTS	5:												
III. Data Validatio (includes all ra	n Report w data)	50	Day																						
IV. CLP Deliverab	le Report	<u>_ ^ </u> Sla □~	andard (10-15 mide EAX Pr	5 working	days)																				
V. EDD	-	^ ~ " I		GILIG																					
		R	equested Rep	port Dale																					
RELINQU	SHED BY:				REC	EIVED	BY:						RE	LINQI	JISHE	D BY	:					R	ECEIV	ED BY	·:
Signature	Date/Time	<u>///32</u>	Sign	ature		(2 — ī) Date/Ti	<u>C)</u> me j	<u>।('ई</u>	<u>)</u>	Sig	nature	9		— Da	ate/Tir	ne			Signa	alure			Date	/Time
Printed Name	- <u>Kana</u> Firm	<u> </u>		ad Name	<u> </u>	<u> </u>	Sinv <u>()</u> Sirm	<u></u>	2	-	Pri	nted N	lamo			r m				Print	od No	me ·		Firm	<u> </u>

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS .	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
М	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a
	substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but greater
	than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative,
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product,
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- j The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Organic Analysis: <u>Nitroaromatics and Nitramines (Explosives)</u>

Summary Package

Sample and QC Results

Client: Project: Wil Chee Planning Waikane JWTC/TO:0048

Cover Page - Organic Analysis Data Package Nitroaromatics and Nitramines (Explosives)

Sample Name	Lab Code	Date Collected	Date Received
	W1202545 001	05/00/20/22	05/12/0002
WCF-001	K2303303-001	03/09/2003	03/15/2005
WCP-002	K2303565-002	05/09/2003	05/13/2003
WCP-003	K2303565-003	05/09/2003	05/13/2003
WCP-004	K2303565-004	05/09/2003	05/13/2003
WCP-005	K2303565-005	05/09/2003	05/13/2003
WCP-006	K2303565-006	05/09/2003	05/13/2003
WCP-007	K2303565-007	05/09/2003	05/13/2003
WCP-008	K2303565-008	05/09/2003	05/13/2003
WCP-009	K2303565-009	05/09/2003	05/13/2003
WCP-010	K2303565-010	05/09/2003	05/13/2003
WCP-011	K2303565-011	05/09/2003	05/13/2003
WCP-012	K2303565-012	05/09/2003	05/13/2003
WCP-013	K2303565-013	05/09/2003	05/13/2003
WCP-014	K2303565-014	05/09/2003	05/13/2003
WCP-015	K2303565-015	05/09/2003	05/13/2003
WCP-015MS	KWG0307016-1	05/09/2003	05/13/2003
WCP-015DMS	KWG0307016-2	05/09/2003	05/13/2003
WCP-001MS	KWG0307313-2	05/09/2003	05/13/2003
WCP-001DMS	KWG0307313-3	05/09/2003	05/13/2003

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature:	en	Name:	Alena Shah
Date:	5128103	Title:	Scientist

U:\Stealth\Crystal rpt\FormSSum.rpt

Cover Page - Organic

Analytical Results

Client:	Wil Chee Planning
Project:	Waikane JWTC/TO:0048
Sample Matrix:	Water

Nitroaromatics and Nitramines (Explosives)

Sample Name:	WCP-010	Units:	ug/L
Lab Code:	K2303565-010	Basis:	NA
Extraction Method: Analysis Method:	EPA 3535 8330	Level:	Low

Analyte Name	Result O	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
HMX	ND U	2.0	0.31	I	05/16/03	05/17/03	KWG0307016	
RDX	ND U	2.0	0.19	1	05/16/03	05/17/03	KWG0307016	
1,3,5-Trinitrobenzene	ND U	2.0	0.23	1	05/16/03	05/17/03	KWG0307016	
1,3-Dinitrobenzene	ND U	2.0	0.14	<u>l</u>	05/16/03	05/17/03	KWG0307016	
TETRYL	ND U	2.0	0.26	1	05/16/03	05/17/03	KWG0307016	
Nitrobenzene	ND U	2.0	0.17	1	05/16/03	05/17/03	KWG0307016	
4-Amino-2,6-dinitrotoluene	ND U	2.0	0.13	1	05/16/03	05/17/03	KWG0307016	
2-Amino-4,6-dinitrotoluene	ND U	2.0	0.17	I	05/16/03	05/17/03	KWG0307016	
2,4,6-Trinitrotoluene	ND U	2.0	0.15	1	05/16/03	05/17/03	KWG0307016	
2,6-Dinitrotoluene	0.41 JN	2.0	0.24	I	05/16/03	05/17/03	KWG0307016	
2,4-Dinitrotoluene	ND U	2.0	0.12	I	05/16/03	05/17/03	KWG0307016	
2-Nitrotoluene	ND U	2.0	0.41	1	05/16/03	05/17/03	KWG0307016	
4-Nitrotoluene	ND U	2.0	0.47	1	05/16/03	05/17/03	KWG0307016	
3-Nitrotoluene	ND U	2.0	0.30	1	05/16/03	05/17/03	KWG0307016	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1-Chloro-3-nitrobenzene	93	64-113	05/17/03	Acceptable

Comments:

Merged

Service Request: K2303565 Date Collected: 05/09/2003 Date Received: 05/13/2003

Analytical Results

Client:	Wil Chee Planning
Project:	Waikane JWTC/TO:0048
Sample Matrix:	Water

Service Request: K2303565 Date Collected: 05/09/2003 Date Received: 05/13/2003

Nitroaromatics and Nitramines (Explosives)

Sample Name:	WCP-011	Units:	ug/L
Lab Code:	K2303565-011	Basis:	NA
Extraction Method: Analysis Method:	EPA 3535 8330	Level:	Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
HMX	ND U	2.0	0.31	l	05/16/03	05/17/03	KWG0307016	
RDX	ND U	2.0	0.19	1	05/16/03	05/17/03	KWG0307016	
1,3,5-Trinitrobenzene	ND U	2.0	0.23	1	05/16/03	05/17/03	KWG0307016	
1,3-Dinitrobenzene	ND U	2.0	0.14	1	05/16/03	05/17/03	KWG0307016	
TETRYL	ND U	2.0	0.26	1	05/16/03	05/17/03	KWG0307016	
Nitrobenzene	ND U	2.0	0.17	1	05/16/03	05/17/03	KWG0307016	
4-Amino-2,6-dinitrotoluene	ND U	2.0	0.13	1	05/16/03	05/17/03	KWG0307016	
2-Amino-4,6-dinitrotoluene	ND U	2.0	0.17	ł	05/16/03	05/17/03	KWG0307016	
2,4,6-Trinitrotoluene	ND U	2.0	0.15	1	05/16/03	05/17/03	KWG0307016	
2,6-Dinitrotoluene	ND U	2,0	0.24	1	05/16/03	05/17/03	KWG0307016	
2,4-Dinitrotoluene	ND U	2.0	0.12	1	05/16/03	05/17/03	KWG0307016	
2-Nitrotoluene	ND U	2.0	0.41	1	05/16/03	05/17/03	KWG0307016	
4-Nitrotolucne	ND U	2.0	0.47	1	05/16/03	05/17/03	KWG0307016	<u>. </u>
3-Nitrotoluene	ND U	2.0	0.30	1	05/16/03	05/17/03	KWG0307016	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1-Chloro-3-nitrobenzene	102	64-113	05/17/03	Acceptable	

Comments:

Analytical Results

Client:	Wil Chee Planning
Project:	Waikane JWTC/TO:0048
Sample Matrix:	Water

Nitroaromatics and Nitramines (Explosives)

Sample Name:	WCP-012	Units:	ug/L
Lab Code:	K2303565-012	Basis:	NA
Extraction Method: Analysis Method:	EPA 3535 8330	Level:	Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
HMX	ND U	2.0	0.31	1	05/16/03	05/17/03	KWG0307016	•••••
RDX	ND U	2.0	0.19	1	05/16/03	05/17/03	KWG0307016	
1,3,5-Trinitrobenzene	ND U'	2.0	0.23	1	05/16/03	05/17/03	KWG0307016	
1,3-Dinitrobenzene	ND U	2.0	0.14	I	05/16/03	05/17/03	KWG0307016	
TETRYL	ND U	2.0	0.26	1	05/16/03	05/17/03	KWG0307016	
Nitrobenzene	ND U	2.0	0.17	1	05/16/03	05/17/03	KWG0307016	
4-Amino-2,6-dinitrotoluenc	ND U	2.0	0.13	1	05/16/03	05/17/03	KWG0307016	
2-Amino-4,6-dinitrotolucne	ND U	2.0	0.17	I	05/16/03	05/17/03	KWG0307016	
2,4,6-Trinitrotoluene	ND U	2.0	0,15	1	05/16/03	05/17/03	KWG0307016	
2,6-Dinitrotoluene	ND U	2.0	0.24	1	05/16/03	05/17/03	KWG0307016	
2,4-Dinitrotoluene	ND U	2.0	0.12	ι	05/16/03	05/17/03	KWG0307016	
2-Nitrotoluene	ND U	2.0	0.41	1	05/16/03	05/17/03	KWG0307016	
4-Nitrotoluene	ND U	2,0	0.47	1	05/16/03	05/17/03	KWG0307016	
3-Nitrotoluene	ND U	2.0	0.30	1	05/16/03	05/17/03	KWG0307016	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1-Chloro-3-nitrobenzene	97	64-113	05/17/03	Acceptable

and the second second

Comments:

Merged

 Service Request:
 K2303565

 Date Collected:
 05/09/2003

 Date Received:
 05/13/2003

Analytical Results

Client:	Wil Chee Planning
Project:	Waikane JWTC/TO:0048
Sample Matrix:	Water

Service Request: K2303565 Date Collected: 05/09/2003 Date Received: 05/13/2003

Nitroaromatics and Nitramines (Explosives)

Sample Name:	WCP-013	Units:	ug/L
Lab Code:	K2303565-013	Basis:	NA
Extraction Method: Analysis Method:	EPA 3535 8330	Level:	Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	· Note
HMX	ND U	2.0	0.31	1	05/16/03	05/17/03	KWG0307016	
RDX	ND U	2.0	0.19	1	05/16/03	05/17/03	KWG0307016	
1,3,5-Trinitrobenzene	ND U	2.0	0.23	1	05/16/03	05/17/03	KWG0307016	
1,3-Dinitrobenzene	ND U	2.0	0.14	I	05/16/03	05/17/03	KWG0307016	
TETRYL	ND U	2.0	0.26	I	05/16/03	05/17/03	KWG0307016	
Nitrobenzene	ND U	2.0	0.17	1	05/16/03	05/17/03	KWG0307016	
4-Amino-2,6-dinitrotoluene	ND U	2.0	0,13	1	05/16/03	05/17/03	KWG0307016	
2-Amino-4,6-dinitrotoluene	ND U	2.0	0,17	1	05/16/03	05/17/03	KWG0307016	
2,4,6-Trinitrotoluene	ND U	2.0	0,15	1	05/16/03	05/17/03	KWG0307016	
2,6-Dinitrotoluene	ND U	2.0	0.24	1	05/16/03	05/17/03	KWG0307016	
2,4-Dinitrotoluene	ND U	2.0	0.12	1	05/16/03	05/17/03	KWG0307016	
2-Nitrotoluene	ND U	2.0	0.41	1	05/16/03	05/17/03	KWG0307016	
4-Nitrotoluene	ND U	2.0	0.47	1	05/16/03	05/17/03	KWG0307016	
3-Nitrotoluene	ND U	2.0	0.30	1	05/16/03	05/17/03	KWG0307016	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
I-Chloro-3-nitrobenzene	96	64-113	05/17/03	Acceptable

Comments:

Merged

~

Analytical Results

Client:	Wil Chee Planning
Project:	Waikane JWTC/TO:0048
Sample Matrix:	Water

 Service Request:
 K2303565

 Date Collected:
 05/09/2003

 Date Received:
 05/13/2003

Nitroaromatics and Nitramines (Explosives)

Sample Name:	WCP-015	Units:	ug/L
Lab Code:	K2303565-015	Basis:	NA
Extraction Method: Analysis Method:	EPA 3535 8330	Level:	Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
HMX	ND U	2.0	0.31	Ι	05/16/03	05/17/03	KWG0307016	
RDX	ND U	2.0	0.19	ł	05/16/03	05/17/03	KWG0307016	
1,3,5-Trinitrobenzene	ND U	2.0	0.23	I	05/16/03	05/17/03	KWG0307016	
1,3-Dinitrobenzene	ND U	2.0	0.14	I	05/16/03	05/17/03	KWG0307016	
TETRYL	ND U	2.0	0.26	I	05/16/03	05/17/03	KWG0307016	
Nitrobenzene	ND U	2.0	0.17	I	05/16/03	05/17/03	KWG0307016	
4-Amino-2,6-dinitrotoluene	ND U	2.0	0.13	I	05/16/03	05/17/03	KWG0307016	
2-Amino-4,6-dinitrotoluene	ND U	2.0	0.17	1	05/16/03	05/17/03	KWG0307016	
2,4,6-Trinitrotoluene	ND U	2.0	0.15	1	05/16/03	05/17/03	KWG0307016	
2,6-Dinitrotoluene	ND U	2.0	0.24	1	05/16/03	05/17/03	KWG0307016	
2,4-Dinitrotoluene	ND U	2.0	0.12	1	05/16/03	05/17/03	KWG0307016	
2-Nitrotoluene	ND U	2.0	0.41	1	05/16/03	05/17/03	KWG0307016	
4-Nitrotoluene	ND U	2.0	0.47	1	05/16/03	05/17/03	KWG0307016	
3-Nitrotoluene	ND U	2.0	0.30	1	05/16/03	05/17/03	KWG0307016	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1-Chloro-3-nitrobenzene	99	64-113	05/17/03	Acceptable

Comments:

Analytical Results

Client:	Wil Chee Planning
Project:	Waikane JWTC/TO:0048
Sample Matrix:	Water

Service Request: K2303565 Date Collected: NA Date Received: NA

Nitroaromatics and Nitramines (Explosives)

Sample Name:	Method Blank	Units:	ug/L
Lab Code:	KWG0307016-4	Basis:	NA
Extraction Method: Analysis Method:	EPA 3535 8330	Level:	Low

Analyte Name	Posult O	MDI	MDI	Dilution Factor	Date Extracted	Date	Extraction	Nota
	Meson Q	MINL		FACIOI	Extracted	Anatyzeu	LOL	Note
HMX	ND U	2,0	0.31	1	05/16/03	05/17/03	KWG0307016	
RDX	ŇD U	2.0	0.19	1	05/16/03	05/17/03	KWG0307016	
1,3,5-Trinitrobenzene	ND U	2.0	0.23	I	05/16/03	05/17/03	KWG0307016	
1,3-Dinitrobenzene	ND U	2.0	0.14	1	05/16/03	05/17/03	KWG0307016	
TETRYL	ND U	2.0	0.26	1	05/16/03	05/17/03	KWG0307016	
Nitrobenzene	ND U	2.0	0.17	1	05/16/03	05/17/03	KWG0307016	
4-Amino-2,6-dinitrotoluene	ND U	2.0	0,13	1	05/16/03	05/17/03	KWG0307016	
2-Amino-4,6-dinitrotoluene	ND U	2.0	0.17	1	05/16/03	05/17/03	KWG0307016	
2,4,6-Trinitrotoluene	ND U	2.0	0.15	1	05/16/03	05/17/03	KWG0307016	
2,6-Dinitrotoluene	ND U	2.0	0.24	1	05/16/03	05/17/03	KWG0307016	
2,4-Dinitrotoluene	ND U	2.0	0.12	1	05/16/03	05/17/03	KWG0307016	
2-Nitrotoluene	ND U	2.0	0.41	1	05/16/03	05/17/03	KWG0307016	
4-Nitrotoluene	ND U	2.0	0.47	l	05/16/03	05/17/03	KWG0307016	
3-Nitrotoluene	ND U	2.0	0.30	I	05/16/03	05/17/03	KWG0307016	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1-Chloro-3-nitrobenzene	92	64-113	05/17/03	Acceptable	

Comments:

Analytical Results

Client:	Wil Chee Planning
Project:	Waikane JWTC/TO:0048
Sample Matrix:	Soil

Service Request: K2303565 Date Collected: 05/09/2003 Date Received: 05/13/2003

Nitroaromatics and Nitramines (Explosives)

Sample Name:	WCP-001	Units:	ıng/Kg
Lab Code:	K2303565-001	Basis:	Dry
Extraction Method: Analysis Method:	METHOD 8330	Level:	Low

A	Densiti O	MDI	MDI	Dilution	Date	Date	Extraction	Nuda
Analyte Name	Result Q	MKL	MDL	Factor	Extracted	Analyzed	Lot	Note
HMX	ND U	2.7	0.069	1	05/22/03	05/27/03	KWG0307313	
RDX	ND U	2.7	0.14	1	05/22/03	05/27/03	KWG0307313	
1,3,5-Trinitrobenzene	ND U	2.7	0.083	1	05/22/03	05/27/03	KWG0307313	
1,3-Dinitrobenzene	ND U	2.7	0.073	1	05/22/03	05/27/03	KWG0307313	
TETRYL	ND U	2.7	0.17	1	05/22/03	05/27/03	KWG0307313	
Nitrobenzene	ND U	2.7	0.085	I	05/22/03	05/27/03	KWG0307313	
4-Amino-2,6-dinitrotoluene	ND U	2.7	0.090	1	05/22/03	05/27/03	KWG0307313	
2-Amino-4,6-dinitrotoluene	ND U	2.7	0.098	ł	05/22/03	05/27/03	KWG0307313	
2,4,6-Trinitrotoluene	ND U	2.7	0.077	Ĩ	05/22/03	05/27/03	KWG0307313	
2,6-Dinitrotoluene	0.15 JN	2.7	0.12	l	05/22/03	05/27/03	KWG0307313	
2,4-Dinitrotoluene	ND U	2.7	0,092	1	05/22/03	05/27/03	KWG0307313	
2-Nitrotoluene	ND U	2.7	0,11	1	05/22/03	05/27/03	KWG0307313	
4-Nitrotoluene	ND U	2.7	0,15	1	05/22/03	05/27/03	KWG0307313	
3-Nitrotoluene	ND U	2.7	0.094	. 1	05/22/03	05/27/03	KWG0307313	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1-Chloro-3-nitrobenzene	79	65-107	05/27/03	Acceptable

Comments:

Analytical Results

Client:	Wil Chee Planning
Project:	Waikane JWTC/TO:0048
Sample Matrix:	Soil

Nitroaromatics and Nitramines (Explosives)

Sample Name:	WCP-002	Units:	mg/Kg
Lab Code:	K2303565-002	Basis:	Dry
Extraction Method: Analysis Method:	METHOD 8330	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
HMX	ND U	3.7	0.093	1	05/22/03	05/27/03	KWG0307313	
RDX	0.34 JN	3.7	0.19	1	05/22/03	05/27/03	KWG0307313	
1,3,5-Trinitrobenzene	ND U	3.7	0.12	I	05/22/03	05/27/03	KWG0307313	
1,3-Dinitrobenzene	ND U	3.7	0.099	1	05/22/03	05/27/03	KWG0307313	
TETRYL	ND U	3.7	0.23	l	05/22/03	05/27/03	KWG0307313	
Nitrobenzene	ND U	3.7	0.12	1	05/22/03	05/27/03	KWG0307313	
4-Amino-2,6-dinitrotoluene	ND U	3.7	0.13	1	05/22/03	05/27/03	KWG0307313	
2-Amino-4,6-dinitrotoluene	ND U	3.7	0.14	1	05/22/03	05/27/03	KWG0307313	
2,4,6-Trinitrotoluene	ND U	3.7	0.11	I	05/22/03	05/27/03	KWG0307313	
2,6-Dinitrotoluene	ND U	3.7	0.16	I	05/22/03	05/27/03	KWG0307313	
2,4-Dinitrotoluene	ND U	3.7	0.13	I	05/22/03	05/27/03	KWG0307313	
2-Nitrotoluene	ND U	3.7	0.15	I	05/22/03	05/27/03	KWG0307313	
4-Nitrotoluene	ND U	3,7	0.21	1	05/22/03	05/27/03	KWG0307313	
3-Nitrotoluene	ND U	3,7	0.13	1	05/22/03	05/27/03	KWG0307313	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
I-Chloro-3-nitrobenzene	82	65-107	05/27/03	Acceptable	

Comments:

Service Request: K2303565 Date Collected: 05/09/2003 Date Received: 05/13/2003
Analytical Results

Client:	Wil Chee Planning
Project:	Waikane JWTC/TO:0048
Sample Matrix:	Soil

Service Request: K2303565 Date Collected: 05/09/2003 Date Received: 05/13/2003

Nitroaromatics and Nitramines (Explosives)

Sample Name:	WCP-003	Units:	mg/Kg
Lab Code:	K2303565-003	Basis:	Dry
Extraction Method: Analysis Method:	METHOD 8330	Level:	Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
HMX	ND U	3.8	0.11	l	05/22/03	05/27/03	KWG0307313	
RDX	0.22 JN	3.8	0.21	1	05/22/03	05/27/03	KWG0307313	
1,3,5-Trinitrobenzene	ND U	3.8	0.13	1	05/22/03	05/27/03	KWG0307313	
1,3-Dinitrobenzene	ND U	3.8	0,12	Į	05/22/03	05/27/03	KWG0307313	
TETRYL	ND U	3.8	0.26	Į	05/22/03	05/27/03	KWG0307313	
Nitrobenzene	ND U	3.8	0.13	1	05/22/03	05/27/03	KWG0307313	
4-Amino-2,6-dinitrotoluene	ND U	3.8	0.14	1	05/22/03	05/27/03	KWG0307313	
2-Amino-4,6-dinitrotoluene	ND U	3.8	0.16	1	05/22/03	05/27/03	KWG0307313	
2,4,6-Trinitrotoluene	ND U	3.8	0.12	1	05/22/03	05/27/03	KWG0307313	
2,6-Dinitrotoluene	ND U	3,8	0.18	1	05/22/03	05/27/03	KWG0307313	
2,4-Dinitrotoluene	ND U	3.8	0.15	1	05/22/03	05/27/03	KWG0307313	
2-Nitrotoluene	ND U	3.8	0.17	1	05/22/03	05/27/03	KWG0307313	
4-Nitrotoluene	ND U	3.8	0.24	1	05/22/03	05/27/03	KWG0307313	
3-Nitrotoluene	ND U	3.8	0,15	ł	05/22/03	05/27/03	KWG0307313	

arrogate Name %Rec Limits Analyzed Note		ite yzed Note	Control Da Limits Analy	Control Limits	%Rec	Surrogate Name
Chloro-3-nitrobenzene 80 65-107 05/27/03 Accep	table	7/03 Acceptab	65-107 05/27	65-107	80	1-Chloro-3-nitrobenzene

Analytical Results

Client:	Wil Chee Planning
Project:	Waikane JWTC/TO:0048
Sample Matrix:	Soil

Service Request: K2303565 Date Collected: 05/09/2003 Date Received: 05/13/2003

Nitroaromatics and Nitramines (Explosives)

Sample Name:	WCP-004	Units:	mg/Kg
Lab Code:	K2303565-004	Basis:	Dry
Extraction Method: Analysis Method:	METHOD 8330	Level:	Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
HMX	ND U	2,5	0.072	I	05/22/03	05/27/03	KWG0307313	
RDX	0.18 JN	2.5	0.15	1	05/22/03	05/27/03	KWG0307313	
1,3,5-Trinitrobenzene	ND U	2.5	0.088	1	05/22/03	05/27/03	KWG0307313	
1,3-Dinitrobenzene	ND U	2,5	0.077	1	05/22/03	05/27/03	KWG0307313	
TETRYL	ND U	2.5	0.18	1	05/22/03	05/27/03	KWG0307313	
Nitrobenzene	ND U	2.5	0.090	1	05/22/03	05/27/03	KWG0307313	
4-Amino-2,6-dinitrotoluene	ND U	2.5	0.095	1	05/22/03	05/27/03	KWG0307313	
2-Amino-4,6-dinitrotoluene	ND U	2.5	0.11	Ŧ	05/22/03	05/27/03	KWG0307313	
2,4,6-Trinitrotolucne	ND U	2.5	0.081	1	05/22/03	05/27/03	KWG0307313	
2,6-Dinitrotoluene	ND U	2,5	0.12	ł	05/22/03	05/27/03	KWG0307313	
2,4-Dinitrotolucne	ND U	2.5	0.097	1	05/22/03	05/27/03	KWG0307313	
2-Nitrotoluene	ND U	2.5	0.12	1	05/22/03	05/27/03	KWG0307313	
4-Nitrotoluene	ND U	2.5	0.16	1	05/22/03	05/27/03	KWG0307313	
3-Nitrotoluene	ND U	2.5	0.10	1	05/22/03	05/27/03	KWG0307313	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1-Chloro-3-nitrobenzene	86	65-107	05/27/03	Acceptable	

Comments:

Analytical Results

Client:	Wil Chee Planning
Project:	Waikane JWTC/TO:0048
Sample Matrix:	Soil

Service Request: K2303565 Date Collected: 05/09/2003 Date Received: 05/13/2003

Nitroaromatics and Nitramines (Explosives)

Sample Name:	WCP-005	Units:	mg/Kg
Lab Code:	K2303565-005	Basis:	Dry
Extraction Method: Analysis Method:	METHOD 8330	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MÐL	Factor	Extracted	Analyzed	Lot	Note
HMX	ND U	2.5	0,073	1	05/22/03	05/28/03	KWG0307313	
RDX	ND U	2.5	0.15	1	05/22/03	05/28/03	KWG0307313	
1,3,5-Trinitrobenzene	ND U	2.5	0.089	1	05/22/03	05/28/03	KWG0307313	
1,3-Dinitrobenzene	ND U	2.5	0.077	1	05/22/03	05/28/03	KWG0307313	
TETRYL	ND U	2,5	0,18	1	05/22/03	05/28/03	KWG0307313	
Nitrobenzene	ND U	2.5	0,090	1	05/22/03	05/28/03	KWG0307313	
4-Amino-2,6-dinitrotoluene	ND U	2,5	0.096	1	05/22/03	05/28/03	KWG0307313	
2-Amino-4,6-dinitrotoluene	ND U	2.5	0.11	1	05/22/03	05/28/03	KWG0307313	
2,4,6-Trinitrotoluene	ND U	2.5	0.081	1	05/22/03	05/28/03	KWG0307313	
2,6-Dinitrotoluene	ND U	2,5	0.12	1	05/22/03	05/28/03	KWG0307313	
2,4-Dinitrotoluene	ND U	2,5	0.097	1	05/22/03	05/28/03	KWG0307313	
2-Nitrotoluene	ND U	2.5	0.12	1	05/22/03	05/28/03	KWG0307313	
4-Nitrotoluene	ND U	2.5	0.16	l	05/22/03	05/28/03	KWG0307313	
3-Nitrotoluene	ND U	2.5	0.10	I	05/22/03	05/28/03	KWG0307313	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1-Chloro-3-nitrobenzene	81	65-107	05/28/03	Acceptable

Comments:

Analytical Results

Client:	Wil Chee Planning
Project:	Waikane JWTC/TO:0048
Sample Matrix:	Soil

Service Request: K2303565 Date Collected: 05/09/2003 Date Received: 05/13/2003

Nitroaromatics and Nitramines (Explosives)

Sample Name:	WCP-006	Units:	mg/Kg
Lab Code:	K2303565-006	Basis:	Dry
Extraction Method: Analysis Method:	METHOD 8330	Level:	Low

Analyte Name	Result Q	MRL	· MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
HMX	ND U	2.0	0.059	I	05/22/03	05/28/03	KWG0307313	
RDX	ND U	2.0	0.12	1	05/22/03	05/28/03	KWG0307313	
1,3,5-Trinitrobenzene	ND U	2.0	0.072	1	05/22/03	05/28/03	KWG0307313	
I,3-Dinitrobenzene	ND U	2.0	0.062	I	05/22/03	05/28/03	KWG0307313	
TETRYL	ND U	2.0	0.14	I	05/22/03	05/28/03	KWG0307313	
Nitrobenzene	ND U	2.0	0.073	1	05/22/03	05/28/03	KWG0307313	
4-Amino-2,6-dinitrotoluene	ND U	2.0	0.077	1	05/22/03	05/28/03	KWG0307313	
2-Amino-4,6-dinitrotoluene	ND U	2.0	0.084	1	05/22/03	05/28/03	KWG0307313	
2,4,6-Trinitrotoluene	ND U	2.0	0.066	1	05/22/03	05/28/03	KWG0307313	
2,6-Dinitrotoluene	ND U	2.0	0.096	1	05/22/03	05/28/03	KWG0307313	
2,4-Dinitrotoluene	ND U	2.0	0.079	1	05/22/03	05/28/03	KWG0307313	-
2-Nitrotoluene	ND U	2.0	0.094	1	05/22/03	05/28/03	KWG0307313	
4-Nitrotoluene	ND U	2.0	0,13	1	05/22/03	05/28/03	KWG0307313	
3-Nitrotoluene	ND U	2.0	0.081	1	05/22/03	05/28/03	KWG0307313	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
I-Chloro-3-nitrobenzene	80	65-107	05/28/03	Acceptable

Comments:

Analytical Results

Client:	Wil Chee Planning
Project:	Waikane JWTC/TO:0048
Sample Matrix:	Soil

Service Request: K2303565 Date Collected: 05/09/2003 Date Received: 05/13/2003

Nitroaromatics and Nitramines (Explosives)

Sample Name:	WCP-007	Units:	mg/Kg
Lab Code:	K2303565-007	Basis:	Dry
Extraction Method: Analysis Method:	METHOD 8330	Level:	Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
HMX	ND U	2,5	0.079	I	05/22/03	05/28/03	KWG0307313	
RDX	NĐ U	2.5	0,16	I	05/22/03	05/28/03	KWG0307313	
1,3,5-Trinitrobenzene	ND U	2.5	0.096	1	05/22/03	05/28/03	KWG0307313	
1,3-Dinitrobenzene	ND U	2.5	0.083	1	05/22/03	05/28/03	KWG0307313	
TETRYL	ND U	2.5	0.19	1	05/22/03	05/28/03	KWG0307313	
Nitrobenzene	ND U	2.5	0.097	1	05/22/03	05/28/03	KWG0307313	
4-Amino-2,6-dinitrotolnene	ND U	2.5	0.11	1	05/22/03	05/28/03	KWG0307313	<u> </u>
2-Amino-4,6-dinitrotoluene	ND U	2.5	0.12	1	05/22/03	05/28/03	KWG0307313	
2,4,6-Trinitrotoluene	ND U	2,5	0.088	1	05/22/03	05/28/03	KWG0307313	
2,6-Dinitrotoluene	ND U	2.5	0.13	1	05/22/03	05/28/03	KWG0307313	
2,4-Dinitrotoluene	ND U	2.5	0.11	1	05/22/03	05/28/03	KWG0307313	
2-Nitrotohuene	ND U	2.5	0.13	1	05/22/03	05/28/03	KWG0307313	
4-Nitrotoluene	ND U	2.5	0.18	I	05/22/03	05/28/03	KWG0307313	
3-Nitrotoluene	ND U	2.5	0.11	1	05/22/03	05/28/03	KWG0307313	

		Characteria I	···	· ·
Surrogate Name	%Rec	Limits	Date Analyzed	Note
1-Chloro-3-nitrobenzene	78	65-107	05/28/03	Acceptable

Analytical Results

Client:	Wil Chee Planning
Project:	Waikane JWTC/TO:0048
Sample Matrix:	Soil

Service Request: K2303565 Date Collected: 05/09/2003 Date Received: 05/13/2003

Nitroaromatics and Nitramines (Explosives)

Sample Name:	WCP-008	Units:	mg/Kg
Lab Code:	K2303565-008	Basis:	Dry
Extraction Method: Analysis Method:	METHOD 8330	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
HMX	ND U	2,9	0.081	1	05/22/03	05/28/03	KWG0307313	
RDX	ND U	2,9	0.16	1	05/22/03	05/28/03	KWG0307313	
1,3,5-Trinitrobenzene	ND U	2.9	0.098	1	05/22/03	05/28/03	KWG0307313	
1,3-Dinitrobenzene	ND U	2.9	0.086	1	05/22/03	05/28/03	KWG0307313	
TETRYL	ND U	2.9	0.20	1	05/22/03	05/28/03	KWG0307313	
Nitrobenzene	ND U	2.9	0.10	1	05/22/03	05/28/03	KWG0307313	
4-Amino-2,6-dinitrotoluene	NĐ U	2.9	0,11	1	05/22/03	05/28/03	KWG0307313	
2-Amino-4,6-dinitrotoluene	ND U	2.9	0.12	1	05/22/03	05/28/03	KWG0307313	
2,4,6-Trinitrotoluene	ND U	2.9	0.090	1	05/22/03	05/28/03	KWG0307313	
2,6-Dipitrotoluene	ND U	2.9	0,14	1	05/22/03	05/28/03	KWG0307313	
2,4-Dinitrotoluene	ND U	2.9	0.11	1	05/22/03	05/28/03	KWG0307313	
2-Nitrotoluene	ND U	2.9	0.13	1	05/22/03	05/28/03	KWG0307313	
4-Nitrotoluene	ND U	2.9	0.18	1	05/22/03	05/28/03	KWG0307313	
3-Nitrotoluene	ND U	2.9	0.12	1	05/22/03	05/28/03	KWG0307313	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1-Chloro-3-nitrobenzene	83	65-107	05/28/03	Acceptable	

Analytical Results

Client:	Wil Chee Planning
Project:	Waikane JWTC/TO:0048
Sample Matrix:	Soil

Service Request: K2303565 Date Collected: 05/09/2003 Date Received: 05/13/2003

. - -

Nitroaromatics and Nitramines (Explosives)

Sample Name:	WCP-009	Units:	mg/Kg
Lab Code:	K2303565-009	Basis:	Dry
Extraction Method: Analysis Method:	METHOD 8330	Level:	Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
HMX	ND U	2,5	0,073	1	05/22/03	05/28/03	KWG0307313	
RDX	ND U	2,5	0,15	1	05/22/03	05/28/03	KWG0307313	
1,3,5-Trinitrobenzene	ND U	2.5	0.089	I	05/22/03	05/28/03	KWG0307313	
1,3-Dinitrobenzene	ND U	2.5	0.077	1	05/22/03	05/28/03	KWG0307313	
TETRYL	ND U	2.5	0.18	1	05/22/03	05/28/03	KWG0307313	
Nitrobenzene	ND U	2.5	0.090	I	05/22/03	05/28/03	KWG0307313	
4-Amino-2,6-dinitrotoluene	ND U	2.5	0.096	I	05/22/03	05/28/03	KWG0307313	
2-Amino-4,6-dinitrotoluene	ND U	2.5	0.11	1	05/22/03	05/28/03	KWG0307313	
2,4,6-Trinitrotoluene	ND U	2.5	0.082	1	05/22/03	05/28/03	KWG0307313	
2,6-Dinitrotoluene	ND U	2,5	0,12	1	05/22/03	05/28/03	KWG0307313	· · · · •
2,4-Dinitrotoluene	ND U	2.5	0.097	1	05/22/03	05/28/03	KWG0307313	
2-Nitrotoluene	ND U	2.5	0.12	1	05/22/03	05/28/03	KWG0307313	
4-Nitrotoluene	ND U	2.5	0.16	1	05/22/03	05/28/03	KWG0307313	
3-Nitrotoluene	ND U	2.5	0,10	1	05/22/03	05/28/03	KWG0307313	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
I-Chloro-3-nitrobenzene	82	65-107	05/28/03	Acceptable

Analytical Results

Client:	Wil Chee Planning
Project:	Waikane JWTC/TO:0048
Sample Matrix:	Soil

Nitroaromatics and Nitramines (Explosives)

Sample Name:	WCP-014	Units:	mg/Kg
Lab Code:	K2303565-014	Basis:	Dry
Extraction Method: Analysis Method:	METHOD 8330	Level:	Low

A	Dec Vi O	MDI	MOT	Dilution	Date	Date	Extraction	N (
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
HMX	ND U	2.7	0.067	I	05/22/03	05/28/03	KWG0307313	
RDX	0.14 JN	2.7	0.13	Ţ	05/22/03	05/28/03	KWG0307313	
1,3,5-Trinitrobenzene	ND U	2.7	0.081	Į	05/22/03	05/28/03	KWG0307313	
I,3-Dinitrobenzene	ND U	2.7	0.071	1	05/22/03	05/28/03	KWG0307313	
TETRYL	ND U	2.7	0.16	1	05/22/03	05/28/03	KWG0307313	
Nitrobenzene	ND U	2,7	0.083	1	05/22/03	05/28/03	KWG0307313	
4-Amino-2,6-dinitrotoluene	ND U	2.7	0.088	1	05/22/03	05/28/03	KWG0307313	
2-Amino-4,6-dinitrotoluene	ND U	2.7	0.096	1	05/22/03	05/28/03	KWG0307313	
2,4,6-Trinitrotoluene	ND U	2.7	0,075	Ι	05/22/03	05/28/03	KWG0307313	
2,6-Dinitrotoluene	ND U	2.7	0.11	Ι	05/22/03	05/28/03	KWG0307313	
2,4-Dinitrotoluene	ND U	2.7	0.089	1	05/22/03	05/28/03	KWG0307313	
2-Nitrotoluene	ND U	2.7	0.11	I	05/22/03	05/28/03	KWG0307313	
4-Nitrotoluene	ND U	2.7	0.15	Į	05/22/03	05/28/03	KWG0307313	
3-Nitrotoluene	ND U	2.7	0.092	I	05/22/03	05/28/03	KWG0307313	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1-Chloro-3-nitrobenzene	84	65-107	05/28/03	Acceptable	

Comments:

Merged

Service Request: K2303565 Date Collected: 05/09/2003 Date Received: 05/13/2003

Organic Analysis: <u>Nitroglycerin and PETN</u>

Summary Package

Sample and QC Results

Client: Project: Wil Chee Planning Waikane JWTC/TO:0048

Cover Page - Organic Analysis Data Package Nitroglycerin and PETN

		Date	Date
Sample Name	Lab Code	Collected	Received
WCP-001	K2303565-001	05/09/2003	05/13/2003
WCP-002	K2303565-002	05/09/2003	05/13/2003
WCP-003	K2303565-003	05/09/2003	05/13/2003
WCP-004	K2303565-004	05/09/2003	05/13/2003
WCP-005	K2303565-005	05/09/2003	05/13/2003
WCP-006	K2303565-006	05/09/2003	05/13/2003
WCP-007	K2303565-007	05/09/2003	05/13/2003
WCP-008	K2303565-008	05/09/2003	05/13/2003
WCP-009	K2303565-009	05/09/2003	05/13/2003
WCP-010	K2303565-010	05/09/2003	05/13/2003
WCP-011	K2303565-011	05/09/2003	05/13/2003
WCP-012	K2303565-012	05/09/2003	05/13/2003
WCP-013	K2303565-013	05/09/2003	05/13/2003
WCP-014	K2303565-014	05/09/2003	05/13/2003
WCP-015	K2303565-015	05/09/2003	05/13/2003
WCP-011MS	KWG0306960-1	05/09/2003	05/13/2003
WCP-001MS	KWG0307314-1	05/09/2003	05/13/2003
WCP-001DMS	KWG0307314-2	05/09/2003	05/13/2003

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature:	MS
	U
Date:	5128103

Name: Scientist Title:

1

I of

Analytical Results

Client:	Wil Chee Planning
Project:	Waikane JWTC/TO:0048
Sample Matrix:	Water

Service Request: K2303565 Date Collected: 05/09/2003 Date Received: 05/13/2003

Nitroglycerin and PETN

Sample Name:	WCP-010	Units:	ug/L
Lab Code:	K2303565-010	Basis:	NA
Extraction Method: Analysis Method:	METHOD 8332	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Nitroglycerin	ND U	2.0	0.36	1	05/15/03	05/15/03	KWG0306960	
Pentaerythritol Tetranitrate	ND U	2.0	0.51	1	05/15/03	05/15/03	KWG0306960	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2,3-Dimethyl-2,3-dinitrobutane	90	70-130	05/15/03	Acceptable	

Comments:

Analytical Results

Client:	Wil Chee Planning
Project:	Waikane JWTC/TO:0048
Sample Matrix:	Water

 Service Request:
 K2303565

 Date Collected:
 05/09/2003

 Date Received:
 05/13/2003

Nitroglycerin and PETN

Sample Name:	WCP-011	Units:	ug/L
Lab Code:	K2303565-011	Basis:	NA
Extraction Method: Analysis Method:	METHOD 8332	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Nitroglycerin	ND U	2.0	0.36	1	05/15/03	05/15/03	KWG0306960	
Pentaerythritol Tetranitrate	ND U	2.0	0.51	1	05/15/03	05/15/03	KWG0306960	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2,3-Dimethyl-2,3-dinitrobutane	89	70-130	05/15/03	Acceptable	

Comments:

.

Analytical Results

Client:	Wil Chee Planning
Project:	Waikane JWTC/TO:0048
Sample Matrix:	Water

 Service Request:
 K2303565

 Date Collected:
 05/09/2003

 Date Received:
 05/13/2003

Nitroglycerin and PETN

Sample Name:	WCP-012	Units:	ug/L
Lab Code:	K2303565-012	Basis:	NA
Extraction Method: Analysis Method:	METHOD 8332	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Nitroglycerin	ND U	2.2	0.38	1	05/15/03	05/15/03	KWG0306960	
Pentaerythritol Tetranitrate	ND U	2.2	0.54	1	05/15/03	05/15/03	KWG0306960	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2,3-Dimethyl-2,3-dinitrobutane	83	70-130	05/15/03	Acceptable	

Comments:

Analytical Results

Client:	Wil Chee Planning
Project:	Waikane JWTC/TO:0048
Sample Matrix:	Water

 Service Request:
 K2303565

 Date Collected:
 05/09/2003

 Date Received:
 05/13/2003

Nitroglycerin and PETN

Sample Name:	WCP-013	Units:	ug/L
Lab Code:	K2303565-013	Basis:	NA
Extraction Method: Analysis Method:	METHOD 8332	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Nitroglycerin	ND U	2.2	0.38	1	05/15/03	05/15/03	KWG0306960	
Pentaerythritol Tetranitrate	ND U	2.2	0.54	1	05/15/03	05/15/03	KWG0306960	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2,3-Dimethyl-2,3-dinitrobutane	78	70-130	05/15/03	Acceptable	

Comments:

Analytical Results

Client:	Wil Chee Planning
Project:	Waikane JWTC/TO:0048
Sample Matrix:	Water

Service Request: K2303565 Date Collected: 05/09/2003 Date Received: 05/13/2003

÷ ·

Nitroglycerin and PETN

Sample Name:	WCP-015	 Units:	ug/L
Lab Code:	K2303565-015	Basis:	NA
Extraction Method: Analysis Method:	METHOD 8332	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Nitroglycerin	ND U	2.3	0.40	1	05/15/03	05/15/03	KWG0306960	
Pentaerythritol Tetranitrate	ND U	2.3	0.57	1	05/15/03	05/15/03	KWG0306960	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2,3-Dimethyl-2,3-dinitrobutane	85	70-130	05/15/03	Acceptable	

Analytical Results

Client:	Wil Chee Planning
Project:	Waikane JWTC/TO:0048
Sample Matrix:	Water

Service Request: K2303565 Date Collected: NA Date Received: NA

Nitroglycerin and PETN

Sample Name:	Method Blank	Units:	ug/L
Lab Code:	KWG0306960-4	Basis:	NA
Extraction Method: Analysis Method:	METHOD 8332	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Nitroglycerin	ND U	2.0	0.36	1	05/15/03	05/15/03	KWG0306960	
Pentacrythritol Tetranitrate	ND U	2.0	0.51	1	05/15/03	05/15/03	KWG0306960	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2,3-Dimethyl-2,3-dinitrobutane	86	70-130	05/15/03	Acceptable	

Analytical Results

Client:	Wil Chee Planning	Service Request:	K2303565
Project:	Waikane JWTC/TO:0048	Date Collected:	05/09/2003
Sample Matrix:	Soil	Date Received:	05/13/2003

Nitroglycerin and PETN

Sample Name:	WCP-001	Units:	mg/Kg
Lab Code:	K2303565-001	Basis:	Dry
Extraction Method: Analysis Method:	METHOD 8332	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Nitroglycerin	ND U	2.6	0.37	1	05/22/03	05/27/03	KWG0307314	
Pentaerythritol Tetranitrate	ND U	2.6	0.44	I	05/22/03	05/27/03	KWG0307314	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
I-Chloro-3-nitrobenzene	65	43-108	05/27/03	Acceptable	

Analytical Results

Client:	Wil Chee Planning
Project:	Waikane JWTC/TO:0048
Sample Matrix:	Soil

 Service Request:
 K2303565

 Date Collected:
 05/09/2003

 Date Received:
 05/13/2003

Nitroglycerin and PETN

Sample Name:	WCP-002	Units:	mg/Kg
Lab Code:	K2303565-002	Basis:	Dry
Extraction Method: Analysis Method:	METHOD 8332	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Nitroglycerin	ND U	3.5	0.51	1	05/22/03	05/27/03	KWG0307314	
Pentaerythritol Tetranitrate	ND U	3.5	0.60	1	05/22/03	05/27/03	KWG0307314	

Surrogate Name	%Rer	Control Limits	Date Analyzed	Note	
1-Chloro-3-nitrobenzene	61	43-108	05/27/03	Acceptable	

Comments:

Mergod

Analytical Results

Client:	Wil Chee Planning	Service Reques
Project:	Waikane JWTC/TO:0048	Date Collected
Sample Matrix:	Soil	Date Received

ervice Request: K2303565 Date Collected: 05/09/2003 Date Received: 05/13/2003

Nitroglycerin and PETN

Sample Name:	WCP-003	Units:	mg/Kg
Lab Code:	K2303565-003	Basis:	Dry
Extraction Method: Analysis Method:	METHOD 8332	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Nitroglycerin	ND U	4.0	0.57	l	05/22/03	05/27/03	KWG0307314	
Pentaerythritol Tetranitrate	ND U	4.0	0.67	I	05/22/03	05/27/03	KWG0307314	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1-Chloro-3-nitrobenzene	64	43-108	05/27/03	Acceptable	

Form 1A - Organic

Analytical Results

Client:	Wil Chee Planning	Service Request:	K2303565
Project:	Waikane JWTC/TO:0048	Date Collected:	05/09/2003
Sample Matrix:	Soil	Date Received:	05/13/2003

Nitroglycerin and PETN

Sample Name:	WCP-004	Units:	mg/Kg
Lab Code:	K2303565-004	Basis:	Dry
Extraction Method: Analysis Method:	METHOD 8332	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Nitroglycerin	ND U	2.6	0.39	1	05/22/03	05/27/03	KWG0307314	
Pentaerythritol Tetranitrate	ND U	2.6	0.47	1	05/22/03	05/27/03	KWG0307314	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1-Chloro-3-nitrobenzene	80	43-108	05/27/03	Acceptable	_

Comments:

Analytical Results

Client:	Wil Chee Planning
Project:	Waikane JWTC/TO:0048
Sample Matrix:	Soil

 Service Request:
 K2303565

 Date Collected:
 05/09/2003

 Date Received:
 05/13/2003

Nitroglycerin and PETN

Sample Name:	WCP-005	Units:	mg/Kg
Lab Code:	K2303565-005	Basis:	Dry
Extraction Method: Analysis Method:	METHOD 8332	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Nitroglycerin	ND U	2.3	0.39	1	05/22/03	05/27/03	KWG0307314	
Pentaerythritol Tetranitrate	ND U	2.3	0.47	1	05/22/03	05/27/03	KWG0307314	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
I-Chloro-3-nitrobenzene	67	43-108	05/27/03	Acceptable	

Comments:

Analytical Results

Client:Wil Chee PlanningProject:Waikane JWTC/TO:0048Sample Matrix:Soil

Service Request: K2303565 Date Collected: 05/09/2003 Date Received: 05/13/2003

Nitroglycerin and PETN

Sample Name:	WCP-006	Units:	mg/Kg
Lab Code:	K2303565-006	Basis:	Dry
Extraction Method: Analysis Method:	METHOD 8332	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Nitroglycerin	ND U	2.2	0.32	Ι	05/22/03	05/27/03	KWG0307314	
Pentaerythritol Tetranitrate	ND U	2.2	0.38	1	05/22/03	05/27/03	KWG0307314	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1-Chloro-3-nitrobenzene	71	43-108	05/27/03	Acceptable	

Comments:

Analytical Results

Client:	Wil Chee Planning	Service Request:	K2303565
Project:	Waikane JWTC/TO:0048	Date Collected:	05/09/2003
Sample Matrix:	Soil	Date Received:	05/13/2003

Nitroglycerin and PETN

Sample Name:	WCP-007	Units:	mg/Kg
Lab Code:	K2303565-007	Basis:	Dry
Extraction Method: Analysis Method:	METHOD 8332	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Nitroglycerin	ND U	2.6	0.43	I	05/22/03	05/27/03	KWG0307314	
Pentaerythritol Tetranitrate	ND U	2.6	0.50	1	05/22/03	05/27/03	KWG0307314	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1-Chloro-3-nitrobenzene	59	43-108	05/27/03	Acceptable	

Comments:

Analytical Results

Client:	Wil Chee Planning
Project:	Waikane JWTC/TO:0048
Sample Matrix:	Soil

Service Request: K2303565 Date Collected: 05/09/2003 Date Received: 05/13/2003

Nitroglycerin and PETN

Sample Name:	WCP-008	Units:	mg/Kg
Lab Code:	K2303565-008	Basis:	Dry
Extraction Method: Analysis Method:	METHOD 8332	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Nitroglycerin	ND U	3.1	0.44	1	05/22/03	05/27/03	KWG0307314	
Pentaerythritol Tetranitrate	ND U	3.1	0.52	1	05/22/03	05/27/03	KWG0307314	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
I-Chloro-3-nitrobenzene	63	43-108	05/27/03	Acceptable	

Comments:

Merged

69

Analytical Results

Client:	Wil Chee Planning
Project:	Waikane JWTC/TO:0048
Sample Matrix:	Soil

Service Request: K2303565 Date Collected: 05/09/2003 Date Received: 05/13/2003

Nitroglycerin and PETN

Sample Name:	WCP-009	Units:	mg/Kg
Lab Code:	K2303565-009	Basis:	Dry
Extraction Method: Analysis Method:	METHOD 8332	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Nitroglycerin	. ND U	2.6	0.40	Ι	05/22/03	05/27/03	KWG0307314	
Pentaerythritol Tetranitrate	ND U	2.6	0.47	Į	05/22/03	05/27/03	KWG0307314	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	_
1-Chloro-3-nitrobenzene	66	43-108	05/27/03	Acceptable	

Comments:

Analytical Results

Client:	Wil Chee Planning
Project:	Waikane JWTC/TO:0048
Sample Matrix:	Soil

 Service Request:
 K2303565

 Date Collected:
 05/09/2003

 Date Received:
 05/13/2003

Nitroglycerin and PETN

Sample Name:	WCP-014	Units:	mg/Kg
Lab Code:	K2303565-014	Basis:	Dry
Extraction Method: Analysis Method:	METHOD 8332	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Nitroglycerin	ND U	2.5	0.36	1	05/22/03	05/27/03	KWG0307314	
Pentaerythritol Tetranitrate	ND U	2,5	0.43	1	05/22/03	05/27/03	KWG0307314	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1-Chloro-3-nitrobenzene	68	43-108	05/27/03	Acceptable	

Comments:

Organic Analysis: <u>Picric Acid</u>

Summary Package

Sample and QC Results

Client: Project: Wil Chee Planning Waikane JWTC/TO:0048

Cover Page - Organic Analysis Data Package Picric Acid

a		Date	Date
Sample Name	Lab Code	Collected	Received
WCP-001	K2303565-001	05/09/2003	05/13/2003
WCP-002	K2303565-002	05/09/2003	05/13/2003
WCP-003	K2303565-003	05/09/2003	05/13/2003
WCP-004	K2303565-004	05/09/2003	05/13/2003
WCP-005	K2303565-005	05/09/2003	05/13/2003
WCP-006	K2303565-006	05/09/2003	05/13/2003
WCP-007	K2303565-007	05/09/2003	05/13/2003
WCP-008	K2303565-008	05/09/2003	05/13/2003
WCP-009	K2303565-009	05/09/2003	05/13/2003
WCP-010	K2303565-010	05/09/2003	05/13/2003
WCP-011	K2303565-011	05/09/2003	05/13/2003
WCP-012	K2303565-012	05/09/2003	05/13/2003
WCP-013	K2303565-013	05/09/2003	05/13/2003
WCP-014	K2303565-014	05/09/2003	05/13/2003
WCP-015	K2303565-015	05/09/2003	05/13/2003
WCP-015MS	KWG0307048-1	05/09/2003	05/13/2003
WCP-015DMS	KWG0307048-2	05/09/2003	05/13/2003
WCP-001MS	KWG0307315-5	05/09/2003	05/13/2003
WCP-001DMS	KWG0307315-6	05/09/2003	05/13/2003

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

phristus C Signature:

NINN Name: MR

Date:

Title: <u>Sack NR ST</u>

SuperSet Reference: RR27837

Analytical Results

Client: W	il Chee Planning	Service Request:	K2303565
Project: W.	aikane JWTC/TO:0048	Date Collected:	05/09/2003
Sample Matrix: W	ater	Date Received:	05/13/2003

Picric Acid

Sample Name: Lab Code:	WCP-010 K2303565-010)						Units: ug/L Basis: NA	
Extraction Method: Analysis Method:	EPA 3510M 8151M						3	Level: Low	
Analyte Name		Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Picric Acid		ND U	6.8	1.9	1	05/16/03	06/18/03	KWG0307048	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromo-2,6-dichlorophenol	73	70-130	06/18/03	Acceptable	

Analytical Results

Client: Wil C	Thee Planning Ser	rvice Request:	K2303565
Project: Waik	ane JWTC/TO:0048 D	ate Collected:	05/09/2003
Sample Matrix: Wate	D	Date Received:	05/13/2003

Picric Acid

Sample Name: Lab Code:	WCP-011 K2303565-011						1	Units: ug/L Basis: NA	
Extraction Method: Analysis Method:	EPA 3510M 8151M)	Level: Low	
Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Picric Acid	NĐ	U	6.8	1.9	1	05/16/03	06/18/03	KWG0307048	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromo-2,6-dichlorophenol	100	70-130	06/18/03	Acceptable

Analytical Results

Client:	Wil Chee Planning	Service Request:	K2303565
Project:	Waikane JWTC/TO:0048	Date Collected:	05/09/2003
Sample Matrix:	Water	Date Received:	05/13/2003
	Picric /	Acid	
Sample Name:	WCP-012	Units:	ug/L
Lab Code:	K2303565-012	Basis:	NA

Extraction Method:EPA 3510MLevel:LowAnalysis Method:8151MLevel:Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Picric Acid	ND U	6.8	1.9	1	05/16/03	06/18/03	KWG0307048	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromo-2,6-dichlorophenol	66	70-130	06/18/03	Outside Control Limits

Comments:

Analytical Results

Client: W	/il Chee Planning	Service Request:	K2303565
Project: W	/aikane JWTC/TO:0048	Date Collected:	05/09/2003
Sample Matrix: W	/ater	Date Received:	05/13/2003

Picric Acid

Sample Name: Lab Code:	WCP-013 K2303565-013	3						1	Units: ug/L Basis: NA	
Extraction Method: Analysis Method:	EPA 3510M 8151M							X	Level: Low	
Analyte Name		Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Picric Acid		ND	U	6.8	1.9	1	05/16/03	06/18/03	KWG0307048	
			Control	Da	. 4 .0					

Surrogate Name	%Rec	Limits	Date Analyzed	Note
4-Bromo-2,6-dichlorophenol	73	70-130	06/18/03	Acceptable

Comments:

Analytical Results

Client:	Wil Chee Planning	Service Request:	K2303565
Project:	Waikane JWTC/TO:0048	Date Collected:	05/09/2003
Sample Matrix:	Water	Date Received:	05/13/2003

Picric Acid

Sample Name: Lab Code:	WCP-015 K2303565-015					1	Units: ug/L Basis: NA	
Extraction Method: Analysis Method:	EPA 3510M 8151M]	Level: Low	
Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Picric Acid	ND U	6.8	1.9	1	05/16/03	06/18/03	KWG0307048	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromo-2,6-dichlorophenol	73	70-130	06/18/03	Acceptable

Comments:

.

Merged

1 of 1

102

Analytical Results

Client: Project: Sample Matrix:	Wil Chee Planning Waikane JWTC/TO:004 Water	18					Service Red Date Colle Date Rece	quest: ected: eived:	K230350 NA NA	\$5
			Picri	ic Acid						
Sample Name: Lab Code:	Method Blank KWG0307048-5						1	Units: Basis:	ug/L NA	
Extraction Method: Analysis Method:	EPA 3510M 8151M						I	Level:	Low	
Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extr I	action .ot	Note
Picric Acid	ND	U	6.8	1.9	1	05/16/03	06/18/03	KWG	307048	
Surrogate Name	%Rec	Control Limits	D: Ana	ate lyzed	Note					

06/18/03

Acceptable

Comments:

4-Bromo-2,6-dichlorophenol

Merged

72

70-130

Analytical Results

Client: Project: Sample Matrix:	Wil Chee Planning Waikane JWTC/TO:004 Soil	8					Service Rea Date Colle Date Rece	quest: ected: cived:	K230356 05/09/20 05/13/20	55 103 103
			Picri	ic Acid						
Sample Name: Lab Code:	WCP-001 K2303 5 65-001						l J	Units: Basis:	ug/Kg Dry	
Extraction Method: Analysis Method:	METHOD 8151M						1	Level:	Low	
Analyte Name	Result (Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extr	action Lot	Note
Picric Acid	ND (l	140	89	I	05/23/03	06/18/03	KWG	0307315	
Surrogate Name	%Rec	Control Limits	D: Anal	ate lyzed	Note					

4-Bromo-2,6-dichlorophenol	51	70-130	06/18/03	Outside Control Limits

Comments:

Analytical Results

Client: Project:	Wil Chee Planning Waikane IWTC/TO:0048	Service Request: Date Collected:	K2303565 05/09/2003
Sample Matrix:	Soil	Date Received:	05/13/2003

Picric Acid

Sample Name: Lab Code:	WCP-002 K2303565-002	2]]	Units: ug/Kg Basis: Dry	
Extraction Method: Analysis Method:	METHOD 8151M						1	Level: Low	
Analyte Name		Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Picric Acid		ND U	190	130	I	05/23/03	06/18/03	KWG0307315	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromo-2,6-dichlorophenol	58	70-130	06/18/03	Outside Control Limits

Comments:
Analytical Results

Client:	Wil Chee Planning	Service Request:	K2303565
Project:	Waikane JWTC/TO:0048	Date Collected:	05/09/2003
Sample Matrix:	Soil	Date Received:	05/13/2003

Picric Acid

Sample Name: Lab Code:	WCP-003 K2303565-003	3						:	Units: ug/Kg Basis: Dry	
Extraction Method: Analysis Method:	METHOD 8151M]	Level: Low	
Analyte Name		Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Picric Acid		ND	U	210	140	1	05/23/03	06/18/03	KWG0307315	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromo-2,6-dichlorophenol	75	70-130	06/18/03	Acceptable

Comments:

Analytical Results

Client:	Wil Chee Planning	Service Request:	K2303565
Project:	Waikane JWTC/TO:0048	Date Collected:	05/09/2003
Sample Matrix:	Soil	Date Received:	05/13/2003

Picric Acid

Sample Name: Lab Codc:	WCP-004 K2303565-004						1]	Units: ug/Kg Basis: Dry	
Extraction Method: Analysis Method:	METHOD 8151M						1	Level: Low	
Analyte Name		Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Picric Acid		ND U	140	94	Ι	05/23/03	06/18/03	KWG0307315	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromo-2,6-dichlorophenol	47	70-130	06/18/03	Outside Control Limits

Comments:

Merged

Analytical Results

Client:	Wil Chee Planning
Project:	Waikane JWTC/TO:0048
Sample Matrix:	Soil

 Service Request:
 K2303565

 Date Collected:
 05/09/2003

 Date Received:
 05/13/2003

Picric Acid

Sample Name: Lab Code:	WCP-005 K2303565-00)5							Units: ug/Kg Basis: Dry	
Extraction Method: Analysis Method:	METHOD 8151M]	Level: Low	
Analyte Name		Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Picric Acid		ND	U	140	94	1	05/23/03	06/18/03	KWG0307315	
Suumaata Nassa		9/ Dec	Control Limite	ם	ate	Nata				

Surrogate Name	%Rec	Limits	Analyzed	Note
4-Bromo-2,6-dichlorophenol	54	70-130	06/18/03	Outside Control Limits

Comments:

Merged

1 of 1

Analytical Results

Client:	Wil Chee Planning	Service Request:	K2303565
Project:	Waikane JWTC/TO:0048	Date Collected:	05/09/2003
Sample Matrix:	Soil	Date Received:	05/13/2003

Picric Acid

Sample Name: Lab Code:	WCP-006 K2303565-00	6						Units: ug/Kg Basis: Dry	
Extraction Method: Analysis Method:	METHOD 8151M]	L evei: Low	
Analyte Name		Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Picric Acid		ND U	120	76	1	05/23/03	06/18/03	KWG0307315	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromo-2,6-dichlorophenol	54	70-130	06/18/03	Outside Control Limits

Comments:

Merged

Analytical Results

Client:Wil Chee PlanningSProject:Waikane JWTC/TO:0048Sample Matrix:Soil	Service Request: Date Collected: Date Received:	K2303565 05/09/2003 05/13/2003
---	---	--------------------------------------

Picric Acid

Sample Name: Lab Code:	WCP-007 K2303565-007						1]	Units: ug/Kg Basis: Dry	
Extraction Method: Analysis Method:	METHOD 8151M						J	Level: Low	
Analyte Name]	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Picric Acid		ND U	150	110	1	05/23/03	06/19/03	KWG0307315	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromo-2,6-dichlorophenol	44	70-130	06/19/03	Outside Control Limits

Comments:

Analytical Results

Client:	Wil Chee Planning	Service Request:	K2303565
Project:	Waikane JWTC/TO:0048	Date Collected:	05/09/2003
Sample Matrix:	Soil	Date Received:	05/13/2003

Picric Acid

Sample Name: Lab Code:	WCP-008 K230356 5- 008						1]	Units: ug/Kg Basis: Dry	
Extraction Method: Analysis Method:	METHOD 8151M						1	Level: Low	
Analyte Name	Re	sult O	MRL	MDL.	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromo-2,6-dichlorophenol	54	70-130	06/19/03	Outside Control Limits	

Comments:

Merged

Analytical Results

Client:	Wil Chee Planning	Service Red	Service Request:			
Project:	Waikane JWTC/TO:0048	Date Colle	Date Collected:			
Sample Matrix:	Soil	Date Reco	Date Received:			

		•			•
· D 1	~ ×				-
	.	n.,	~	- I '	u
_			+	_	

Sample Name: Lab Code:	WCP-009 K2303565-009					-		1	Units: ug/Kg Basis: Dry	
Extraction Method: Analysis Method:	METHOD 8151M]	Level: Low		
Analyte Name		Result Q	· M	IRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Picric Acid		ND U]	130	95	1	05/23/03	06/19/03	KWG0307315	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromo-2,6-dichlorophenol	52	70-130	06/19/03	Outside Control Limits

Comments:

Analytical Results

Client:	Wil Chee Planning	Service Request:	K2303565
Project:	Waikane JWTC/TO:0048	Date Collected:	05/09/2003
Sample Matrix:	Soil	Date Received:	05/13/2003

Picric Acid

Sample Name: Lab Code:	WCP-014 K2303565-01	4							Units: ug/Kg Basis: Dry	
Extraction Method: Analysis Method:	METHOD 8151M							1	Level: Low	
Analyte Name		Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Picric Acid		ND	U	140	86	1	05/23/03	06/19/03	KWG0307315	
Surrogate Name		%Rec	Control Limits	I An:	Date alyzed	Note				

-			•		
4-Bromo-2,6-dichlorophenol	62	70-130	06/19/03	Outside Control Limits	

Comments:

Merged

16 Jun 03 121 Jungle Warfare Training ED \$810 Depart WCP 0845 anive Walkane Valley parting area. Gata open when arrived. releather upon arrival - Quercast, Wet roads, some pording . ogos SSGT Dave Alicarder Pre SGT Alexander, name A steadily all plant last night, Nothering, but stealy. Internithent soty. Vary little difference - stream fler per SSET Aleren 0930 Derek taking 1st water sample for stream - 42-013 S.J 0940 - Derek taking 2nd with sample from stream WCP-017 R. Water Somerlat fortile Sampling at this a location completed 0950. Location actor formelfar up scare crows For sect Alexander, water land increases not appreciable Less than & " use in write live head is 3" or so. 1010 - Derick & Ty take samples where the river crosses the road. WCP BISR and WF-013R. 2005 WCP-018, Conflated 1015, Upter somewhat tubid. alest say and say location along Konstande Have allest say as Maring Hust Hill, Fart. (Muchi little and change to welt grow fires Say grap 2 bis

Columbia
Analytical
Services ***

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

An Employee-Owned Contactor 6925 Canoga Ave. • Canoga Park, CA 91303 • (818) 587-5550 • 800-695-7222 x02 • FAX (818) 587-5555 www.caslab.com

CAS Conlact

SR #

PAGE _____ OF ____

LALGER WAREFARE LEAR	المرتج المحاجر	Project Number	² -5-ΦΦ	12/004	8					A	NALYS	SIS RE	QUES.	TED (I	includ	e Metl	nod Ni	ımber	and C	Contair	ier Pri	eservativ	e)		
Project Manager Dörnannen TASALL		Report CC				_†	PRE	SERVA	TIVE					:		\square	ľ		7	<u> </u>	_		·		<u> </u>
Company/Address	a he	· · · · · · · · · · · · · · · · · · ·		······································			ЯS		/			/#	suoa,			/	- /	1000	š	- /	+ · · /	+		eservativ NONE HCI	ve Key
Here Ryceast St	8 0 2 §						VTAINE		/ ;	C)		1 voroc	attles	See.	NSN SN	1	2 8/_ 3		1	13			2. 3.	HNO ₃ H ₂ SO ₄ NaOH	1
HONOLUND 21968	. (, <u></u>					DF COI	/	geabl	actar		tuna /	19 19 1	50	10 10 10	58	1000	K 1	ļ,	Ę,	Ι,		5. 6.	Zn. Ace MeOH	etale
Phone # 508 - 955 - 6088		FAX#	2851				ABER (Gas		$\tilde{s}_{\varepsilon X}$		Den 2	8/8		\$\$ }}		800/3 00/3	8	2/3				7. 8.	Other_	'4
Sampler's Signature		Sample's Printed Nar کیسی ک	ne ∕ri∧s⊶Q				Î	197		5/2 2/2 2/2 2/2			\$\\${			\$\\5 \$\\5				\$	/	/ AL7	REN ERNATE	IARKS/ DESCRIP	PTION
		LAB ID	SAM DATE	PLING TIME	MATE	RIX										:									
WCZ-ORER			01.0/23	ତ୧3ତ	INIATE	للأدع	نن)							_			~	$\overline{\vee}$	\checkmark		<u> </u>				
Wee-0172				0740			to										v	1	V			1			
WG-0:82				1 2:45			i .										~		V	1-		<u> </u>			
WC2-BIG2				1 C: Ø			U									† · ·-	V	1	1	-		<u> </u>			
WC2-020R			ł	1455	Ŷ		5										~	۲	4						
					 								-					ļ		<u> </u>					
						-															÷	──		·	
															<u> </u>			-							
·····						-															+				
SPECIAL INSTRUCTIONS/COMMENTS	S			1					т. /	urnar riuse	i Nound H (surc	requi Harge	REMEN S APPLY	RTS)		REP . I. Resu	ORT RI Ulis Only	EQUIRE	EMENT	ſS		INVO	ice info	OTAMRIO	IN
									PLEAS	SE CIRC	LE WOP	rk days	; ~~			_ II, Res (LCS,	ults + Qi DUP; MS	C Summ MSD as	aries s require	e3)	PO	;			
										1 STAN	2 Idard	3	U			_ III. Res Summ	sults ≁ Ci aries	IC and C	alibralio	n	BIL V	-TO: (ارت ندید)		ί ξι, μ.	te car
									REQU	ESTED	FAX DAT	т <u>е '-/</u>	23/4	.э		_ IV. Dat	a Vakdal	tion Repo	ort with I	Raw Dala	a 🛶 -	N De	بتعقيد	ASA.	<u>A</u>
See QAPP									REQU	ESTED	REPORT	DATE_				_ V. Spe	icalized	Forms / (,	Эlstom	Réport					
SAMPLE RECEIPT: CONDITION/C	COOLER TEMP	·		CUS	STODY	SEAL	S: Y	'N							1	Edat	a <u> </u>	Yes	<u> </u>	40					
RELINQUISHED 8Y		RECEIVED BY		REI	LINQUISI	HED B	Y				AECE	IVED B	Y			I	RELINC	NUSHEI	DBY				RECEIVE	D BY	
Signature under fail	Signalure	15:14-	Si	ignalure					Signati	ure					Signa	tlure					Sigr	alure			
Printed Name C.F.	Printed Name	Sober	ıЧ	inted Name					Printed	d Name					Printe	ed Name				<u>-</u>	Prin	led Name			
Fill a Cores Princence	Firm . FID	CAS	Fi	rn					Fim		·				Firm						Fan				
Date/Time 67.0/23 17.55	Date/Time;	1755		ale(Time					Date/T	îme					Date	Time					Date	Time			

Distribution: White - Return to Originator: Yellow - Lab Copy; Pink - Relained by Client

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
М	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a
	substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but greater
	than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X Sec case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been clevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic lingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petrolenim product, but the chition pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Organic Analysis: <u>Picric Acid</u>

Summary Package

Sample and QC Results

Client:Wil Chee PlanningProject:Jungle Warfare Training EA/TO:0048DACA8300-D-0012

Cover Page - Organic Analysis Data Package Picric Acid

		Date	Date
Sample Name	Lab Code	Collected	Received
WCP-016R	K2304510-001	06/16/2003	06/18/2003
WCP-017R	K2304510-002	06/16/2003	06/18/2003
WCP-018R	K2304510-003	06/16/2003	06/18/2003
WCP-019R	K2304510-004	06/16/2003	06/18/2003
WCP-020R	K2304510-005	06/16/2003	06/18/2003
WCP-016RMS	KWG0309010-1	06/16/2003	06/18/2003
WCP-016RDMS	KWG0309010-2	06/16/2003	06/18/2003

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature 23/03 Date:

Name Title:

 $U^{t} : : \mathcal{O}^{t} :$

Cover Page - Organic

Analytical Results

Client:	Wil Chee Planning	Service Request:	K2304510
Project:	Jungle Warfare Training EA/TO:0048DACA8300-D-0012	Date Collected:	06/16/2003
Sample Matrix:	Water	Date Received:	06/18/2003

Picric Acid

Sample Name:	WCP-016R	Units:	ug/L
Lab Code:	K2304510-001	Basis:	NA
Extraction Method: Analysis Method:	EPA 3510M 8151M	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Picric Acid	ND U	6,8	1.9	1	06/19/03	06/20/03	KWG0309010	*

* See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromo-2,6-dichlorophenol	82	70-130	06/20/03	Acceptable	

Comments:

Merged

.

.....

Analytical Results

Client:	Wil Chee Planning	Service Request:	K2304510
Project:	Jungle Warfare Training EA/TO:0048DACA8300-D-0012	Date Collected:	06/16/2003
Sample Matrix:	Water	Date Received:	06/18/2003

Pieric Acid

Sample Name:	WCP-017R	Units:	ug/L
Lab Code:	K2304510-002	Basis:	NA
Extraction Method: Analysis Method:	EPA 3510M 8151M	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Picric Acid	ND U	6.8	1.9	I	06/19/03	06/20/03	KWG0309010	*

* See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromo-2,6-dichlorophenol	80	70-130	06/20/03	Acceptable	

Comments:

Morged

1 of 1

Analytical Results

Client:	Wil Chee Planning	Service Request:	K2304510
Project:	Jungle Warfare Training EA/TO:0048DACA8300-D-0012	Date Collected:	06/16/2003
Sample Matrix:	Water	Date Received:	06/18/2003

Picric Acid

Sample Name:	WCP-018R	Units:	ug/L
Lab Code:	K2304510-003	Basis:	NA
Extraction Method: Analysis Method:	EPA 3510M 8151M	Levei:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Picric Acid	ND U	6.8	1.9	1	06/19/03	06/20/03	KWG0309010	*

* See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromo-2,6-dichlorophenol	71	70-130	06/20/03	Acceptable

Comments:

Merged

l of l

Analytical Results

Client:	Wil Chee Planning	Service Request:	K2304510
Project:	Jungle Warfare Training EA/TO:0048DACA8300-D-0012	Date Collected:	06/16/2003
Sample Matrix:	Water	Date Received:	06/18/2003

Picric Acid

Sample Name:	WCP-019R	Units:	ug/L
Lab Code:	K2304510-004	Basis:	NA
Extraction Method: Analysis Method:	EPA 3510M 8151M	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Picric Acid	ND U	6.8	1.9	1	06/19/03	06/20/03	KWG0309010	*

* See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromo-2,6-dichlorophenol	85	70-130	06/20/03	Acceptable

Comments:

Merged

Form 1A - Organic

Analytical Results

Client:	Wil Chee Planning	Service Request:	K2304510
Project:	Jungle Warfare Training EA/TO:0048DACA8300-D-0012	Date Collected:	06/16/2003
Sample Matrix:	Water	Date Received:	06/18/2003

Picric Acid

Sample Name: Lab Code:	WCP-020R K2304510-005							· ·	Units: ug/L Basis: NA	
Extraction Method: Analysis Method:	EPA 3510M 8151M]	Level: Low	
Analyte Name		Result (Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Picric Acid		ND (J	6.8	1.9	1	06/19/03	06/20/03	KWG0309010	*

* See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromo-2,6-dichlorophenol	82	70-130	06/20/03	Acceptable

Comments:

Merged

Organic Analysis: <u>Nitroaromatics and Nitramines (Explosives)</u>

Summary Package

Sample and QC Results

Wil Chee Planning Jungle Warfare Training EA/TO:0048DACA8300-D-0012

Cover Page - Organic Analysis Data Package Nitroaromatics and Nitramines (Explosives)

Sample Name	Lab Code	Date Collected	Date Received
WCP-016R	K2304510-001	06/16/2003	06/18/2003
WCP-017R	K2304510-002	06/16/2003	06/18/2003
WCP-018R	K2304510-003	06/16/2003	06/18/2003
WCP-019R	K2304510-004	06/16/2003	06/18/2003
WCP-020R	K2304510-005	06/16/2003	06/18/2003
WCP-019RMS	KWG0309037-1	06/16/2003	06/18/2003
WCP-019RDMS	KWG0309037-2	06/16/2003	06/18/2003

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature:	200	Name:	Elizabeth Studialer		
Date:	<u>C/13/03</u>	Title:	Cham.s.t		
	Cover Page	e - Organic		Page	I of

Analytical Results

Client:	Wil Chee Planning	Service Request:	K2304510
Project:	Jungle Warfare Training EA/TO:0048DACA8300-D-0012	Date Collected:	06/16/2003
Sample Matrix:	Water	Date Received:	06/18/2003
		Dete Estadade	06/20/2002

Date Extracted: 06/20/2003 Date Analyzed: 06/20/2003

Nitroaromatics and Nitramines (Explosives)

Sample Name: Lab Code: File ID: Instrument ID:	WCP-016R K2304510-001 J:\LC03\DATA\0620A03\0620A007.D LC03	Units: Basis: Level:	ug/L NA Low
Extraction Method: Analysis Method:	EPA 3535 8330	Extraction Lot: Calibration ID:	KWG0309037 CAL2689
Sample Amount:	1.05 L	Column1:	Restek 0.46 x j

CAS No.	Analyte Name	Result	Q	MRL	MDL	Note
2691-41-0	HMX	0.31	U	2.0	0.31	
121-82-4	RDX	0.19	U	2.0	0.19	
99-35-4	1,3,5-Trinitrobenzene	0.23	U	2.0	0,23	
99-65-0	1,3-Dinitrobenzene	0.14	U	2.0	0.14	
479-45-8	TETRYL	0.26	U	2.0	0.26	
98-95-3	Nitrobenzene	0.17	U	2.0	0.17	
1946-51-0	4-Amino-2,6-dinitrotoluene	0.13	U	2.0	0.13	
35572-78-2	2-Amino-4,6-dinitrotoluene	0.17	U	2.0	0.17	
118-96-7	2,4,6-Trinitrotoluene	0.15	U	2.0	0.15	
606-20-2	2,6-Dinitrotoluene	0.24	U	2.0	0.24	
121-14-2	2,4-Dinitrotoluene	0.12	U	2.0	0.12	
88-72-2	2-Nítrotoluene	0.41	U	2.0	0.41	
99-99-0	4-Nitrotoluene	0.47	ប	2.0	0.47	
99-08-1	3-Nitrotoluene	0.30	U	2.0	0.30	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1-Chloro-3-nitrobenzene	95	64-113	06/20/03	Acceptable	

Comments:

% Solids:

Dilution Factor:

ŇA

1

Analytical Results

Client:	Wil Chee Planning	Service Request:	K2304510
Project:	Jungle Warfare Training EA/TO:0048DACA8300-D-0012	Date Collected:	06/16/2003
Sample Matrix:	Water	Date Received:	06/18/2003

Date Extracted: 06/20/2003 Date Analyzed: 06/20/2003

Nitroaromatics and Nitramines (Explosives)

Sample Name:	WCP-017R	Units:	ug/L
Lab Code:	K2304510-002	Basis:	NA
File ID: Instrument ID:	J:\LC03\DATA\0620A03\0620A008.D LC03	Level:	Low
Extraction Method:	EPA 3535	Extraction Lot:	KWG0309037
Analysis Method:	8330	Calibration ID:	CAL2689
Sample Amount:	1.05 L	Column1:	Restek 0.46 x)

CAS No.	Analyte Name	Result	Q	MRL	MDL	Note
2691-41-0	HMX	0.31	U	2.0	0.31	
121-82-4	RDX	0.19	U	2.0	0.19	
99-35-4	1,3,5-Trinitrobenzene	0.23	U	2.0	0.23	
99-65-0	1,3-Dinitrobenzene	0.14	U	2.0	0.14	
479-45-8	TETRYL	0.26	U	2.0	0.26	
98-95-3	Nitrobenzene	0.17	Ŭ	2.0	0.17	
1946-51-0	4-Amino-2,6-dinitrotoluene	0.13	U	2.0	0.13	
35572-78-2	2-Amino-4,6-dinitrotoluene	0.17	U	2.0	0.17	
118-96-7	2,4,6-Trinitrotoluene	0.15	U	2.0	0.15	
606-20-2	2,6-Dinitrotoluene	0.24	U	2.0	0.24	
121-14-2	2,4-Dinitrotoluene	0.12	U	2.0	0.12	
88-72-2	2-Nitrotoluene	0.41	U	2.0	0.41	
99-99-0	4-Nitrotoluene	0.47	U	2.0	0.47	
99-08-1	3-Nitrotoluene	0.30	U	2.0	0.30	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1-Chloro-3-nitrobenzene	91	64-113	06/20/03	Acceptable	

Comments:

% Solids:

Dilution Factor:

NA

1

Analytical Results

Client:	Wil Chee Planning	Service Request:	K2304510
Project:	Jungle Warfare Training EA/TO:0048DACA8300-D-0012	Date Collected:	06/16/2003
Sample Matrix:	Water	Date Received:	06/18/2003
		D (D () 1	A < 100 10000

Date Extracted: 06/20/2003 Date Analyzed: 06/20/2003

Nitroaromatics and Nitramines (Explosives)

Sample Name:	WCP-018R	Units:	ug/L
Lab Code:	K2304510-003	Basis:	NA
File ID:	J:\LC03\DATA\0620A03\0620A009.D	Level:	Low
Instrument ID:	LC03		
Extraction Method:	EPA 3535	Extraction Lot:	KWG0309037
Analysis Method:	8330	Calibration ID:	CAL2689
		Column1:	Restek 0.46 x i
Sample Amount:	.80 L		
% Solids:	NA		

CAS No.	Analyte Name	Result	Q	MRL	MDL	Note
2691-41-0	HMX	0.31	U	2.0	0.31	
121-82-4	RDX	0.19	U	2.0	0,19	
99-35-4	1,3,5-Trinitrobenzene	0.23	U	2.0	0,23	
99-65-0	1,3-Dinitrobenzene	0.14	U	2.0	0.14	
479-45-8	TETRYL	0.26	U	2.0	0.26	
98-95-3	Nitrobenzene	0.17	U	2.0	0.17	
1946-51-0	4-Amino-2,6-dinitrotoluene	0.13	U	2.0	0.13	
35572-78-2	2-Amino-4,6-dinitrotoluene	0.17	U	2.0	0.17	
118-96-7	2,4,6-Trinitrotoluene	0.15	U	2.0	0.15	
606-20-2	2,6-Dinitrotoluene	0.24	U	2.0	0.24	
121-14-2	2,4-Dinitrotoluene	0.12	U	2.0	0.12	
88-72-2	2-Nitrotoluene	0.41	U	2.0	0.41	
99-99-0	4-Nitrotoluene	0.47	U	2.0	0.47	
99-08-1	3-Nitrotoluene	0.30	U	2.0	0.30	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1-Chloro-3-nitrobenzene	100	64-113	06/20/03	Acceptable

Comments:

Ι

Dilution Factor:

Analytical Results

Client:	Wil Chee Planning	Service Request:	K2304510
Project:	Jungle Warfare Training EA/TO:0048DACA8300-D-0012	Date Collected:	06/16/2003
Sample Matrix:	Water	Date Received:	06/18/2003
-		Data Extractade	06/20/2003

Date Extracted: 06/20/2003 **Date Analyzed:** 06/20/2003

Nitroaromatics and Nitramines (Explosives)

Sample Name: Lab Code: File ID: Instrument ID:	WCP-019R K2304510-004 J:\LC03\DATA\0620A03\0620A010.D LC03	Units: Basis: Level:	ug/L NA Low
Extraction Method: Analysis Method:	EPA 3535 8330	Extraction Lot: Calibration ID:	KWG0309037 CAL2689
Sample Amount:	IL	Column1:	Restek 0.46 x]

% Solids:NADilution Factor:1

CAS No.	Analyte Name	Result	Q	MRL	MDL	Note
2691-41-0	HMX	0.31	υ	2.0	0.31	
121-82-4	RDX	0.19	Ũ	2.0	0.19	
99-35-4	1,3,5-Trinitrobenzene	0.37	JN	2.0	0.23	
99-65-0	1,3-Dinitrobenzene	0.14	U	2.0	0.14	
479-45-8	TETRYL	0.26	U	2.0	0.26	
98-95-3	Nitrobenzene	0.17	U	2.0	0.17	
1946-51-0	4-Amino-2,6-dinitrotoluene	0.13	U	2.0	0.13	
35572-78-2	2-Amino-4,6-dinitrotoluene	0.17	U	2.0	0.17	
118-96-7	2,4,6-Trinitrotoluene	0.15	U	2.0	0.15	
606-20-2	2,6-Dinitrotoluene	0,39	ĴN	2.0	0.24	· · · · ·
121-14-2	2,4-Dinitrotoluene	0.12	U	2.0	0.12	
88-72-2	2-Nitrotoluene	0.41	U	2.0	0.41	
99-99-0	4-Nitrotoluene	0.47	U	2.0	0.47	
99-08-1	3-Nitrotoluene	0.30	U	2.0	0.30	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1-Chloro-3-nitrobenzene	93	64-113	06/20/03	Acceptable	

Comments:

Analytical Results

Client:	Wil Chee Planning	Service Request:	K2304510
Project:	Jungle Warfare Training EA/TO:0048DACA8300-D-0012	Date Collected:	06/16/2003
Sample Matrix:	Water	Date Received:	06/18/2003

 Date Received:
 06/18/2003

 Date Extracted:
 06/20/2003

 Date Analyzed:
 06/20/2003

Nitroaromatics and Nitramines (Explosives)

Sample Name: Lab Code: File ID: Instrument ID:	WCP-020R K2304510-005 J:\LC03\DATA\0620A03\0620A013.D LC03	Units: Basis: Level:	ug/L NA Low
Extraction Method: Analysis Method:	EPA 3535 8330	Extraction Lot: Calibration ID:	KWG0309037 CAL2689
Sample Amount: % Solids:	1.05 L NA	Column1:	Restek 0.46 x]

CAS No.	Analyte Name	Result (Q	MRL	MDL	Note
2691-41-0	HMX	0.31 U	Ų	2.0	0.31	
121-82-4	RDX	0.19 U	U	2.0	0.19	
99-35-4	1,3,5-Trinitrobenzene	0.23 U	U	2.0	0.23	
99-65-0	I,3-Dinitrobenzene	0.14 U	U	2.0	0.14	
479-45-8	TETRYL	0.26 U	U	2.0	0.26	
98-95-3	Nitrobenzene	0.17 U	U	2.0	0.17	
1946-51-0	4-Amino-2,6-dinitrotoluene	0.13 U	U	2.0	0.13	
35572-78-2	2-Amino-4,6-dinitrotoluene	0.17 U	U	2.0	0.17	
118-96-7	2,4,6-Trinitrotoluene	0.15 U	Ų	2.0	0.15	
606-20-2	2,6-Dinitrotoluene	0.24 U	Ŭ	2.0	0.24	
121-14-2	2,4-Dinitrotoluene	0.12 L	U	2.0	0.12	
88-72-2	2-Nitrotoluene	0.41 U	Ų	2.0	0.41	
99-99-0	4-Nitrotoluene	0.47 L	J	2.0	0.47	
99-08-1	3-Nitrotoluene	0.30 L	J	2.0	0.30	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1-Chloro-3-nitrobenzene	94	64-113	06/20/03	Acceptable

Comments:

Dilution Factor:

1

Organic Analysis: <u>Nitroglycerin and PETN</u>

Summary Package

Sample and QC Results

Client:Wil Chee PlanningProject:Jungle Warfare Training EA/TO:0048DACA8300-D-0012

Cover Page - Organic Analysis Data Package Nitroglycerin and PETN

		Date	Date
Sample Name	Lab Code	Collected	Received
WCP-016R	K2304510-001	06/16/2003	06/18/2003
WCP-017R	K2304510-002	06/16/2003	06/18/2003
WCP-018R	K2304510-003	06/16/2003	06/18/2003
WCP-019R	K2304510-004	06/16/2003	06/18/2003
WCP-020R	K2304510-005	06/16/2003	06/18/2003
WCP-016RMS	KWG0308966-1	06/16/2003	06/18/2003
WCP-016RDMS	KWG0308966-2	06/16/2003	06/18/2003

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature:	8.
-	

Name: Elizabeth Scheriden

Date:

6/23/07

Title: Chamiel

U:\Stealth\Crystal.rpt\FormSSum.rpt

Cover Page - Organic 331

SuperSet Reference: RR27918

Analytical Results

Client:	Wil Chee Planning	Service Request:	K2304510
Project:	Jungle Warfare Training EA/TO:0048DACA8300-D-0012	Date Collected:	06/16/2003
Sample Matrix:	Water	Date Received:	06/18/2003
		Date Extracted:	06/19/2003

Nitroglycerin and PETN

Sample Name: Lab Code: File ID: Instrument ID:	WCP-016R K2304510-001 J:\LC03\DATA\0621N03\0621N006.D LC03	Units: Basis: Level:	ug/L NA Low
Extraction Method: Analysis Method:	METHOD 8332	Extraction Lot: Calibration ID:	KWG0308966 CAL2620
Sample Amount: % Solids: Dilution Factor:	1.05 L NA 1	Column1:	Pinnacle ODS

CAS No.	Analyte Name	Result Q	MRL	MDL	Note
55-63-0	Nitroglycerin	0.94 U	2.0	0.94	
78-11-5	Pentaerythritol Tetranitrate	0.87 U	2.0	0.87	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
2,3-Dimethyl-2,3-dinitrobutane	72	70-130	06/21/03	Acceptable

Comments:

Not Merged

Date Analyzed: 06/21/2003

Analytical Results

Client:	Wil Chee Planning	Service Request:	K2304510
Project:	Jungle Warfare Training EA/TO:0048DACA8300-D-0012	Date Collected:	06/16/2003
Sample Matrix:	Water	Date Received:	06/18/2003
		Date Extracted:	06/19/2003

Nitroglycerin and PETN

Sample Name: Lab Code: File ID: Instrument ID:	WCP-017R K2304510-002 J:\LC03\DATA\062003\06200010.D LC03	Units: Basis: Level:	ug/L NA Low
Extraction Method: Analysis Method:	METHOD 8332	Extraction Lot: Calibration ID:	KWG0308966 CAL2620
Sample Amount: % Solids: Dilution Factor:	1.05 L NA 1	Column1:	Pinnacle ODS

CAS No.	Analyte Name	Result Q	MRL	MDL	Note	
55-63-0	Nitroglycerin	0.94 U	2.0	0.94		
78-11-5	Pentaerythritol Tetranitrate	0.87 U	2.0	0.87		

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2,3-Dimethyl-2,3-dinitrobutane	81	70-130	06/20/03	Acceptable	 ~~

Comments:

Not Merged

1 of 1

Date Analyzed: 06/20/2003

Analytical Results

Client:	Wil Chee Planning	Service Request:	K2304510
Project:	Jungle Warfare Training EA/TO:0048DACA8300-D-0012	Date Collected:	06/16/2003
Sample Matrix:	Water	Date Received:	06/18/2003
		Data Extracted	06/10/2002

Date Extracted: 06/19/2003 **Date Analyzed:** 06/20/2003

Nitroglycerin and PETN

Sample Name:	WCP-018R	Units:	ug/L
Lab Code:	K2304510-003	Basis:	ŇĂ
File ID:	J:\LC03\DATA\062003\06200011.D	Level:	Low
Instrument ID:	LC03		
Extraction Method:	METHOD	Extraction Lot:	KWG0308966
Analysis Method:	8332	Calibration ID:	CAL2620
		Column1:	Pinnacle ODS
Sample Amount:	1.05 L		
% Solids:	NA		
Dilution Factor:	1		

CAS No.	Analyte Name	Result	Q	MRL	MDL	Note	
55-63-0	Nitroglycerin	0.94	U	2.0	0.94		
78-11-5	Pentaerythritol Tetranitrate	0.87	U	2.0	0.87		

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2,3-Dimethyl-2,3-dinitrobutane	77	70-130	06/20/03	Acceptable	1.010

Comments:

Not Merged

l of I

Analytical Results

Client:	Wil Chee Planning	Service Request:	K2304510
Project:	Jungle Warfare Training EA/TO:0048DACA8300-D-0012	Date Collected:	06/16/2003
Sample Matrix:	Water	Date Received:	06/18/2003
		Date Extracted:	06/19/2003

Nitroglycerin and PETN

Sample Name: Lab Code: File ID: Instrument ID:	WCP-019R K2304510-004 J:\LC03\DATA\062003\06200012.D LC03	Units: Basis: Level:	ug/L NA Low
Extraction Method: Analysis Method:	METHOD 8332	Extraction Lot: Calibration ID:	KWG0308966 CAL2620
Sample Amount: % Solids: Dilution Factor:	0.95 L NA 1	Column1:	Pinnacle ODS

CAS No.	Analyte Name	Result	Q	MRL	MDL	Note
55-63-0	Nitroglycerin	0.99	U	2.2	0,99	
78-11-5	Pentaerythritol Tetranitrate	0.92	U	2.2	0.92	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2,3-Dimethyl-2,3-dinitrobutane	78	70-130	06/20/03	Acceptable	

Comments:

Not Merged

Date Analyzed: 06/20/2003

Analytical Results

Client:	Wil Chee Planning	Service Request:	K2304510
Project:	Jungle Warfare Training EA/TO:0048DACA8300-D-0012	Date Collected:	06/16/2003
Sample Matrix:	Water	Date Received:	06/18/2003
		Date Extracted:	06/19/2003
		Date Analyzed:	06/20/2003

Nitroglycerin and PETN

Sample Name: Lab Code: File ID: Instrument ID:	WCP-020R K2304510-005 J:\LC03\DATA\062003\06200013.D LC03	Units: Basis: Level:	ug/L NA Low
Extraction Method: Analysis Method:	METHOD 8332	Extraction Lot: Calibration ID:	KWG0308966 CAL2620
Sample Amount: % Solids: Dilution Factor:	1.05 L NA I	Column1:	Pinnacle ODS

CAS No.	Analyte Name	Result Q	MRL	MDL	Note	
55-63-0	Nitroglycerin	0.94 U	2.0	0.94		
78-11-5	Pentaerythritol Tetranitrate	0.87 U	2.0	0.87		

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2,3-Dimethyl-2,3-dinitrobutane	84	70-130	06/20/03	Acceptable	

Comments:

Not Merged

1 of 1

APPENDIX C. FIELD EFFORT WEEKLY STATUS REPORTS

WEEKLY OPERATIONS SUMMARY

Week Of: 09/29/2008 – 10/03/2008

PAGE 1 OF 6 PAGES

SITE: Waikane Valley Training Area Site Investigation Project, MCBH Kaneohe, HI

1. WORK SUMMARY

a. Work Accomplished:	Number Completed	Total Remaining
(1) Survey	0%	100%
(2) Preparation	N/A	N/A
(3) Mag & Flag	N/A	N/A
(4) Re-acquisition	N/A	N/A
(5) Intrusive	N/A	N/A
(6) Quality Control	N/A	N/A
(7) Quality Assuran	nce N/A	N/A
b. Discrepancies: None		
c. Inspection Results:	Pass	Fail
(1) Quality Control	2	0
(2) Quality Assuran	ce 0	0
(3) Safety	2	0

2. INSTRUCTIONS RECEIVED FROM CUSTOMER REPRESENTATIVE:

Mobilize in the Site Manager, SUXOS, UXOSO/QCS and UXO Technician III to conduct logistics set-up operations. Participate in the Field Work Kick-Off Meeting with Naval Facilities Command Pacific (NAVFAC Pacific), MCBH Kaneohe Public Affairs Office, Pacific Consulting Services, Inc. and MCBH Kaneohe Environmental Department personnel. Conduct review of project Work Plan, Health and Safety Plan, and Accident Prevention Plan with all project field personnel. Conduct site training with all project field personnel.

Weekly OPS-1 Form

Weekly Operations Summary Continued

PAGE 2 OF 6 PAGES

3. MEC SUMMARY

a. MEC Located: No MEC located this week.

Type:	Quantity:	Live/Prac.	Remarks:

Weekly OPS-1 Form
Туре:	Quantity:	Remarks:

b. Demolition Supplies Expended: No demolition items expended this week.

c. MD/Scrap Generation / Deposition: No MD/Scrap generated or disposed of.

Туре:	Quantity:	Weight:	Remarks:

Weekly OPS-1 Form

Weekly Operations Summary Continued

PAGE 4 of 6 PAGES

4. Utilization

a. Weekly Man-hours:

Labor	Task #	M/H	M/H 0%	M/H 4%	M/H		
Category:		Week:	:		Overtime		
Site Manager	3	40	40	0	7		
SUXOS	3	33	25	8	0		
UXO Technician III	3	32	24	8	0		
UXO Technician II	3	56	40	16	0		
UXO Technician I	3	28	20	8	0		
UXOSO	3	17	13	4	1		
UXOQCS	3	17	13	4	1		
EMT	3	28	28	0	0		
Sub-Contractor Person	Sub-Contractor Personnel (List by Category)						
DEI / UXO Tech II	3	20	12	8	0		
DEI / UXO Tech I	3	20	12	8	0		
Wil Chee Planning	3	0	0	0	0		

b. Weekly Equipment:

Description:	Task:	Number	Basis:	Total Units	Remarks:
		of Units:		for Week:	
SUV Vehicle	3	3	Week	3	
Truck Crew Cab	3	1	Week	1	
MineLab Detector	3	6	Week	6	
Trimble GeoXT	3	3	Week	3	
Handheld GPS					
Brush Cutter	3	2	Week	2	
Laptop Computer	3	1	Week	1	
Cell Phone	3	1	Week	1	
Printer	3	1	Week	1	
Digital Camera	3	2	Week	2	
Hand Held Radio	3	6	Week	6	
EMT Medical Gear	3	1	Week	1	
Safety Equipment	3	2	Week	2	
Operating Equipment	3	2	Week	2	

Weekly OPS-1 Form

Weekly Operations Summary Con't.

5. Operational Remarks:

During the week's operations, the Site Manager, SUXOS, Dual-Hatted UXOSO/QCS, and UXO Tech III mobilized in to conduct the logistics set-up for the project and project Kick-Off meeting.

The Site Manager, SUXOS, UXOSO/QCS and UXO Tech III conducted all logistic preparations for project operations and lodging.

On Monday the 29th of September @1400, the Site Manager, SUXOS, UXOSO/QCS and UXO Tech III attended the Project Field Work Kick-Off meeting held at the MCBH Environmental Department. Personnel from NAVFAC Pacific, MCBH Environmental Department, MCBH Public Affairs Office, Pacific Consulting Services, Inc. and Wil Chee Planning were in attendance.

On Tuesday the 30th of September, the remainder of USA field personnel arriving from the U.S. Mainland and Hawaiian islands nearby mobilized in for commencement of field operations on Wednesday the 1st of October.

On Wednesday the 1st of October the following operations occurred on site:

During the week's field operations, the Site Manager and SUXOS conducted an Operations Brief with all site field personnel. The project dual-hatted UXO Safety Officer/Quality Control Supervisor conducted Site Specific Safety and Health Training and a review of all site specific Activity Hazard Analysis (AHA) with all site field personnel. All project field personnel received a Cultural Resources Awareness Briefing from the project site Archeologist team from Pacific Consulting Services, Inc. SI Team personnel on site in the field this week included a Site Manager, SUXOS, dual-hatted UXOSO/QCS, 1-UXO Technician III, 3-UXO Technicians II, 2-UXO Technicians I, and 2-Archeologist from Pacific Consulting. One UXO Technician II and one UXO Technician I was provided by USA Environmental sub-contractor DEI.

SI Field Team constructed the project Instrument Test Plot (ITP) just inside the site fence line located in the southeastern corner of the Waikane Valley Training Area, and completed an operational and acceptance test on all 6-project Minelab Explorer II hand-held detectors.

The SI Field Management Team conducted and completed training on the Minelab Explorer II hand-held detector and the Trimble GeoXT hand-held GPS/PDA with all site UXO personnel.

On Thursday the 2nd of October the following operations occurred on site:

The Reconnaissance Teams attempted to acquire GPS waypoints on the southeastern and southwestern corners of the existing fence line marking the SI boundaries. Due to the incorrect GPS projection being used this task was not accomplished.

Weekly OPS-1 Form Weekly Operations Summary Con't.

PAGE 6 of 6 PAGES

The Reconnaissance Teams marked the eastern and western boundary fence line with flagging ribbon at 70 foot intervals to use as reference marks and location assistance due to the inability to acquire GPS satellites on the project site.

The Team also conducted in-field training on the proper and correct methods of performing the reconnaissance procedures.

Due to the lack of the correct GIS information for the Waikane SI project site, no actual reconnaissance operations were conducted this week, only training. On Monday the 6^{th} of October it is expected that the correct GIS data will be on-hand and loaded into the Trimble hand-held units, and reconnaissance operations will commence.

6. Signature / Date:

Daniel Miller USA Environmental Site Manager Date: 10/03/2008

Weekly OPS-1 Form

DAILY OPERATIONS SUMMARY

DATE: Monday, 10/06/2008

PAGE 1 OF 5 PAGES

SITE: Waikane Valley Training Area Site Investigation Project, MCBH Kaneohe, HI

1. WORK SUMMARY

a.	Work Accomplished:	Number Completed	Total Remaining
	(1) Survey	10%	90%
	(2) Survey Cells/Grid	ds 03	33
	(3) Mag & Flag	N/A	N/A
	(4) Geophysical	N/A	N/A
	(5) Intrusive	N/A	N/A
	(6) Quality Control	Daily	Daily
	(7) Quality Assurance	e N/A	N/A
b. D	Discrepancies: None		
c.]	Inspection Results:	Pass Fail	
	(1) Quality Control	1 0	

0

0

(**3**) Safety 1 0

2. INSTRUCTIONS RECEIVED FROM CUSTOMER REPRESENTATIVE:

(2) Quality Assurance

Commence reconnaissance operations within the site investigation (SI) boundaries of the Former Waikane Valley Training Area as per the Project Work Plan and Scope of Work.

Daily Operations Summary Continued

PAGE 2 OF 5 PAGES

3. UXO SUMMARY

a. MEC Located: No MEC located this day.

Туре:	Quantity:	Live/Prac.	Remarks:

Туре:	Quantity:	Remarks:

b. Demolition Supplies Expended: No demolition items expended this day.

c. MD/Scrap Generation / Deposition: No MD/Scrap generated or disposed of.

Туре:	Quantity:	Weight:	Remarks:
-			
-			
-			
-			

PAGE 4 of 5 PAGES

Daily Operations Summary Continued

4. Utilization

a. Daily Man-hours:

Labor	Task #	M/H	M/H 0%	M/H 4%	M/H 8%	
Category:		Today:	:			
Site Manager	3	13	13	0	0	
SUXOS	3	10	1	9	0	
UXO Technician III	3	10	1	9	0	
UXO Technician II	3	20	2	18	0	
UXO Technician I	3	10	1	9	0	
UXOSO	3	5.5	1	4.5	0	
UXOQCS	3	5.5	1	4.5	0	
EMT	3	10	10	0	0	
Sub-Contractor Personnel (List by Category)						
DEI / UXO Tech II	3	10	1	9	0	
DEI / UXO Tech I	3	10	1	9	0	
Wil Chee Planning	3	0	0	0	0	

b. Daily Equipment:

Description:	Task:	Number of	Hours	Total Hours	Remark
		Units	Used Each:	Used:	s:
SUV Vehicle	3	3	12	36	
Truck Crew Cab	3	1	12	12	
MineLab Detector	3	6	10	60	
Trimble GeoXT	3	3	10	30	
Handheld GPS					
Brush Cutter	3	2	10	20	
Laptop Computer	3	1	14	14	
Cell Phone	3	1	11	11	
Printer	3	1	10	10	
Digital Camera	3	2	10	20	
Hand Held Radio	3	6	10	60	
EMT Medical Gear	3	1	10	10	
Safety Equipment	3	2	10	20	
Operating Equipment	3	2	10	20	

Daily Operations Summary Con't.

PAGE 5 of 5 PAGES

5. Operational Remarks:

The SI field team commenced reconnaissance operations within the boundaries of the Former Waikane Valley Training Area.

It was noted at the beginning of the day's operations that there was still an issue with the provided GIS/ArcPad data shape files loaded in the Trimble GeoXT hand-held GPS/PDA units. The data files drop down check list folder was not functioning as should. The site manager was made aware of this and immediately contacted the USA Environmental GIS manager to email the corrected shape files in order to fix the problem.

The reconnaissance field team proceeded with conducting reconnaissance operations. The team had to temporarily resort to writing the collected data down in a field pocket note pad to be imputed into the GeoXT hand-held PDA latter when it is functioning properly.

The reconnaissance field team encountered extremely heavy underbrush vegetation and thick vegetation canopy throughout the day's operations. That along with the very wet environment conditions made it a very low productive day. Being able to acquire GPS Satellite coverage while conducting reconnaissance operations is a very difficult if not an impossible task, but the team does attempt to acquire a GPS waypoint when a clear to partial view of the sky is present during their traversed path.

It was noted by the team and brought to the Site Managers attention, that approximately 300 feet of the pink flagging ribbon that was placed on the southwestern fence line portion was ripped off and thrown on the ground over the weekend time period.

During the days reconnaissance operations the team did came across a couple of locations where they noted munitions debris items consisting of 3.5 inch Bazooka Rocket parts and pieces, and M125 series Hand Signaling (Slap Flare) Device on the surface of the traversed reconnaissance path.

As of the end of the day's operations, the reconnaissance team completed 10 percent of the scoped reconnaissance acreage and 3 of the scoped reconnaissance cell/grid locations.

6. Signature / Date:

Daniel Miller_____ Site Manager Date: 10/06/2008

DAILY OPERATIONS SUMMARY

DATE: Tuesday, 10/07/2008

PAGE 1 OF 5 PAGES

SITE: Waikane Valley Training Area Site Investigation Project, MCBH Kaneohe, HI

1. WORK SUMMARY

a. Work Accomplished:	Number Completed	Total Remaining
(1) Survey	5%	85%
(2) Survey Cells/Gr	rids 07	23
(3) Mag & Flag	N/A	N/A
(4) Geophysical	N/A	N/A
(5) Intrusive	N/A	N/A
(6) Quality Control	l Daily	Daily
(7) Quality Assura	nce N/A	N/A
b. Discrepancies: None		
c. Inspection Results:	Pass Fail	
(1) Quality Control	l 1 0	

(2) Quality Assurance	0	0
(3) Safety	1	0

2. INSTRUCTIONS RECEIVED FROM CUSTOMER REPRESENTATIVE:

Continue reconnaissance operations within the site investigation (SI) boundaries of the Former Waikane Valley Training Area as per the Project Work Plan and Scope of Work.

Daily Operations Summary Continued

PAGE 2 OF 5 PAGES

3. UXO SUMMARY

a. MEC Located:

Туре:	Quantity:	Live/Prac.	Remarks:
3.5 inch Rocket Warhead		Suspected	All 5 MEC (UXO) items were
with Motor attached.	05	HE Filled	located on the reconnaissance
Suspected Fuzed and		and Fuzed.	traversed paths. Two items
Fired.			located at one point, the other
			three located at separate
			points.
			•

Туре:	Quantity:	Remarks:

b. Demolition Supplies Expended: No demolition items expended this day.

c. MD/Scrap Generation / Deposition: No MD/Scrap generated or disposed of.

Туре:	Quantity:	Weight:	Remarks:
-			
-			
-			
-			

PAGE 4 of 5 PAGES

Daily Operations Summary Continued

4. Utilization

a. Daily Man-hours:

Labor	Task #	M/H	M/H 0%	M/H 4%	M/H 8%	
Category:		Today:	:			
Site Manager	3	12	12	0	0	
SUXOS	3	10	1	9	0	
UXO Technician III	3	10	1	9	0	
UXO Technician II	3	20	2	18	0	
UXO Technician I	3	10	1	9	0	
UXOSO	3	5.5	1	4.5	0	
UXOQCS	3	5.5	1	4.5	0	
EMT	3	10	10	0	0	
Sub-Contractor Personnel (List by Category)						
DEI / UXO Tech II	3	10	1	9	0	
DEI / UXO Tech I	3	10	1	9	0	
Wil Chee Planning	3	0	0	0	0	

b. Daily Equipment:

Description:	Task:	Number of	Hours	Total Hours	Remark
		Units	Used Each:	Used:	s:
SUV Vehicle	3	3	12	36	
Truck Crew Cab	3	1	12	12	
MineLab Detector	3	6	10	60	
Trimble GeoXT	3	3	10	30	
Handheld GPS					
Brush Cutter	3	2	10	20	
Laptop Computer	3	1	14	14	
Cell Phone	3	1	11	11	
Printer	3	1	10	10	
Digital Camera	3	2	10	20	
Hand Held Radio	3	6	10	60	
EMT Medical Gear	3	1	10	10	
Safety Equipment	3	2	10	20	
Operating Equipment	3	2	10	20	

Daily Operations Summary Con't.

PAGE 5 of 5 PAGES

5. Operational Remarks:

The SI field team continued reconnaissance operations within the boundaries of the Former Waikane Valley Training Area.

The issues experienced during previous day's operations with the Trimble GeoXT hand-held GPS/PDA units seemed to have been corrected and fixed. All three hand-held units worked very well and the reconnaissance team was able to input data throughout the day.

The reconnaissance field team continues to encounter extremely heavy underbrush vegetation and thick vegetation canopy throughout the site. The *Hau* vegetation within the site boundaries has proven to be very difficult to impossible to traverse through. The team is having to traverse around a lot of the area that contain the *Hau* vegetation.

Being able to acquire GPS Satellite coverage while conducting reconnaissance operations continues to be very difficult if not an impossible task, but the team does attempt to acquire a GPS waypoint when a clear to partial view of the sky is present during their traversed path.

The local public continues to enter the site area outside the fence line at will. It appears that most of the personnel are there to go 4-Wheeling, Wild Pig Hunting or Vegetation Removal.

During the days reconnaissance operations the team did came across a couple of locations where they noted munitions debris items consisting of 3.5 inch Bazooka Rocket parts and pieces, and 4 separate MEC (UXO) locations on the surface of the traversed reconnaissance paths.

As of the end of the day's operations, the reconnaissance team completed 5 percent for a total of 15 percent of the scoped reconnaissance acreage and 7 for a total of 10 of the scoped reconnaissance cell/grid locations.

The reconnaissance data and track log shape files for the past two days of operations have been uploaded to the USA ftp site.

6. Signature / Date:

Daniel Miller Site Manager Date: 10/07/2008

DAILY OPERATIONS SUMMARY

DATE: Wednesday, 10/08/2008

PAGE 1 OF 5 PAGES

SITE: Waikane Valley Training Area Site Investigation Project, MCBH Kaneohe, HI

1. WORK SUMMARY

a. Work Accomplished:	Number Completed	Total Remaining
(1) Survey	5%	80%
(2) Survey Cells/Gr	ids 08	16
(3) Mag & Flag	N/A	N/A
(4) Geophysical	N/A	N/A
(5) Intrusive	N/A	N/A
(6) Quality Control	Daily	Daily
(7) Quality Assurar	nce N/A	N/A
b. Discrepancies: None		
c. Inspection Results:	Pass Fail	
(1) Quality Control	1 0	

(**3**) Safety 1 0

0

0

2. INSTRUCTIONS RECEIVED FROM CUSTOMER REPRESENTATIVE:

(2) Quality Assurance

Continue reconnaissance operations within the site investigation (SI) boundaries of the Former Waikane Valley Training Area as per the Project Work Plan and Scope of Work.

Daily Operations Summary Continued

PAGE 2 OF 5 PAGES

3. UXO SUMMARY

a. MEC Located:

Туре:	Quantity:	Live/Prac.	Remarks:
3.5 inch Rocket Warhead		Suspected	All 21 MEC (UXO) items
with Motor attached.	21	HE Filled	were located on the
Suspected Fuzed and		and Fuzed.	reconnaissance traversed
Fired.			paths.

Туре:	Quantity:	Remarks:

b. Demolition Supplies Expended: No demolition items expended this day.

c. MD/Scrap Generation / Deposition: No MD/Scrap generated or disposed of.

Туре:	Quantity:	Weight:	Remarks:
-			
-			
-			
-			

PAGE 4 of 5 PAGES

Daily Operations Summary Continued

4. Utilization

a. Daily Man-hours:

Labor	Task #	M/H	M/H 0%	M/H 4%	M/H 8%	
Category:		Today:	:			
Site Manager	3	12	12	0	0	
SUXOS	3	10	2	8	0	
UXO Technician III	3	10	2	8	0	
UXO Technician II	3	20	4	16	0	
UXO Technician I	3	10	2	8	0	
UXOSO	3	5.5	1.5	4	0	
UXOQCS	3	5.5	1.5	4	0	
EMT	3	10	10	0	0	
Sub-Contractor Personnel (List by Category)						
DEI / UXO Tech II	3	10	2	8	0	
DEI / UXO Tech I	3	10	2	8	0	
Wil Chee Planning	3	0	0	0	0	

b. Daily Equipment:

Description:	Task:	Number of	Hours	Total Hours	Remark
		Units	Used Each:	Used:	s:
SUV Vehicle	3	3	12	36	
Truck Crew Cab	3	1	12	12	
MineLab Detector	3	6	10	60	
Trimble GeoXT	3	3	10	30	
Handheld GPS					
Brush Cutter	3	2	10	20	
Laptop Computer	3	1	14	14	
Cell Phone	3	1	11	11	
Printer	3	1	10	10	
Digital Camera	3	2	10	20	
Hand Held Radio	3	6	10	60	
EMT Medical Gear	3	1	10	10	
Safety Equipment	3	2	10	20	
Operating Equipment	3	2	10	20	

Daily Operations Summary Con't.

PAGE 5 of 5 PAGES

5. Operational Remarks:

The SI field team continued reconnaissance operations within the boundaries of the Former Waikane Valley Training Area.

The reconnaissance field team continues to encounter extremely heavy underbrush vegetation and thick vegetation canopy throughout the site. The *Hau* vegetation within the site boundaries has proven to be very difficult to impossible to traverse through. The team is having to traverse around a lot of the area that contain the *Hau* vegetation.

Being able to acquire GPS Satellite coverage while conducting reconnaissance operations continues to be very difficult if not an impossible task, but the team does attempt to acquire a GPS waypoint when a clear to partial view of the sky is present during their traversed path.

During the days reconnaissance operations the team did came across a couple of locations where they noted munitions debris items consisting of 3.5 inch Bazooka Rocket parts and pieces, and MEC (UXO) items consisting of 3.5 inch Bazooka Rockets.

The team also noted a heavy concentration of munitions items, mainly 3.5 inch Bazooka Rockets, on the traversed path between the 300 foot and 400 foot terrain contour lines.

As of the end of the day's operations, the reconnaissance team completed 5 percent for a total of 20 percent of the scoped reconnaissance acreage and 8 for a total of 18 of the scoped reconnaissance cell/grid locations.

The reconnaissance data and track log shape files for the past two days of operations have been uploaded to the USA ftp site.

6. Signature / Date:

Daniel Miller Site Manager Date: 10/08/2008

DAILY OPERATIONS SUMMARY

DATE: Thursday, 10/09/2008

PAGE 1 OF 5 PAGES

SITE: Waikane Valley Training Area Site Investigation Project, MCBH Kaneohe, HI

1. WORK SUMMARY

a.	Work Accomplished:	Number Completed	Total Remaining
	(1) Survey	8%	72%
	(2) Survey Cells/Grid	ls 02	14
	(3) Mag & Flag	N/A	N/A
	(4) Geophysical	N/A	N/A
	(5) Intrusive	N/A	N/A
	(6) Quality Control	Daily	Daily
	(7) Quality Assurance	e N/A	N/A
b. D	Discrepancies: None		
c.]	Inspection Results:	Pass Fail	
	(1) Quality Control	1 0	

(**3**) Safety 1 0

0

(2) Quality Assurance 0

2. INSTRUCTIONS RECEIVED FROM CUSTOMER REPRESENTATIVE:

Continue reconnaissance operations within the site investigation (SI) boundaries of the Former Waikane Valley Training Area as per the Project Work Plan and Scope of Work.

Daily Operations Summary Continued

PAGE 2 OF 5 PAGES

3. UXO SUMMARY

a. MEC Located:

Туре:	Quantity:	Live/Prac.	Remarks:
3.5 inch Rocket Warhead		Suspected	All 6 MEC (UXO) items were
with Motor attached.	6	HE Filled	located on the reconnaissance
Suspected Fuzed and		and Fuzed.	traversed paths within the SI
Fired.			boundary.
2.36 inch M6 Series		Suspected	Item located on the
Rocket Warhead, Fired.	1	HE Filled.	reconnaissance traversed
			paths within the SI boundary.

Туре:	Quantity:	Remarks:

b. Demolition Supplies Expended: No demolition items expended this day.

c. MD/Scrap Generation / Deposition: No MD/Scrap generated or disposed of.

Туре:	Quantity:	Weight:	Remarks:
-			
-			
-			
-			

PAGE 4 of 5 PAGES

Daily Operations Summary Continued

4. Utilization

a. Daily Man-hours:

Labor	Task #	M/H	M/H 0%	M/H 4%	M/H 8%
Category:		Today:	:		
Site Manager	3	12	12	0	0
SUXOS	3	10	2	8	0
UXO Technician III	3	10	2	8	0
UXO Technician II	3	20	4	16	0
UXO Technician I	3	10	2	8	0
UXOSO	3	5.5	1.5	4	0
UXOQCS	3	5.5	1.5	4	0
EMT	3	10	10	0	0
Sub-Contractor Personnel (List by Category)					
DEI / UXO Tech II	3	10	2	8	0
DEI / UXO Tech I	3	10	2	8	0
Wil Chee Planning	3	0	0	0	0

b. Daily Equipment:

Description:	Task:	Number of	Hours	Total Hours	Remark
		Units	Used Each:	Used:	s:
SUV Vehicle	3	3	12	36	
Truck Crew Cab	3	1	12	12	
MineLab Detector	3	6	10	60	
Trimble GeoXT	3	3	10	30	
Handheld GPS					
Brush Cutter	3	2	10	20	
Laptop Computer	3	1	14	14	
Cell Phone	3	1	11	11	
Printer	3	1	10	10	
Digital Camera	3	2	10	20	
Hand Held Radio	3	6	10	60	
EMT Medical Gear	3	1	10	10	
Safety Equipment	3	2	10	20	
Operating Equipment	3	2	10	20	

Daily Operations Summary Con't.

PAGE 5 of 5 PAGES

5. Operational Remarks:

The SI field team continued reconnaissance operations within the boundaries of the Former Waikane Valley Training Area.

The reconnaissance field team continues to encounter extremely heavy underbrush vegetation and thick vegetation canopy throughout the site. The *Hau* vegetation within the site boundaries has proven to be very difficult to impossible to traverse through. The team has to traverse around a lot of the area that contain the *Hau* vegetation.

Being able to acquire GPS Satellite coverage while conducting reconnaissance operations continues to be very difficult if not an impossible task, but the teams do attempt to acquire a GPS waypoint when a clear to partial view of the sky is present during their traversed path. Today, both reconnaissance teams operated in the 400 foot terrain contour line. Both teams were able to capture GPS satellites more often during the day due to the sparse vegetation canopy cover, much better then the results in the southern portion of the site.

During the days reconnaissance operations the team did came across several locations where they noted munitions debris items consisting of 3.5 inch Bazooka Rocket parts and pieces, and MEC (UXO) items consisting of 3.5 inch and 2.36 inch shoulder fired Rockets.

The team also noted a heavy concentration of munitions items, mainly munitions debris, from miscellaneous shoulder fired Bazooka Rockets, on the traversed path between the east and west sections of 400 foot terrain contour line. To date, it appears that no munitions or munitions debris items are located in the western portion of the site.

There were 3 visitors on site today for approximately 7 hours. The visitors were Wray Kakugawa, Navy RPM, Naval Facilities Command Pacific, June Cleghorn, Archeologist, MCBH Kaneohe Environmental Department, and David Wong, Hawaii State Department of Health. The visitors were given an operational brief by the Site Manager and SUXOS. This operational brief included a description of what the teams have located to date; the difficulty of traversing the terrain within the SI boundaries, and an explanation of how the GeoXT hand-held unit works and the series of folders and drop down list that USA has created for its SI projects. The operational brief included taking the visitors to the project/site ITP and given a brief on the seed items and its operational use. They were also given a safety brief by the UXO Safety Officer prior to going out in the field. The 3 visitors along with the project SUXOS accompanied one of the reconnaissance teams for several hours during reconnaissance operations within the area of cell #19

As of the end of the day's operations, the reconnaissance team completed 8 percent for a total of 28 percent of the scoped reconnaissance acreage and 2 for a total of 20 of the scoped reconnaissance cell/grid locations.

The reconnaissance data and track log shape files for the day's operations have been uploaded to the USA ftp site.

6. Signature / Date:

Daniel Miller Site Manager Date: 10/09/2008

DAILY OPERATIONS SUMMARY

DATE: Monday, 10/13/2008

PAGE 1 OF 5 PAGES

SITE: Waikane Valley Training Area Site Investigation Project, MCBH Kaneohe, HI

1. WORK SUMMARY

a. Work Accomplished:	Number Completed	l Total	Remaining
(1) Survey	6%		66%
(2) Survey Cells/	Grids 02		14
(3) Mag & Flag	N/A		N/A
(4) Geophysical	N/A		N/A
(5) Intrusive	N/A		N/A
(6) Quality Contr	rol Daily		Daily
(7) Quality Assur	rance N/A		N/A
b. Discrepancies: None			
c. Inspection Results:	Pass	Fail	
(1) Quality Contr	rol 1	0	

(**3**) Safety 1 0

0

(2) Quality Assurance 0

2. INSTRUCTIONS RECEIVED FROM CUSTOMER REPRESENTATIVE:

Continue reconnaissance operations within the site investigation (SI) boundaries of the Former Waikane Valley Training Area as per the Project Work Plan and Scope of Work.

Daily Operations Summary Continued

PAGE 2 OF 5 PAGES

3. UXO SUMMARY

a. MEC Located:

Туре:	Quantity:	Live/Prac.	Remarks:
3.5 inch Rocket Warhead		Suspected	All 23 items are considered
with Motor attached.	23	HE Filled	MEC (UXO) items. MEC
Suspected Fuzed and		and Fuzed.	items located on the
Fired.			reconnaissance traversed
			paths within the SI boundary.

Туре:	Quantity:	Remarks:

b. Demolition Supplies Expended: No demolition items expended this day.

c. MD/Scrap Generation / Deposition: No MD/Scrap generated or disposed of.

Туре:	Quantity:	Weight:	Remarks:
-			
-			
-			
-			

PAGE 4 of 5 PAGES

Daily Operations Summary Continued

4. Utilization

a. Daily Man-hours:

Labor	Task #	M/H	M/H 0%	M/H 4%	M/H 8%
Category:		Today:	:		
Site Manager	3	12	12	0	0
SUXOS	3	10	3	7	0
UXO Technician III	3	10	3	7	0
UXO Technician II	3	20	6	14	0
UXO Technician I	3	10	3	7	0
UXOSO	3	5	1.5	3.5	0
UXOQCS	3	5	1.5	3.5	0
EMT	3	10	10	0	0
Sub-Contractor Personnel (List by Category)					
DEI / UXO Tech II	3	10	3	7	0
DEI / UXO Tech I	3	10	3	7	0
Wil Chee Planning	3	0	0	0	0

b. Daily Equipment:

Description:	Task:	Number of	Hours	Total Hours	Remark
		Units	Used Each:	Used:	s:
SUV Vehicle	3	3	12	36	
Truck Crew Cab	3	1	12	12	
MineLab Detector	3	6	10	60	
Trimble GeoXT	3	3	10	30	
Handheld GPS					
Brush Cutter	3	2	10	20	
Laptop Computer	3	1	14	14	
Cell Phone	3	1	11	11	
Printer	3	1	10	10	
Digital Camera	3	2	10	20	
Hand Held Radio	3	6	10	60	
EMT Medical Gear	3	1	10	10	
Safety Equipment	3	2	10	20	
Operating Equipment	3	2	10	20	

Daily Operations Summary Con't.

PAGE 5 of 5 PAGES

5. Operational Remarks:

The SI field team continued reconnaissance operations within the boundaries of the Former Waikane Valley Training Area.

SI Team personnel on site in the field for the day included a Site Manager, SUXOS, dual-hatted UXOSO/QCS, 1-UXO Technician III, 3-UXO Technicians II, 2-UXO Technicians I, and 2-Archeologist from Pacific Consulting.

The reconnaissance field team continues to encounter extremely heavy underbrush vegetation, thick vegetation canopy and very steep and rough terrain throughout the site. The *Hau* vegetation within the site boundaries has proven to be very difficult to impossible to traverse through. The team has to traverse around a lot of the area that contain the *Hau* vegetation.

Being able to acquire GPS Satellite coverage while conducting reconnaissance operations continues to be very difficult if not an impossible task, but the teams do attempt to acquire a GPS waypoint when a clear to partial view of the sky is present during their traversed path. Today, both reconnaissance teams operated in the 400 foot plus terrain contour line. Both teams were able to capture GPS satellites more often during the day due to the sparse vegetation canopy cover, much better then the results in the southern portion of the site.

During the days reconnaissance operations the team came across an area north of Idealized Cell #22 where they noted large amounts of munitions debris items consisting of 3.5 inch Bazooka Rocket parts and pieces, small arms rounds and MEC (UXO) items consisting of 3.5 inch shoulder fired Rockets. The area appears to be a former Target Area.

During the afternoon hours today, the field team experienced several hours of rain, and at times heavy down pours. This made it very difficult to traverse the already difficult terrain and operate the field electronic equipment. Several of the field personnel slipped, fell or tumbled while moving about the site. This only resulted in these personnel receiving bumps and bruises. The day ended with no one experiencing any reportable injuries, and no equipment including vehicles was damaged. However, we did have one of the Budget Rental Vehicles experience two flat tires prior to leaving the site. Both tires were changed out with available spare tires, and both flat tires were taken to the local Goodyear Tire Center for repair.

As of the end of the day's operations, the reconnaissance team completed 6 percent for a total of 34 percent of the scoped reconnaissance acreage and 2 for a total of 22 of the scoped reconnaissance cell/grid locations.

The reconnaissance data and track log shape files for the day's operations have been uploaded to the USA ftp site.

6. Signature / Date:

Daniel Miller Site Manager Date: 10/13/2008

DAILY OPERATIONS SUMMARY

DATE: Tuesday, 10/14/2008

PAGE 1 OF 5 PAGES

SITE: Waikane Valley Training Area Site Investigation Project, MCBH Kaneohe, HI

1. WORK SUMMARY

a.

Work Accomplished:	Number Completed	Total Remaining
(1) Survey	4%	62%
(2) Survey Cells/G	rids 03	11
(3) Incremental Sa	mples 07	28
(4) Discreet Sampl	es 0	10
(5) Quality Contro	l Daily	Daily
(6) Quality Assura	nce N/A	N/A

b. Discrepancies: None

c.	Inspection Results:	Pass	Fail
	(1) Quality Control	1	0
	(2) Quality Assurance	0	0
	(3) Safety	1	0

2. INSTRUCTIONS RECEIVED FROM CUSTOMER REPRESENTATIVE:

Continue reconnaissance operations within the site investigation (SI) boundaries of the Former Waikane Valley Training Area as per the Project Work Plan and Scope of Work. Commence soil sampling operations within the SI boundaries of the Former Waikane Valley Training Area.

Daily Operations Summary Continued

PAGE 2 OF 5 PAGES

3. MEC SUMMARY

a. MEC (UXO)/MPPEH Located: No MEC or MPP	EH located this day.
---	----------------------

Туре:	Quantity:	Live/Prac.	Remarks:

Туре:	Quantity:	Remarks:

b. Demolition Supplies Expended: No demolition items expended this day.

c. MD/Scrap Generation / Deposition: No MD/Scrap generated or disposed of.

Туре:	Quantity:	Weight:	Remarks:
-			
-			
-			
-			

PAGE 4 of 5 PAGES

Daily Operations Summary Continued

4. Utilization

a. Daily Man-hours:

Labor	Task #	M/H	M/H 0%	M/H 4%	M/H 8%		
Category:		Today:	:				
Site Manager	3	12	12	0	0		
SUXOS	3	10	2	8	0		
UXO Technician III	3	10	2	8	0		
UXO Technician II	3	20	4	16	0		
UXO Technician I	3	10	2	8	0		
UXOSO	3	5.5	1.5	4	0		
UXOQCS	3	5.5	1.5	4	0		
EMT	3	10	10	0	0		
Sub-Contractor Personnel (List by Category)							
DEI / UXO Tech II	3	10	3	7	0		
DEI / UXO Tech I	3	10	3	7	0		
Wil Chee Planning	3	20	20	0	0		

b. Daily Equipment:

Description:	Task:	Number of	Hours	Total Hours	Remarks:
		Units	Used Each:	Used:	
SUV Vehicle	3	3	12	36	
Truck Crew Cab	3	1	12	12	
MineLab Detector	3	6	10	60	
Trimble GeoXT	3	3	10	30	
Handheld GPS					
Brush Cutter	3	2	10	20	
Laptop Computer	3	1	14	14	
Cell Phone	3	1	11	11	
Printer	3	1	10	10	
Digital Camera	3	2	10	20	
Hand Held Radio	3	6	10	60	
EMT Medical Gear	3	1	10	10	
Safety Equipment	3	2	10	20	
Operating Equipment	3	2	10	20	

Daily Operations Summary Con't.

PAGE 5 of 5 PAGES

5. Operational Remarks:

The SI field team continued reconnaissance operations and commenced soil sample operations within the boundaries of the Former Waikane Valley Training Area.

SI Team personnel on site in the field for the day included a Site Manager, SUXOS, dual-hatted UXOSO/QCS, 1-UXO Technician III, 3-UXO Technicians II, 2-UXO Technicians I, 2-Soil Sample Technicians from Wil Chee Planning, and 2-Archeologist from Pacific Consulting.

The reconnaissance field team continues to encounter extremely heavy underbrush vegetation, thick vegetation canopy and very steep and rough terrain throughout the site. The *Hau* vegetation within the site boundaries has proven to be very difficult to impossible to traverse through. The team has to traverse around a lot of the area that contain the *Hau* vegetation.

Today, one reconnaissance team operated in the southern end of the site with the Soil Sample Technicians while soil samples were being collected. The other reconnaissance team operated in northern most section of the site at the 900 foot plus terrain contour line. The team working in the northern section of the site was able to capture GPS satellites more often during the day due to the sparse vegetation canopy cover, much better then the results in the southern portion of the site.

No MEC (UXO) items were noted during the day's operations. The team traversing the northern section of the site noted only one small munitions debris item which appears to be an expended base fuze from a 37mm projectile.

It should be noted that during the reconnaissance operations on Monday the 13th of October, the team found evidence that **high explosive** shoulder fired rockets were indeed fired into/on the project site.

Soil sample operations were commenced on site today. Wil Chee Planning collected samples at 7 separate Incremental locations within the southeastern portion of the site. Sample ID numbers MEC001 through MEC007 were collected during the day's operations.

As of the end of the day's operations, the project field team completed 4 percent for a total of 38 percent of the scoped reconnaissance acreage, 3 for a total of 25 of the scoped reconnaissance cell/grid locations, and 7 of the scoped 35 Incremental Samples and 0 of the scoped 10 Discreet Samples.

The reconnaissance data and track log shape files for the day's operations have been uploaded to the USA ftp site.

6. Signature / Date:

Daniel Miller Site Manager Date: 10/14/2008

DAILY OPERATIONS SUMMARY

DATE: Wednesday, 10/15/2008

PAGE 1 OF 5 PAGES

SITE: Waikane Valley Training Area Site Investigation Project, MCBH Kaneohe, HI

1. WORK SUMMARY

a.

Work Accomplished:	Number Completed	Total Remaining
(1) Survey	4%	58%
(2) Survey Cells/G	rids 02	09
(3) Incremental Sa	mples 09	19
(4) Discreet Sample	es 0	10
(5) Quality Contro	l Daily	Daily
(6) Quality Assura	nce N/A	N/A

b. Discrepancies: None

c.	Inspection Results:	Pass	Fail
	(1) Quality Control	1	0
	(2) Quality Assurance	0	0
	(3) Safety	1	0

2. INSTRUCTIONS RECEIVED FROM CUSTOMER REPRESENTATIVE:

Continue reconnaissance operations and soil sample operations within the site investigation (SI) boundaries of the Former Waikane Valley Training Area as per the Project Work Plan and Scope of Work.

Daily Operations Summary Continued

PAGE 2 OF 5 PAGES

3. MEC SUMMARY

a. MEC (UXO)/MPPEH Located: No MEC or MPP	EH located this day.
---	----------------------

Туре:	Quantity:	Live/Prac.	Remarks:
Туре:	Quantity:	Remarks:	
-------	-----------	----------	

c. MD/Scrap Generation / Deposition: No MD/Scrap generated or disposed of.

Туре:	Quantity:	Weight:	Remarks:
-			
-			
-			
-			

PAGE 4 of 5 PAGES

Daily Operations Summary Continued

4. Utilization

a. Daily Man-hours:

Labor	Task #	M/H	M/H 0%	M/H 4%	M/H 8%
Category:		Today:	:		
Site Manager	3	12	12	0	0
SUXOS	3	10	4	6	0
UXO Technician III	3	10	4	6	0
UXO Technician II	3	20	8	12	0
UXO Technician I	3	10	4	6	0
UXOSO	3	5	2	3	0
UXOQCS	3	5	2	3	0
EMT	3	10	10	0	0
Sub-Contractor Personnel (List by Category)					
DEI / UXO Tech II	3	10	4	6	0
DEI / UXO Tech I	3	10	4	6	0
Wil Chee Planning	3	20	20	0	0

b. Daily Equipment:

Description:	Task:	Number of	Hours	Total Hours	Remarks:
		Units	Used Each:	Used:	
SUV Vehicle	3	3	12	36	
Truck Crew Cab	3	1	12	12	
MineLab Detector	3	6	10	60	
Trimble GeoXT	3	3	10	30	
Handheld GPS					
Brush Cutter	3	2	10	20	
Laptop Computer	3	1	14	14	
Cell Phone	3	1	11	11	
Printer	3	1	10	10	
Digital Camera	3	2	10	20	
Hand Held Radio	3	6	10	60	
EMT Medical Gear	3	1	10	10	
Safety Equipment	3	2	10	20	
Operating Equipment	3	2	10	20	

Daily Operations Summary Con't.

PAGE 5 of 5 PAGES

5. Operational Remarks:

The SI field team continued reconnaissance operations and soil sample operations within the boundaries of the Former Waikane Valley Training Area.

SI Team personnel on site in the field for the day included a Site Manager, SUXOS, dual-hatted UXOSO/QCS, 1-UXO Technician III, 3-UXO Technicians II, 2-UXO Technicians I, 2-Soil Sample Technicians from Wil Chee Planning, and 2-Archeologist from Pacific Consulting.

The reconnaissance field team continues to encounter extremely heavy underbrush vegetation, thick vegetation canopy and very steep and rough terrain throughout the site. The *Hau* vegetation within the site boundaries has proven to be very difficult to impossible to traverse through. The team has to traverse around a lot of the area that contain the *Hau* vegetation.

Today, one 2-person UXO team operated in the southern end of the site with the Soil Sample Technicians while soil samples were being collected. The other reconnaissance team operated in northern most east section of the site at the 900 foot plus terrain contour line. The team working in the northern section of the site was able to capture GPS satellites more often during the day due to the sparse vegetation canopy cover, much better then the results in the southern portion of the site.

Today during a 2-hour period while on site, we experience a heavy down pour of rain which halted operations during that time frame. The teams took cover and hunkered down at their operational positions within the site until the heavy rain subsided. The project vehicles were moved to an area that was safe from flash flooding and mud slides. **NO** injuries to personnel or damage to equipment was experienced during this event or throughout the day. We only had 11 extremely wet and muddy personnel at the end of the day.

No MEC (UXO) or MPPEH items were noted during the day's operations. The team traversing the northern section of the site noted only 5 each 7.62mm small arms projectiles (bullets) munitions debris items during the days operations.

Soil sample operations continued on site today. Wil Chee Planning collected samples at 9 separate Incremental locations and 1 duplicate sample, MEC011 within the southwestern portion of the site. Sample ID numbers MEC008 through MEC0017 were collected during the day's operations.

As of the end of the day's operations, the project field team completed 4 percent for a total of 42 percent of the scoped reconnaissance acreage, 2 cells/grids for a total of 27 of the scoped reconnaissance cell/grid locations, 9 for a total of 16 of the scoped 35 Incremental Samples, and 0 of the scoped 10 Discreet Samples.

The reconnaissance data and track log shape files for the day's operations have been uploaded to the USA ftp site.

6. Signature / Date:

Daniel Miller Site Manager Date: 10/15/2008

DAILY OPERATIONS SUMMARY

DATE: Thursday, 10/16/2008

PAGE 1 OF 5 PAGES

SITE: Waikane Valley Training Area Site Investigation Project, MCBH Kaneohe, HI

1. WORK SUMMARY

a.

Work Accomplished:	Number Completed	Total Remaining
(1) Survey	4%	54%
(2) Survey Cells/G	rids 01	08
(3) Incremental Sa	mples 14	05
(4) Discreet Sample	es 0	10
(5) Quality Contro	l Daily	Daily
(6) Quality Assura	nce N/A	N/A

b. Discrepancies: None

c.	Inspection Results:	Pass	Fail
	(1) Quality Control	1	0
	(2) Quality Assurance	0	0
	(3) Safety	1	0

2. INSTRUCTIONS RECEIVED FROM CUSTOMER REPRESENTATIVE:

Continue reconnaissance operations and soil sample operations within the site investigation (SI) boundaries of the Former Waikane Valley Training Area as per the Project Work Plan and Scope of Work.

Daily Operations Summary Continued

PAGE 2 OF 5 PAGES

3. MEC SUMMARY

a. MEC (UXO)/MPPEH Located:

Туре:	Quantity:	Live/Prac.	Remarks:
3.5 inch Rocket Warhead			Both items are considered
with Motor attached.	02	Suspected	MEC (UXO) items. MEC
Suspected Fuzed and		HE Filled.	items located on the
Fired.			reconnaissance traversed
			paths within the SI boundary.
			· · · · · · · · · · · · · · · · · · ·

Туре:	Quantity:	Remarks:

c. MD/Scrap Generation / Deposition: No MD/Scrap generated or disposed of.

Туре:	Quantity:	Weight:	Remarks:
-			
-			
-			
-			

PAGE 4 of 5 PAGES

Daily Operations Summary Continued

4. Utilization

a. Daily Man-hours:

Labor	Task #	M/H	M/H 0%	M/H 4%	M/H 8%
Category:		Today:	:		
Site Manager	3	12	12	0	0
SUXOS	3	10	3	7	0
UXO Technician III	3	10	3	7	0
UXO Technician II	3	20	6	14	0
UXO Technician I	3	10	3	7	0
UXOSO	3	5.5	2	3.5	0
UXOQCS	3	5.5	2	3.5	0
EMT	3	10	10	0	0
Sub-Contractor Personnel (List by Category)					
DEI / UXO Tech II	3	10	3	7	0
DEI / UXO Tech I	3	10	3	7	0
Wil Chee Planning	3	20	20	0	0

b. Daily Equipment:

Description:	Task:	Number of	Hours	Total Hours	Remarks:
		Units	Used Each:	Used:	
SUV Vehicle	3	3	12	36	
Truck Crew Cab	3	1	12	12	
MineLab Detector	3	6	10	60	
Trimble GeoXT	3	3	10	30	
Handheld GPS					
Brush Cutter	3	2	10	20	
Laptop Computer	3	1	14	14	
Cell Phone	3	1	11	11	
Printer	3	1	10	10	
Digital Camera	3	2	10	20	
Hand Held Radio	3	6	10	60	
EMT Medical Gear	3	1	10	10	
Safety Equipment	3	2	10	20	
Operating Equipment	3	2	10	20	

Daily Operations Summary Con't.

PAGE 5 of 5 PAGES

5. Operational Remarks:

The SI field team continued reconnaissance operations and soil sample operations within the boundaries of the Former Waikane Valley Training Area.

SI Team personnel on site in the field for the day included a Site Manager, SUXOS, dual-hatted UXOSO/QCS, 1-UXO Technician III, 3-UXO Technicians II, 2-UXO Technicians I, 2-Soil Sample Technicians from Wil Chee Planning, and 2-Archeologist from Pacific Consulting.

The reconnaissance field team continues to encounter extremely heavy underbrush vegetation, thick vegetation canopy and very steep and rough terrain throughout the site. The *Hau* vegetation within the site boundaries has proven to be very difficult to impossible to traverse through. The team has to traverse around a lot of the area that contain the *Hau* vegetation.

Today, one 3-person UXO team operated in the southern end of the site supporting the Soil Sample Technicians while soil samples were being collected. The one reconnaissance team also operated in the southern section of the site to fill in data gaps in that area.

No MPPEH items were noted during the day's operations. The team traversing the southern section of the site noted 2 MEC (UXO) items, both 3.5 inch shoulder fired Rockets, and several 7.62mm small arms projectiles (bullets) munitions debris items.

Soil sample operations continued on site today. Wil Chee Planning collected samples at 14 separate Incremental locations and 2 duplicate sample, MEC021 and MEC031 within the south central portion of the site. Incremental Soil Sample ID numbers MEC018 through MEC033 were collected during the day's operations.

As of the end of the day's operations, the project field team completed 4 percent for a total of 46 percent of the scoped reconnaissance acreage, 1 cell/grid for a total of 28 of the scoped reconnaissance cell/grid locations, 14 for a total of 30 of the scoped 35 Incremental Samples, and 0 of the scoped 10 Discreet Samples.

The reconnaissance data and track log shape files for the day's operations have been uploaded to the USA ftp site.

6. Signature / Date:

Daniel Miller______ Site Manager Date: 10/16/2008

DAILY OPERATIONS SUMMARY

DATE: Monday, 10/20/2008

PAGE 1 OF 5 PAGES

SITE: Waikane Valley Training Area Site Investigation Project, MCBH Kaneohe, HI

1. WORK SUMMARY

a.

Work Accomplished:	Number Completed	Total Remaining
(1) Survey	5%	49%
(2) Survey Cells/Gr	ids 00	08
(3) Incremental Sar	nples 05	00
(4) Discreet Sample	s 05	05
(5) Quality Control	Daily	Daily
(6) Quality Assuran	nce N/A	N/A

b. Discrepancies: None

c.	Inspection Results:	Pass	Fail
	(1) Quality Control	1	0
	(2) Quality Assurance	0	0
	(3) Safety	1	0

2. INSTRUCTIONS RECEIVED FROM CUSTOMER REPRESENTATIVE:

Continue reconnaissance operations and soil sample operations within the site investigation (SI) boundaries of the Former Waikane Valley Training Area as per the Project Work Plan and Scope of Work.

Daily Operations Summary Continued

PAGE 2 OF 5 PAGES

3. MEC SUMMARY

a. MEC (UXO)/MPPEH Located:

Туре:	Quantity:	Live/Prac.	Remarks:
3.5 inch Rocket Warhead with Motor attached. Suspected Fuzed and Fired.	06	Suspected HE Filled.	Items are considered MEC (UXO) items. MEC items located on the reconnaissance traversed paths within the SI boundary.
Rifle Grenade, Fired and Suspected Fuzed.	01	Suspected HE Filled.	Item is considered a MEC (UXO) item. MEC item located on traversed path to soil sample location.
	1		

Туре:	Quantity:	Remarks:

c. MD/Scrap Generation / Deposition: No MD/Scrap generated or disposed of.

Туре:	Quantity:	Weight:	Remarks:
-			
-			
-			
-			

PAGE 4 of 5 PAGES

Daily Operations Summary Continued

4. Utilization

a. Daily Man-hours:

Labor	Task #	M/H	M/H 0%	M/H 4%	M/H 8%		
Category:		Today:	:				
Site Manager	3	12	12	0	0		
SUXOS	3	10	3	7	0		
UXO Technician III	3	10	3	7	0		
UXO Technician II	4	20	4	16	0		
UXO Technician I	4	10	2	8	0		
UXOSO	3	5.5	2	3.5	0		
UXOQCS	3	5.5	2	3.5	0		
EMT	3	10	10	0	0		
Sub-Contractor Personnel (List by Category)							
DEI / UXO Tech II	3	10	3	7	0		
DEI / UXO Tech I	3	10	3	7	0		
Wil Chee Planning	4	30	30	0	0		

b. Daily Equipment:

Description:	Task:	Number of	Hours	Total Hours	Remarks:
		Units	Used Each:	Used:	
SUV Vehicle	3	3	12	36	
Truck Crew Cab	3	1	12	12	
MineLab Detector	3	6	10	60	
Trimble GeoXT	3	3	10	30	
Handheld GPS					
Brush Cutter	3	2	10	20	
Laptop Computer	3	1	14	14	
Cell Phone	3	1	11	11	
Printer	3	1	10	10	
Digital Camera	3	2	10	20	
Hand Held Radio	3	6	10	60	
EMT Medical Gear	3	1	10	10	
Safety Equipment	3	2	10	20	
Operating Equipment	3	2	10	20	

Daily Operations Summary Con't.

PAGE 5 of 5 PAGES

5. Operational Remarks:

The SI field team continued reconnaissance operations and soil sample operations within the boundaries of the Former Waikane Valley Training Area.

SI Team personnel on site in the field for the day included a Site Manager, SUXOS, dual-hatted UXOSO/QCS, 1-UXO Technician III, 3-UXO Technicians II, 2-UXO Technicians I, *3-Soil Sample Technicians from Wil Chee Planning*, and 2-Archeologist from Pacific Consulting.

The reconnaissance field team continues to encounter extremely heavy underbrush vegetation, thick vegetation canopy and very steep and rough terrain throughout the site. The *Hau* vegetation within the site boundaries has proven to be very difficult to impossible to traverse through. The team has to traverse around a lot of the area that contain the *Hau* vegetation.

Again today the weather played a factor with regards to operations and the production rate. Constant rain fall was experienced during the entire morning on site. The afternoon was clear and sunny, with no rain.

Today, one 3-person UXO team operated in the central section of the site supporting the 3 Soil Sample Technicians while incremental and discrete soil samples were being collected. The one reconnaissance team also operated in the southern and central portion sections of the site to fill in data gaps in that area.

No MPPEH items were noted during the day's operations. The team conducting reconnaissance operations noted 6 MEC (UXO) items, all which were 3.5 inch shoulder fired Rockets. The team supporting and escorting the Soil Sample Technicians noted 1 MEC (UXO) item which was a HE filled Rifle Grenade.

Soil sample operations continued on site today. Wil Chee Planning collected samples at 5 separate Incremental locations and 5 separate Discrete locations to include 1 duplicate sample in the central portion of the site. Soil Sample ID numbers MEC034 through MEC044 were collected during the day's operations.

As of the end of the day's operations, the project field team completed 5 percent for a total of 51 percent of the scoped reconnaissance acreage, no cells/grids for a total of 28 of the scoped reconnaissance cell/grid locations, 5 for a total of 35 of the scoped 35 Incremental Samples, and 5 of the scoped 10 Discreet Samples.

The reconnaissance data and track log shape files for the day's operations have been uploaded to the USA ftp site.

6. Signature / Date:

Daniel Miller Site Manager Date: 10/20/2008

DAILY OPERATIONS SUMMARY

DATE: Tuesday, 10/21/2008

PAGE 1 OF 5 PAGES

SITE: Waikane Valley Training Area Site Investigation Project, MCBH Kaneohe, HI

1. WORK SUMMARY

a.

Work Accomplished:	Number Completed	Total Remaining
(1) Survey	10%	39%
(2) Survey Cells/Gi	rids 02	06
(3) Incremental San	mples 05	00
(4) Discreet Sample	es 05	00
(5) Quality Control	l Daily	Daily
(6) Quality Assura	nce N/A	N/A

b. Discrepancies: None

c.	Inspection Results:	Pass	Fail
	(1) Quality Control	1	0
	(2) Quality Assurance	0	0
	(3) Safety	1	0

2. INSTRUCTIONS RECEIVED FROM CUSTOMER REPRESENTATIVE:

Continue reconnaissance operations and soil sample operations within the site investigation (SI) boundaries of the Former Waikane Valley Training Area as per the Project Work Plan and Scope of Work.

Daily Operations Summary Continued

PAGE 2 OF 5 PAGES

3. MEC SUMMARY

a. MEC (UXO)/MPPEH Located:

Туре:	Quantity:	Live/Prac.	Remarks:
3.5 inch Rocket Warhead			Item is considered MEC
with Motor attached.	01	Suspected	(UXO) items. MEC item
Suspected Fuzed and		HE Filled.	located on the reconnaissance
Fired.			traversed paths within the SI
			boundary.

Туре:	Quantity:	Remarks:

c. MD/Scrap Generation / Deposition: No MD/Scrap generated or disposed of.

Туре:	Quantity:	Weight:	Remarks:
-			
-			
-			
-			

PAGE 4 of 5 PAGES

Daily Operations Summary Continued

4. Utilization

a. Daily Man-hours:

Labor	Task #	M/H	M/H 0%	M/H 4%	M/H 8%		
Category:		Today:	:				
Site Manager	3	12	12	0	0		
SUXOS	3	10	2	8	0		
UXO Technician III	3	10	2	8	0		
UXO Technician II	4	12	2	10	0		
UXO Technician II	3	8	2	6	0		
UXO Technician I	4	6	1	5	0		
UXO Technician I	3	4	1	3	0		
UXOSO	3	5.5	1.5	4	0		
UXOQCS	3	5.5	1.5	4	0		
EMT	3	10	10	0	0		
Sub-Contractor Personnel (List by Category)							
DEI / UXO Tech II	3	10	2	8	0		
DEI / UXO Tech I	3	10	2	8	0		
Wil Chee Planning	4	12	12	0	0		

b. Daily Equipment:

Description:	Task:	Number of	Hours	Total Hours	Remarks:
		Units	Used Each:	Used:	
SUV Vehicle	3	3	12	36	
Truck Crew Cab	3	1	12	12	
MineLab Detector	3	6	10	60	
Trimble GeoXT	3	3	10	30	
Handheld GPS					
Brush Cutter	3	2	10	20	
Laptop Computer	3	1	14	14	
Cell Phone	3	1	11	11	
Printer	3	1	10	10	
Digital Camera	3	2	10	20	
Hand Held Radio	3	6	10	60	
EMT Medical Gear	3	1	10	10	
Safety Equipment	3	2	10	20	
Operating Equipment	3	2	10	20	

Daily Operations Summary Con't.

PAGE 5 of 5 PAGES

5. Operational Remarks:

The SI field team continued reconnaissance operations and soil sample operations within the boundaries of the Former Waikane Valley Training Area.

SI Team personnel on site in the field for the day included a Site Manager, SUXOS, dual-hatted UXOSO/QCS, 1-UXO Technician III, 3-UXO Technicians II, 2-UXO Technicians I, 2-Soil Sample *Technicians from Wil Chee Planning*, and 2-Archeologist from Pacific Consulting Services, Inc.

The reconnaissance field team continues to encounter extremely heavy underbrush vegetation, thick vegetation canopy and very steep and rough terrain throughout the site. The *Hau* vegetation within the site boundaries has proven to be very difficult to impossible to traverse through. The team has to traverse around a lot of the area that contain the *Hau* vegetation.

Today, one 3-person UXO team operated in the central section of the site supporting the 2 Soil Sample Technicians while discrete soil samples were being collected. The one reconnaissance team operated in the eastern portion of the site to fill in data gaps in that area.

No MPPEH items were noted during the day's operations. The team conducting reconnaissance operations noted 1 MEC (UXO) item which was a 3.5 inch shoulder fired Rocket.

Soil sample operations continued on site today and was completed by mid day. Wil Chee Planning collected samples at 5 separate Discrete locations to include 1 duplicate sample in the central portion of the site. Soil Sample ID numbers MEC045 through MEC050 were collected during the day's operations.

As of the end of the day's operations, the project field team completed 10 percent for a total of 61 percent of the scoped reconnaissance acreage, 2 cells/grids for a total of 30 of the scoped reconnaissance cell/grid locations, and 5 of the scoped 10 Discreet Samples.

Site Manager met with Ms. Judith Bowman the Curator for the U.S. Army Museum of Hawaii located at Fort DeRussy. Site Manager had a pre-arrange appointment with Ms. Bowman at 1000 today. Site Manager reviewed several binders of historical black and white photos dating back to the 1920's that Ms. Bowman thought might have some information regarding the former Waikane Valley Training Area and the former Naval Air Station Kaneohe/Camp Hase areas. No photos pertaining to the scoped project sites/areas were located. Site Manager also looked over a folder of maps that Ms. Bowman presented to him. Two maps depicting all the Island of Oahu Training Areas, Camps, and Centers following the bombing of Pearl Harbor was noted, reviewed and photo copied. The map is dated June 1944. These maps also showed the impact areas for each of the training areas. No additional information was noted. The Site Manager spent approximately 2 hours reviewing the available historical photos and documents. Ms. Bowman stated that she would continue to research information on Waikane Valley and notify the Site Manager if she discovers any additional information that might be helpful.

The reconnaissance data and track log shape files for the day's operations have been uploaded to the USA ftp site.

6. Signature / Date:

Daniel Miller Site Manager Date: 10/21/2008

DAILY OPERATIONS SUMMARY

DATE: Wednesday, 10/22/2008

PAGE 1 OF 5 PAGES

SITE: Waikane Valley Training Area Site Investigation Project, MCBH Kaneohe, HI

1. WORK SUMMARY

a.

Work Accomplished:	Number Completed	Total Remaining
(1) Survey	07%	32%
(2) Survey Cells/Gr	ids 04	02
(3) Incremental Sar	nples 00	00
(4) Discreet Sample	es 00	00
(5) Quality Control	Daily	Daily
(6) Quality Assurar	nce N/A	N/A

b. Discrepancies: None

c.	Inspection Results:	Pass	Fail
	(1) Quality Control	1	0
	(2) Quality Assurance	0	0
	(3) Safety	1	0

2. INSTRUCTIONS RECEIVED FROM CUSTOMER REPRESENTATIVE:

Continue reconnaissance operations within the site investigation (SI) boundaries of the Former Waikane Valley Training Area as per the Project Work Plan and Scope of Work.

Daily Operations Summary Continued

PAGE 2 OF 5 PAGES

3. MEC SUMMARY

a. MEC (UXO)/MPPEH Located:

Туре:	Quantity:	Live/Prac.	Remarks:
3.5 inch Rocket Warhead with Motor attached. Suspected Fuzed and Fired.	03	Suspected HE Filled.	Items are considered MEC (UXO) items. MEC items located on the reconnaissance traversed paths within the SI boundary.
Rifle Grenade, Fired and Fuzed. Appears to be M28.	01	Suspected HE Filled.	Item is considered a MEC (UXO) item. MEC item located on traversed path to soil sample location.

Туре:	Quantity:	Remarks:

c. MD/Scrap Generation / Deposition: No MD/Scrap generated or disposed of.

Туре:	Quantity:	Weight:	Remarks:
-			
-			
-			
-			

PAGE 4 of 5 PAGES

Daily Operations Summary Continued

4. Utilization

a. Daily Man-hours:

Labor	Task #	M/H	M/H 0%	M/H 4%	M/H 8%	
Category:		Today:	:			
Site Manager	3	12	12	0	0	
SUXOS	3	10	2	8	0	
UXO Technician III	3	10	2	8	0	
UXO Technician II	3	20	4	16	0	
UXO Technician I	3	10	2	8	0	
UXOSO	3	5.5	1.5	4	0	
UXOQCS	3	5.5	1.5	4	0	
EMT	3	10	10	0	0	
Sub-Contractor Personnel (List by Category)						
DEI / UXO Tech II	3	10	2	8	0	
DEI / UXO Tech I	3	10	2	8	0	
Wil Chee Planning	4	0	0	0	0	

b. Daily Equipment:

Description:	Task:	Number of	Hours	Total Hours	Remarks:
		Units	Used Each:	Used:	
SUV Vehicle	3	3	12	36	
Truck Crew Cab	3	1	12	12	
MineLab Detector	3	6	10	60	
Trimble GeoXT	3	3	10	30	
Handheld GPS					
Brush Cutter	3	2	10	20	
Laptop Computer	3	1	14	14	
Cell Phone	3	1	11	11	
Printer	3	1	10	10	
Digital Camera	3	2	10	20	
Hand Held Radio	3	6	10	60	
EMT Medical Gear	3	1	10	10	
Safety Equipment	3	2	10	20	
Operating Equipment	3	2	10	20	

Daily Operations Summary Con't.

PAGE 5 of 5 PAGES

5. Operational Remarks:

The SI field team continued reconnaissance operations and soil sample operations within the boundaries of the Former Waikane Valley Training Area.

SI Team personnel on site in the field for the day included a Site Manager, SUXOS, dual-hatted UXOSO/QCS, 1-UXO Technician III, 3-UXO Technicians II, 2-UXO Technicians I, and 2-Archeologist from Pacific Consulting Services, Inc.

The reconnaissance field team continues to encounter extremely heavy underbrush vegetation, thick vegetation canopy and very steep and rough terrain throughout the site. The *Hau* vegetation within the site boundaries has proven to be very difficult to impossible to traverse through. The team has to traverse around a lot of the area that contain the *Hau* vegetation.

Today, one reconnaissance team operated in the eastern portion of the site and the other reconnaissance team operated in the western portion of the site filling in data gaps in these areas, and traversing transects from south to north and north to south utilizing ravines and valleys to move about.

No MPPEH items were noted during the day's operations. The reconnaissance teams noted a total of 4 MEC (UXO) items, 3 of which were 3.5 inch shoulder fired Rockets, possible M28A1 series, and 1 of which was a HE Rifle Grenade, possible M28.

As of the end of the day's operations, the project field team completed 7 percent for a total of 68 percent of the scoped reconnaissance acreage, and 4 cells/grids for a total of 34 of the scoped reconnaissance cell/grid locations.

Site Manager attended a meeting today at MCBH Kaneohe Environmental Department to participate in the planning and scheduling for a RAB site visit to the Former Waikane Valley Training Area. Present at the meeting were Mr. Wray Kakugawa, RPM NAVFAC Pacific; Major Hudock, Environmental Officer, MCBH Kaneohe; Mr. Randall Hu, PM MCBH Kaneohe Environmental Dept.; Ms. Karen Desilets, Archeologist NAVFAC Pacific; Ms. Coral Rasmussen, Archeologist MCBH Kaneohe Environmental Dept. Personnel participating via phone conference were Major Crouch, PAO MCBH Kaneohe; and Steve Clark, Archeologist, Pacific Consulting Services, Inc. It was decided that the RAB would be offered to participate in a Waikane Valley Site Visit on Friday the 31st of October and Saturday the 1st of November. The Site Manager also presented a brief on the past and present ongoing operations on site to all meeting participants. The meeting lasted approximately 2 hours.

At the present operations production rate, it is expected that by the 31st of October the field team will have completed all field operations. We may or may not obtain or accomplish the scoped reconnaissance acreage by this time, but I feel that we will not be able to SAFELY traverse any more of the site to gain any additional data or acreage then what will have been completed by this time.

The reconnaissance data and track log shape files for the day's operations have been uploaded to the USA ftp site.

6. Signature / Date:

Daniel Miller Site Manager Date: 10/22/2008

DAILY OPERATIONS SUMMARY

DATE: Thursday, 10/23/2008

PAGE 1 OF 5 PAGES

SITE: Waikane Valley Training Area Site Investigation Project, MCBH Kaneohe, HI

1. WORK SUMMARY

a.

Work Accomplished:	Number Completed	Total Remaining
(1) Survey	07%	25%
(2) Survey Cells/G	rids 01	01
(3) Incremental Sa	mples 00	00
(4) Discreet Sampl	es 00	00
(5) Quality Contro	l Daily	Daily
(6) Quality Assura	nce N/A	N/A

b. Discrepancies: None

c.	Inspection Results:	Pass	Fail
	(1) Quality Control	1	0
	(2) Quality Assurance	0	0
	(3) Safety	1	0

2. INSTRUCTIONS RECEIVED FROM CUSTOMER REPRESENTATIVE:

Continue reconnaissance operations within the site investigation (SI) boundaries of the Former Waikane Valley Training Area as per the Project Work Plan and Scope of Work.

Daily Operations Summary Continued

PAGE 2 OF 5 PAGES

3. MEC SUMMARY

CC (UXO)/MPPEH Located:	No MEC (UXO) or MPPEH	located this day.
ĺ	EC (UXO)/MPPEH Located:	EC (UXO)/MPPEH Located: No MEC (UXO) or MPPEH

Туре:	Quantity:	Live/Prac.	Remarks:

Туре:	Quantity:	Remarks:

c. MD/Scrap Generation / Deposition: No MD/Scrap generated or disposed of.

Туре:	Quantity:	Weight:	Remarks:
-			
-			
-			
-			

PAGE 4 of 5 PAGES

Daily Operations Summary Continued

4. Utilization

a. Daily Man-hours:

Labor	Task #	M/H	M/H 0%	M/H 4%	M/H 8%		
Category:		Today:	:				
Site Manager	3	12	12	0	0		
SUXOS	3	10	3	7	0		
UXO Technician III	3	10	3	7	0		
UXO Technician II	3	20	6	14	0		
UXO Technician I	3	10	3	7	0		
UXOSO	3	5.5	2	3.5	0		
UXOQCS	3	5.5	2	3.5	0		
EMT	3	10	10	0	0		
Sub-Contractor Personnel (List by Category)							
DEI / UXO Tech II	3	10	3	7	0		
DEI / UXO Tech I	3	10	3	7	0		
Wil Chee Planning	4	0	0	0	0		

b. Daily Equipment:

Description:	Task:	Number of	Hours	Total Hours	Remarks:
_		Units	Used Each:	Used:	
SUV Vehicle	3	3	12	36	
Truck Crew Cab	3	1	12	12	
MineLab Detector	3	6	10	60	
Trimble GeoXT	3	3	10	30	
Handheld GPS					
Brush Cutter	3	2	10	20	
Laptop Computer	3	1	14	14	
Cell Phone	3	1	11	11	
Printer	3	1	10	10	
Digital Camera	3	2	10	20	
Hand Held Radio	3	6	10	60	
EMT Medical Gear	3	1	10	10	
Safety Equipment	3	2	10	20	
Operating Equipment	3	2	10	20	

Daily Operations Summary Con't.

PAGE 5 of 5 PAGES

5. Operational Remarks:

The SI field team continued reconnaissance operations and soil sample operations within the boundaries of the Former Waikane Valley Training Area.

SI Team personnel on site in the field for the day included a Site Manager, SUXOS, dual-hatted UXOSO/QCS, 1-UXO Technician III, 3-UXO Technicians II, 2-UXO Technicians I, and 2-Archeologist from Pacific Consulting Services, Inc.

The reconnaissance field team continues to encounter extremely heavy underbrush vegetation, thick vegetation canopy and very steep and rough terrain throughout the site. The *Hau* vegetation within the site boundaries has proven to be very difficult to impossible to traverse through. The team has to traverse around a lot of the area that contain the *Hau* vegetation.

Today, both reconnaissance teams operated in the western portion of the site filling in data gaps in these areas, and traversing transects from south to north and north to south utilizing ravines and valleys to move about.

No MPPEH or MEC (UXO) items were noted during the day's operations.

As of the end of the day's operations, the project field team completed 7 percent for a total of 75 percent of the scoped reconnaissance acreage, and 1 cell/grid for a total of 35 of the scoped reconnaissance cell/grid locations.

Today, the Site Manager conducted a historical records research at Donaldson Enterprises, Inc. (DEI) main office located in Honolulu; and the University of Hawaii at Manoa Library's Archives & Manuscripts Department Hawaii War Records Depository (HWRD) in support of the Site Investigation (SI) Project at the Former Waikane Valley Training Area. The historical records research at DEI revealed several papers, documents and maps with reference to the Former Waikane Valley Training Area. These documents, papers and maps were flagged for copying once approved by the upper management at DEI. The total time spent researching records at DEI was approximately 2 hours. The historical records research at UOH Library's HWRD revealed no historical information with regards to the Former Waikane Valley Training Area. The total time spent researching records at the HWRD was approximately 3.5 hours.

It is still expected that at the present operations production rate, by the 31st of October the field team will have completed all field operations. We may or may not obtain or accomplish the scoped reconnaissance acreage of 10 acres by this time, but I feel that we will not be able to SAFELY traverse any more of the site to gain any additional data or acreage then what will have been completed by this time.

6. Signature / Date:

Daniel Miller Site Manager Date: 10/23/2008

DAILY OPERATIONS SUMMARY

DATE: Monday, 10/27/2008

PAGE 1 OF 5 PAGES

SITE: Waikane Valley Training Area Site Investigation Project, MCBH Kaneohe, HI

1. WORK SUMMARY

a.

Work Accomplished:	Number Completed	Total Remaining
(1) Survey	06%	19%
(2) Survey Cells/Gr	rids 03	00
(3) Incremental Sa	mples 00	00
(4) Discreet Sample	es 00	00
(5) Quality Control	Daily	Daily
(6) Quality Assurat	nce N/A	N/A

b. Discrepancies: None

c.	Inspection Results:	Pass	Fail
	(1) Quality Control	1	0
	(2) Quality Assurance	0	0
	(3) Safety	1	0

2. INSTRUCTIONS RECEIVED FROM CUSTOMER REPRESENTATIVE:

Continue reconnaissance operations within the site investigation (SI) boundaries of the Former Waikane Valley Training Area as per the Project Work Plan and Scope of Work.

Daily Operations Summary Continued

PAGE 2 OF 5 PAGES

3. MEC SUMMARY

CC (UXO)/MPPEH Located:	No MEC (UXO) or MPPEH	located this day.
ĺ	EC (UXO)/MPPEH Located:	EC (UXO)/MPPEH Located: No MEC (UXO) or MPPEH

Туре:	Quantity:	Live/Prac.	Remarks:

Туре:	Quantity:	Remarks:

c. MD/Scrap Generation / Deposition: No MD/Scrap generated or disposed of.

Туре:	Quantity:	Weight:	Remarks:
-			
-			
-			
-			

PAGE 4 of 5 PAGES

Daily Operations Summary Continued

4. Utilization

a. Daily Man-hours:

Labor	Task #	M/H	M/H 0%	M/H 4%	M/H 8%		
Category:		Today:	:				
Site Manager	3	12	12	0	0		
SUXOS	3	10	2	8	0		
UXO Technician III	3	10	2	8	0		
UXO Technician II	3	20	4	16	0		
UXO Technician I	3	10	2	8	0		
UXOSO	3	5.5	1.5	4	0		
UXOQCS	3	5.5	1.5	4	0		
EMT	3	10	10	0	0		
Sub-Contractor Personnel (List by Category)							
DEI / UXO Tech II	3	10	2	8	0		
DEI / UXO Tech I	3	10	2	8	0		
Wil Chee Planning	4	0	0	0	0		

b. Daily Equipment:

Description:	Task:	Number of	Hours	Total Hours	Remarks:
		Units	Used Each:	Used:	
SUV Vehicle	3	3	12	36	
Truck Crew Cab	3	1	12	12	
MineLab Detector	3	6	10	60	
Trimble GeoXT	3	3	10	30	
Handheld GPS					
Brush Cutter	3	2	10	20	
Laptop Computer	3	1	14	14	
Cell Phone	3	1	11	11	
Printer	3	1	10	10	
Digital Camera	3	2	10	20	
Hand Held Radio	3	6	10	60	
EMT Medical Gear	3	1	10	10	
Safety Equipment	3	2	10	20	
Operating Equipment	3	2	10	20	

Daily Operations Summary Con't.

PAGE 5 of 5 PAGES

5. Operational Remarks:

The SI field team continued reconnaissance operations and soil sample operations within the boundaries of the Former Waikane Valley Training Area.

SI Team personnel on site in the field for the day included a Site Manager, SUXOS, dual-hatted UXOSO/QCS, 1-UXO Technician III, 3-UXO Technicians II, 2-UXO Technicians I, 2-Archeologist from Pacific Consulting Services, Inc, and **2-***QA/UXO Techs from ECC*.

The reconnaissance field team continues to encounter extremely heavy underbrush vegetation, thick vegetation canopy and very steep and rough terrain throughout the site. The *Hau* vegetation within the site boundaries has proven to be very difficult to impossible to traverse through. The team has to traverse around a lot of the area that contain the *Hau* vegetation.

Today, both reconnaissance teams operated in the western portion of the site filling in data gaps in these areas, and traversing transects from south to north and north to south utilizing ravines and valleys to move about.

No MPPEH or MEC (UXO) items were noted during the day's operations.

As of the end of the day's operations, the project field team completed 6 percent for a total of 81 percent of the scoped reconnaissance acreage, and 3 cells/grids for a total of 37 of the scoped reconnaissance cell/grid locations.

Two personnel from ECC, Mr. Chris Talbot and Mr. Terry Stark were on site today to commence the Quality Assurance inspection of the SI Team and the process. Today was an administrative day for the ECC team.

It is still expected that at the present operations production rate, by the 31st of October the field team will have completed all field operations. We may or may not obtain or accomplish the scoped reconnaissance acreage of 10 acres by this time, but I feel that we will not be able to SAFELY traverse any more of the site to gain any additional data or acreage then what will have been completed by this time.

6. Signature / Date:

Daniel Miller Site Manager Date: 10/27/2008

DAILY OPERATIONS SUMMARY

DATE: Tuesday, 10/28/2008

PAGE 1 OF 5 PAGES

SITE: Waikane Valley Training Area Site Investigation Project, MCBH Kaneohe, HI

1. WORK SUMMARY

a.

Work Accomplished:	Number Completed	Total Remaining
(1) Survey	08%	11%
(2) Survey Cells/G	rids 04	00
(3) Incremental Sa	imples 00	00
(4) Discreet Sampl	les 00	00
(5) Quality Contro	Daily	Daily
(6) Quality Assura	nce N/A	N/A

b. Discrepancies: None

c.	Inspection Results:	Pass	Fail
	(1) Quality Control	1	0
	(2) Quality Assurance	0	0
	(3) Safety	1	0

2. INSTRUCTIONS RECEIVED FROM CUSTOMER REPRESENTATIVE:

Continue reconnaissance operations within the site investigation (SI) boundaries of the Former Waikane Valley Training Area as per the Project Work Plan and Scope of Work.

Daily Operations Summary Continued

PAGE 2 OF 5 PAGES

3. MEC SUMMARY

EC (UXO)/MPPEH Located:	: No MEC (UXO) or MPPEH located this day	•
	EC (UXO)/MPPEH Located:	EC (UXO)/MPPEH Located: No MEC (UXO) or MPPEH located this day

Туре:	Quantity:	Live/Prac.	Remarks:

Туре:	Quantity:	Remarks:

c. MD/Scrap Generation / Deposition: No MD/Scrap generated or disposed of.

Туре:	Quantity:	Weight:	Remarks:
-			
-			
-			
-			
PAGE 4 of 5 PAGES

Daily Operations Summary Continued

4. Utilization

a. Daily Man-hours:

Labor	Task #	M/H	M/H 0%	M/H 4%	M/H 8%	
Category:		Today:	:			
Site Manager	3	12	12	0	0	
SUXOS	3	10	2	8	0	
UXO Technician III	3	10	2	8	0	
UXO Technician II	3	20	4	16	0	
UXO Technician I	3	10	2	8	0	
UXOSO	3	5.5	1.5	4	0	
UXOQCS	3	5.5	1.5	4	0	
EMT	3	10	10	0	0	
Sub-Contractor Personnel (List by Category)						
DEI / UXO Tech II	3	10	2	8	0	
DEI / UXO Tech I	3	10	2	8	0	
Wil Chee Planning	4	0	0	0	0	

b. Daily Equipment:

Description:	Task:	Number of	Hours	Total Hours	Remarks:
		Units	Used Each:	Used:	
SUV Vehicle	3	3	12	36	
Truck Crew Cab	3	1	12	12	
MineLab Detector	3	6	10	60	
Trimble GeoXT	3	3	10	30	
Handheld GPS					
Brush Cutter	3	2	10	20	
Laptop Computer	3	1	14	14	
Cell Phone	3	1	11	11	
Printer	3	1	10	10	
Digital Camera	3	2	10	20	
Hand Held Radio	3	6	10	60	
EMT Medical Gear	3	1	10	10	
Safety Equipment	3	2	10	20	
Operating Equipment	3	2	10	20	

Daily Operations Summary Con't.

PAGE 5 of 5 PAGES

5. Operational Remarks:

The SI field team continued reconnaissance operations and soil sample operations within the boundaries of the Former Waikane Valley Training Area.

SI Team personnel on site in the field for the day included a Site Manager, SUXOS, dual-hatted UXOSO/QCS, 1-UXO Technician III, 3-UXO Technicians II, 2-UXO Technicians I, 2-Archeologist from Pacific Consulting Services, Inc, and **2-***QA/UXO Techs from ECC*.

The reconnaissance field team continues to encounter extremely heavy underbrush vegetation, thick vegetation canopy and very steep and rough terrain throughout the site. The *Hau* vegetation within the site boundaries has proven to be very difficult to impossible to traverse through. The team has to traverse around a lot of the area that contain the *Hau* vegetation.

Today, both reconnaissance teams operated in the central to eastern portion of the site filling in data gaps in these areas, and traversing transects from south to north and north to south utilizing ravines and valleys to move about.

No MPPEH or MEC (UXO) items were noted during the day's operations.

As of the end of the day's operations, the project field team completed 8 percent for a total of 89 percent of the scoped reconnaissance acreage, and 4 cells/grids for a total of 41 of the scoped 36 reconnaissance cell/grid locations.

Two personnel from ECC, Mr. Chris Talbot and Mr. Terry Stark were on site today to continue with the Quality Assurance inspection of the SI Team and the process. Today was another administrative day for the ECC team.

Today, the Site Manager went to the Donaldson Enterprises, Inc. (DEI) main office located in Honolulu. During the previous historical records research conducted at DEI, several papers, documents and maps with reference to the Former Waikane Valley Training Area were flagged for copying once approved by the upper management at DEI. Today those copies were made and the Site Manager was able to obtain them. The total time spent copying records at DEI was approximately 1 hour.

It is still expected that at the present operations production rate, by the 31st of October the field team will have completed all field operations. We may or may not obtain or accomplish the scoped reconnaissance acreage of 10 acres by this time, but I feel that we will not be able to SAFELY traverse any more of the site to gain any additional data or acreage then what will have been completed by this time.

6. Signature / Date:

Daniel Miller Site Manager Date: 10/28/2008

DAILY OPERATIONS SUMMARY

DATE: Wednesday, 10/29/2008

PAGE 1 OF 5 PAGES

SITE: Waikane Valley Training Area Site Investigation Project, MCBH Kaneohe, HI

1. WORK SUMMARY

a.

Work Accomplished:	Number Completed	Total Remaining
(1) Survey	11%	00%
(2) Survey Cells/G	rids 01	00
(3) Incremental Sa	mples 00	00
(4) Discreet Sampl	es 00	00
(5) Quality Contro	l Daily	Daily
(6) Quality Assura	nce N/A	N/A

b. Discrepancies: None

c.	Inspection Results:	Pass	Fail
	(1) Quality Control	1	0
	(2) Quality Assurance	0	0
	(3) Safety	1	0

2. INSTRUCTIONS RECEIVED FROM CUSTOMER REPRESENTATIVE:

Continue reconnaissance operations within the site investigation (SI) boundaries of the Former Waikane Valley Training Area as per the Project Work Plan and Scope of Work.

Daily Operations Summary Continued

PAGE 2 OF 5 PAGES

3. MEC SUMMARY

CC (UXO)/MPPEH Located:	No MEC (UXO) or MPPEH	located this day.
ĺ	EC (UXO)/MPPEH Located:	EC (UXO)/MPPEH Located: No MEC (UXO) or MPPEH

Туре:	Quantity:	Live/Prac.	Remarks:

Туре:	Quantity:	Remarks:

b. Demolition Supplies Expended: No demolition items expended this day.

c. MD/Scrap Generation / Deposition: No MD/Scrap generated or disposed of.

Туре:	Quantity:	Weight:	Remarks:
-			
-			
-			
-			

PAGE 4 of 5 PAGES

Daily Operations Summary Continued

4. Utilization

a. Daily Man-hours:

Labor	Task #	M/H	M/H 0%	M/H 4%	M/H 8%	
Category:		Today:	:			
Site Manager	3	12	12	0	0	
SUXOS	3	10	2	8	0	
UXO Technician III	3	10	2	8	0	
UXO Technician II	3	20	4	16	0	
UXO Technician I	3	10	2	8	0	
UXOSO	3	5.5	1.5	4	0	
UXOQCS	3	5.5	1.5	4	0	
EMT	3	10	10	0	0	
Sub-Contractor Personnel (List by Category)						
DEI / UXO Tech II	3	10	2	8	0	
DEI / UXO Tech I	3	10	2	8	0	
Wil Chee Planning	4	0	0	0	0	

b. Daily Equipment:

Description:	Task:	Number of	Hours	Total Hours	Remarks:
		Units	Used Each:	Used:	
SUV Vehicle	3	3	12	36	
Truck Crew Cab	3	1	12	12	
MineLab Detector	3	6	10	60	
Trimble GeoXT	3	3	10	30	
Handheld GPS					
Brush Cutter	3	2	10	20	
Laptop Computer	3	1	14	14	
Cell Phone	3	1	11	11	
Printer	3	1	10	10	
Digital Camera	3	2	10	20	
Hand Held Radio	3	6	10	60	
EMT Medical Gear	3	1	10	10	
Safety Equipment	3	2	10	20	
Operating Equipment	3	2	10	20	

Daily Operations Summary Con't.

PAGE 5 of 5 PAGES

5. Operational Remarks:

The SI field team continued reconnaissance operations within the boundaries of the Former Waikane Valley Training Area.

SI Team personnel on site in the field for the day included a Site Manager, SUXOS, dual-hatted UXOSO/QCS, 1-UXO Technician III, 3-UXO Technicians II, 2-UXO Technicians I, 2-Archeologist from Pacific Consulting Services, Inc, and **2-***QA/UXO Techs from ECC*.

The reconnaissance field team continues to encounter extremely heavy underbrush vegetation, thick vegetation canopy and very steep and rough terrain throughout the site. The *Hau* vegetation within the site boundaries has proven to be very difficult to impossible to traverse through. The team has to traverse around a lot of the area that contain the *Hau* vegetation.

Today, both reconnaissance teams operated in the eastern portion of the site filling in data gaps in these areas, and traversing transects from south to north and north to south utilizing ravines and valleys to move about.

No MPPEH or MEC (UXO) items were noted during the day's operations.

As of the end of the day's operations, the project field team completed 11 percent for a total of 100 percent of the scoped reconnaissance acreage, and 1 cell/grid for a total of 42 of the scoped reconnaissance cell/grid locations totaling 5.2 acres.

Two personnel from ECC, Mr. Chris Talbot and Mr. Terry Stark were on site today to continue with the Quality Assurance inspection of the SI Team and the process. Today the ECC QA Team accompanied one of the reconnaissance teams while the team was conducting reconnaissance operations.

As of the end of the work day, the SI field team completed reconnaissance operations within the boundaries of the Former Waikane Valley Training Area. The teams have conducted reconnaissance operations in all possible areas that they were able to safely traverse. There are still several data gaps within the boundaries of the SI project site, but after several attempts to try and conduct reconnaissance operations in these identified data gap locations, the attempts were unsuccessful.

For Thursday's operations, the SI field team will conduct site restoration, clean vehicles and equipment, and conduct equipment pack out.

On Friday the 31st of October, the SI Field Management Team will meet with the EOD Team from MCBH Kaneohe to conduct a project site brief and data orientation.

6. Signature / Date:

Daniel Miller Site Manager Date: 10/29/2008

DAILY OPERATIONS SUMMARY

DATE: Thursday, 10/30/2008

PAGE 1 OF 5 PAGES

SITE: Waikane Valley Training Area Site Investigation Project, MCBH Kaneohe, HI

1. WORK SUMMARY

a.

Work Accomplished:	Number Completed	Total Remaining
(1) Survey	00	00
(2) Survey Cells/G	rids 00	00
(3) Incremental Sa	mples 00	00
(4) Discreet Sampl	es 00	00
(5) Quality Contro	d Daily	Daily
(6) Quality Assura	nce N/A	N/A

b. Discrepancies: None

c.	Inspection Results:	Pass	Fail
	(1) Quality Control	1	0
	(2) Quality Assurance	0	0
	(3) Safety	1	0

2. INSTRUCTIONS RECEIVED FROM CUSTOMER REPRESENTATIVE:

Conduct site restoration; remove seed items from the Instrument Test Plot, clean equipment and package equipment for shipment.

Daily Operations Summary Continued

PAGE 2 OF 5 PAGES

3. MEC SUMMARY

CC (UXO)/MPPEH Located:	No MEC (UXO) or MPPEH	located this day.
ĺ	EC (UXO)/MPPEH Located:	EC (UXO)/MPPEH Located: No MEC (UXO) or MPPEH

Туре:	Quantity:	Live/Prac.	Remarks:

Туре:	Quantity:	Remarks:

b. Demolition Supplies Expended: No demolition items expended this day.

c. MD/Scrap Generation / Deposition: No MD/Scrap generated or disposed of.

Туре:	Quantity:	Weight:	Remarks:
-			
-			
-			
-			

PAGE 4 of 5 PAGES

Daily Operations Summary Continued

4. Utilization

a. Daily Man-hours:

Labor	Task #	M/H	M/H 0%	M/H 4%	M/H 8%	
Category:		Today:	:			
Site Manager	3	11	11	0	0	
SUXOS	3	10	7	3	0	
UXO Technician III	3	10	7	3	0	
UXO Technician II	3	20	14	6	0	
UXO Technician I	3	10	7	3	0	
UXOSO	3	5	3.5	1.5	0	
UXOQCS	3	5	3.5	1.5	0	
EMT	3	10	10	0	0	
Sub-Contractor Personnel (List by Category)						
DEI / UXO Tech II	3	10	7	3	0	
DEI / UXO Tech I	3	10	7	3	0	
Wil Chee Planning	4	0	0	0	0	

b. Daily Equipment:

Description:	Task:	Number of	Hours	Total Hours	Remarks:
		Units	Used Each:	Used:	
SUV Vehicle	3	3	12	36	
Truck Crew Cab	3	1	12	12	
MineLab Detector	3	6	10	60	
Trimble GeoXT	3	3	10	30	
Handheld GPS					
Brush Cutter	3	2	10	20	
Laptop Computer	3	1	14	14	
Cell Phone	3	1	11	11	
Printer	3	1	10	10	
Digital Camera	3	2	10	20	
Hand Held Radio	3	6	10	60	
EMT Medical Gear	3	1	10	10	
Safety Equipment	3	2	10	20	
Operating Equipment	3	2	10	20	

Daily Operations Summary Con't.

PAGE 5 of 5 PAGES

5. Operational Remarks:

SI Team personnel for the day included a Site Manager, SUXOS, dual-hatted UXOSO/QCS, 1-UXO Technician III, 3-UXO Technicians II, and 2-UXO Technicians I.

The SI field team conducted site restoration operations, removed all seed items from the Instrument Test Plot, cleaned all equipment and the rental Pick-up Truck. All equipment was packaged up for shipment except for the equipment items needed for Friday's and Saturday's onsite briefings and tour.

A total of 13 equipment packages were shipped back to USA Environmental corporate headquarters in Oldsmar today with a scheduled delivery of Monday the 3rd of November.

On Friday the 31st of October, the SI Field Management Team will meet with the EOD Team from MCBH Kaneohe to conduct a project on-site brief and data orientation. Mr. Wray Kakugawa, NAVFAC Pacific; Mr. Randall Hu, MCBH Environmental Department; and Major Crouch, MCBH Public Affairs Officer will accompany the Field Management Team and the Marine EOD Detachment during the on-site brief, tour and data orientation.

Following the on-site brief with Marine EOD, the Field Management Team will participate in a Informal Exit Briefing with NAVFAC Pacific and MCBH Environmental Personnel.

6. Signature / Date:

Daniel Miller Site Manager Date: 10/30/2008

DAILY OPERATIONS SUMMARY

DATE: Friday, 10/31/2008

PAGE 1 OF 5 PAGES

SITE: Waikane Valley Training Area Site Investigation Project, MCBH Kaneohe, HI

1. WORK SUMMARY

a.

Work Accomplished:	Number Completed	Total Remaining
(1) Survey	00	00
(2) Survey Cells/Gr	ids 00	00
(3) Incremental Sar	nples 00	00
(4) Discreet Sample	s 00	00
(5) Quality Control	N/A	N/A
(6) Quality Assurar	nce N/A	N/A

b. Discrepancies: None

c.	Inspection Results:	Pass	Fail
	(1) Quality Control	0	0
	(2) Quality Assurance	0	0
	(3) Safety	0	0

2. INSTRUCTIONS RECEIVED FROM CUSTOMER REPRESENTATIVE:

Participate and lead a site visit to the Waikane Valley Training Area with the MCBH EOD Detachment, MCBH Environmental Department, MCBH Public Affairs Office and NAVFAC Pacific.

Daily Operations Summary Continued

PAGE 2 OF 5 PAGES

3. MEC SUMMARY

CC (UXO)/MPPEH Located:	No MEC (UXO) or MPPEH	located this day.
ĺ	EC (UXO)/MPPEH Located:	EC (UXO)/MPPEH Located: No MEC (UXO) or MPPEH

Туре:	Quantity:	Live/Prac.	Remarks:

Туре:	Quantity:	Remarks:

b. Demolition Supplies Expended: No demolition items expended this day.

c. MD/Scrap Generation / Deposition: No MD/Scrap generated or disposed of.

Туре:	Quantity:	Weight:	Remarks:
-			
-			
-			
-			

PAGE 4 of 5 PAGES

Daily Operations Summary Continued

4. Utilization

a. Daily Man-hours:

Labor	Task #	M/H	M/H 0%	M/H 4%	M/H 8%	
Category:		Today:	:			
Site Manager	3	10	10	0	0	
SUXOS	3	8	8	0	0	
UXO Technician III	3	8	8	0	0	
UXO Technician II	3	16	16	0	0	
UXO Technician I	3	8	8	0	0	
UXOSO	3	2	2	0	0	
UXOQCS	3	2	2	0	0	
EMT	3	8	8	0	0	
Sub-Contractor Personnel (List by Category)						
DEI / UXO Tech II	3	0	0	0	0	
DEI / UXO Tech I	3	0	0	0	0	
Wil Chee Planning	4	0	0	0	0	

b. Daily Equipment:

Description:	Task:	Number of	Hours	Total Hours	Remarks:
		Units	Used Each:	Used:	
SUV Vehicle	3	3	8	24	
Truck Crew Cab	3	0	0	0	
MineLab Detector	3	1	8	8	
Trimble GeoXT	3	3	8	24	
Handheld GPS					
Brush Cutter	3	0	0	0	
Laptop Computer	3	1	14	14	
Cell Phone	3	1	10	10	
Printer	3	1	10	10	
Digital Camera	3	1	8	8	
Hand Held Radio	3	0	0	0	
EMT Medical Gear	3	1	8	8	
Safety Equipment	3	0	0	0	
Operating Equipment	3	0	0	0	

Daily Operations Summary Con't.

PAGE 5 of 5 PAGES

5. Operational Remarks:

SI Team personnel for the day's evolutions included a Site Manager, SUXOS, dual-hatted UXOSO/QCS, and 1-UXO Technician III.

The following personnel mobilized out from the Waikane SI Project: Craig Long, UXO Tech II; Matthew Busch, UXO Tech II; William Hong, UXO Tech I; and James Duffey, EMT. The UXOSO/QCS spent the day bringing/shuttling personnel mobbing out from the lodging to the Honolulu airport.

The remainder of the Site Management Team, the Site Manager, SUXOS and Team Leader conducted and participated in a Waikane Valley Training Area on-site visit, brief and data orientation with Mr. Wray Kakugawa, NAVFAC Pacific; Mr. Randall HU, MCBH Environmental Department; Major Crouch, MCBH Public Affairs Officer; CWO Hockett, Officer in Charge MCBH EOD Detachment.

Following the site visit and orientation, the same personnel from the Site Management Team participated in an informal Exit Briefing with Mr. Wray Kakugawa, NAVFAC Pacific; Major Hudock, MCBH Environmental Department; and Mr. Randall Hu, MCBH Environmental Department. During the Exit Briefing the USAE Site Manager briefed personnel on the work and results accomplished during the Site Investigation within the SI boundaries of the Waikane Valley Training Area.

On Saturday the 1st of November, all four personnel of the SI Field Management Team will meet with personnel from MCBH Kaneohe and NAVFAC Pacific to participate with the prescheduled RAB Site Visit at the Waikane Valley Training Area.

6. Signature / Date:

Daniel Miller Site Manager Date: 10/31/2008

DAILY OPERATIONS SUMMARY

DATE: Saturday, 11/01/2008

PAGE 1 OF 6 PAGES

SITE: Waikane Valley Training Area Site Investigation Project, MCBH Kaneohe, HI

1. WORK SUMMARY

a.

Work Accomplished:	Number Completed	Total Remaining
(1) Survey	00	00
(2) Survey Cells/Gr	ids 00	00
(3) Incremental Sar	nples 00	00
(4) Discreet Sample	s 00	00
(5) Quality Control	N/A	N/A
(6) Quality Assurar	nce N/A	N/A

b. Discrepancies: None

c.	Inspection Results:	Pass	Fail
	(1) Quality Control	0	0
	(2) Quality Assurance	0	0
	(3) Safety	0	0

2. INSTRUCTIONS RECEIVED FROM CUSTOMER REPRESENTATIVE:

Actively participate with the scheduled RAB site visit to the Waikane Valley Training Area. Clean remaining rental vehicles and package remaining equipment.

Daily Operations Summary Continued

PAGE 2 OF 6 PAGES

3. MEC SUMMARY

a.	MEC (UXO)/MPPEH Located:	No MEC (UXO) or MPPEH located this day.

Туре:	Quantity:	Live/Prac.	Remarks:

Туре:	Quantity:	Remarks:

b. Demolition Supplies Expended: No demolition items expended this day.

c. MD/Scrap Generation / Deposition: No MD/Scrap generated or disposed of.

Туре:	Quantity:	Weight:	Remarks:

PAGE 4 of 6 PAGES

Daily Operations Summary Continued

4. Utilization

a. Daily Man-hours:

Labor	Task #	M/H	M/H 0%	M/H 4%	M/H 8%	
Category:		Today:	:			
Site Manager	3	10	10	0	0	
SUXOS	3	7	7	0	0	
UXO Technician III	3	8	8	0	0	
UXO Technician II	3	0	0	0	0	
UXO Technician I	3	0	0	0	0	
UXOSO	3	3.5	3.5	0	0	
UXOQCS	3	3.5	3.5	0	0	
EMT	3	0	0	0	0	
Sub-Contractor Personnel (List by Category)						
DEI / UXO Tech II	3	0	0	0	0	
DEI / UXO Tech I	3	0	0	0	0	
Wil Chee Planning	4	4	4	0	0	

b. Daily Equipment:

Description:	Task:	Number of	Hours	Total Hours	Remarks:
		Units	Used Each:	Used:	
SUV Vehicle	3	3	8	24	
Truck Crew Cab	3	0	0	0	
MineLab Detector	3	1	4	4	
Trimble GeoXT	3	1	4	4	
Handheld GPS					
Brush Cutter	3	0	0	0	
Laptop Computer	3	1	12	12	
Cell Phone	3	1	10	10	
Printer	3	1	10	10	
Digital Camera	3	1	4	4	
Hand Held Radio	3	0	0	0	
EMT Medical Gear	3	1	4	4	
Safety Equipment	3	0	0	0	
Operating Equipment	3	0	0	0	

Daily Operations Summary Con't.

PAGE 5 of 6 PAGES

5. Operational Remarks:

SI Team personnel for the day's evolutions included the Site Manager, SUXOS, dual-hatted UXOSO/QCS, 1-UXO Technician III, 1-Soil Sample Technician from Wil Chee Planning and 1-Archeologist from Pacific Consulting Services, Inc.

The Site Management Team; the Site Manager, SUXOS, dual-hatted UXOSO/QCS, Team Leader, Soil Sample Technician and Archeologist actively participated in the pre-scheduled RAB Site Visit within the SI boundaries of the Waikane Valley Training Area.

Personnel other than the field SI Team in attendance included 4 members from the RAB, 2 personnel from MCBH Environmental Department, a representative from NAVFAC Pacific, and 2 EOD personnel from MCBH EOD Detachment.

Major Hudock from MCBH Environmental Department was the lead for the Site Visit. Once introductions were made, Major Hudock turned the site visit briefing and orientation over to USA Environmental. The Site Manager gave the participants and overall brief of the areas that were to be visited, and gave a brief description of what our Scope of Work for the project involved, and what we expected to gain from our work on site.

The participants visited the project Instrument Test Plot (ITP) were the Site Manager and SUXOS gave a detailed brief on how the ITP was constructed, the purpose of the ITP, how it was used on a daily basis, and very detailed brief of the MineLab hand-held detector. The Site Manager and SUXOS fielded and answered many questions.

The two other areas visited during the site visit was the Cell/Grid location #4 and one of the site's historical Agricultural Terraces located just east of Cell #4. At the Cell 4 location, the participants were giving a detailed brief on how the team conducted their reconnaissance operations, the different equipment and personnel that made up the team, and the data/information that we collected during the reconnaissance. At the Cell 4 location the participants were also shown one of the Munitions Debris items, a M29 Practice Rifle Grenade that was located during the reconnaissance survey of Cell #4.

At the Agricultural Terrace location, Ms. Coral Rasmussen, Archeologist from MCBH Environmental and Mr. Steve Clark, Archeologist from Pacific Consulting conducted a thorough brief about all the Agricultural Terraces that are within the project site and fielded and answered questions from the participants.

After the visit to Cell 4 and the Agricultural Terrace, the participants then moved over to the Southeastern area of the site which the team referred to as the "hole" where Mr. Matt Casey with Wil Chee Planning discussed in detail the Soil Sampling operations and procedures that were conducted within the SI boundaries. Mr. Casey answered several questions from the participants.

Daily Operations Summary Con't.

PAGE 6 of 6 PAGES

Following Mr. Casey's presentation, Major Hudock instructed the participants that the site visit was completed and conducted brief closing remarks. The outcome of the site visit appeared to be very successful, and was worth the time and effort by all organizers and participants. The RAB members in attendance had very positive feed back at the end.

For the remainder of the day, the USA crew spent several hours of thoroughly cleaning of the three Budget Rental Vehicles in order to make them ready for return/turn-in.

6. Signature / Date:

Daniel Miller_____ Site Manager Date: 11/01/2008

APPENDIX D. OPERATIONAL PHOTOGRAPHS AND HISTORICAL DATA

This appendix contains the following information:

- Photographs taken during SI field operations (25)
- Photographs from U.S. Army Museum of Hawaii (4)
- Historical after-action reports.

The photographs from the SI field operations are as follows:

Figure D-1: Instrument Test Plot Location Southeast Corner of MRSD-3
Figure D-2: Construction of Instrument Test PlotD-3
Figure D-3: Typical Vegetation within Boundaries of MRSD-4
Figure D-4: Hau Vegetation Encountered in Southern Portion of MRSD-4
Figure D-5: UXO Item ID 36. Fired & Fuzed 3.5" Shoulder Fired HEAT RocketD-5
Figure D-6: UXO Item ID 100. Partially Buried Fuzed & Fired 3.5" HEAT RocketD-5
Figure D-7: UXO Item ID 36. Fuzed 3.5" HEAT Rocket Warhead, Motor BuriedD-6
Figure D-8: UXO Item ID 206. Fuzed & Fired 3.5" HEAT Rocket, Fin MissingD-6
Figure D-9: MD Item ID 3. Practice 3.5" Anti-Tank Rocket, Fired and InertD-7
Figure D-10: MD Item ID 16. Expended/Inert 3.5" Rocket Motor and FuzeD-7
Figure D-11: Base Section Fragment, 75mm HE Projectile, Empty/InertD-8
Figure D-12: UXO Item ID 219. Fired & Fuzed 2.36" HEAT Rocket WarheadD-8
Figure D-13: M127 Series Hand Signal Flare, Expended/InertD-9
Figure D-14: UXO Item ID 310. M28 HEAT Rifle Grenade, Nose Fuze Broken OffD-9
Figure D-15: UXO Item ID 351. M28 HEAT Rifle Grenade, FuzedD-10
Figure D-16: MD Item ID 129. Two M29 Practice Rifle Grenades, InertD-10
Figure D-17: MD Item ID 130. M29 Practice Rifle Grenade WarheadD-11
Figure D-18: Cell 22, Surface Area Saturated with Small Arms ProjectilesD-11
Figure D-19: Cell 22, Close-Up View Surface Area, Small Arms & Rocket DebrisD-12

Figure D-20: Cell 22, Copper Slug from 3.5" HEAT Rocket Warhead	.D-12
Figure D-21: Cell 22, Suspected Target Location, 3.5" Rocket Motors Protruding	.D-13
Figure D-22: Environmental Tech Collecting Soil Sample	.D-13
Figure D-23: UXO Technician, Reconnaissance Survey within Cell Location	.D-14
Figure D-24: Two Suspected Target Locations in Western Section of MRS	.D-14
Figure D-25: Two Suspected Target Locations in Eastern Section of MRS	.D-15

Historic Photos: 34th INF Marching across Waikane Trail, Circa 1943...... D-16 to D-19

After Action Reports:

EOD Surface Clearance at Waikane Valley Training Area; 20 Sep 1976	D-20 to D-25
EOD Surface Clearance on Kamaka Portion of WVTA, Jan 1984	D-26 to D-32
Honolulu Police Department Activity Record of Ordnance found, Sep 1987	D-33
EOD Operations Report on Ordnance found, Sep 1987	.D-34 to D-35

This space is intentionally left blank.

Figure D-1: Instrument Test Plot Location Southeast Corner of MRS

Figure D-2: Construction of Instrument Test Plot

Figure D-3: Typical Vegetation within Boundaries of MRS

Figure D-4: Hau Vegetation Encountered in Southern Portion of MRS

Figure D-5: UXO Item ID 36. Fired & Fuzed 3.5" Shoulder Fired HEAT Rocket

Figure D-6: UXO Item ID 100. Partially Buried Fuzed & Fired 3.5" HEAT Rocket

Figure D-7: UXO Item ID 36. Fuzed 3.5" HEAT Rocket Warhead, Motor Buried

Figure D-8: UXO Item ID 206. Fuzed & Fired 3.5" HEAT Rocket, Fin Missing

Figure D-9: MD Item ID 3. Practice 3.5" Anti-Tank Rocket, Fired and Inert

Figure D-10: MD Item ID 16. Expended/Inert 3.5" Rocket Motor and Fuze

Figure D-11: Base Section Fragment, 75mm HE Projectile, Empty/Inert

Figure D-12: UXO Item ID 219. Fired & Fuzed 2.36" HEAT Rocket Warhead

Figure D-13: M127 Series Hand Signal Flare, Expended/Inert

Figure D-14: UXO Item ID 310. M28 HEAT Rifle Grenade, Nose Fuze Broken Off

Figure D-15: UXO Item ID 351. M28 HEAT Rifle Grenade, Fuzed

Figure D-16: MD Item ID 129. Two M29 Practice Rifle Grenades, Inert

Figure D-17: MD Item ID 130. M29 Practice Rifle Grenade Warhead

Figure D-18: Cell 22, Surface Area Saturated with Small Arms Projectiles

Figure D-19: Cell 22, Close-Up View Surface Area, Small Arms & Rocket Debris

Figure D-20: Cell 22, Copper Slug from 3.5" HEAT Rocket Warhead

Figure D-21: Cell 22, Suspected Target Location, 3.5" Rocket Motors Protruding

Figure D-22: Environmental Tech Collecting Soil Sample
SITE INSPECTION REPORT MUNITIONS RESPONSE PROGRAM WAIKANE VALLEY TRAINING AREA KANEOHE, HAWAII

Figure D-23: UXO Technician, Reconnaissance Survey within Cell Location

Figure D-24: Two Suspected Target Locations in Western Section of MRS

SITE INSPECTION REPORT MUNITIONS RESPONSE PROGRAM WAIKANE VALLEY TRAINING AREA KANEOHE, HAWAII

Figure D-25: Two Suspected Target Locations in Eastern Section of MRS

WHITED STATES PARENE COPPS
 Explosive Connuce Disposal Team
 D. Brigado Service Support Group
 1st Carine Brigada, Fleet Parine Force
 FLO Son Francisco, 96/02

NIB: jub £027 20 September 1976

---1

From: Froject Officer

To: Conmanding General, 1st Marine Brigade (ATTN: Assistant Chief of Staff, G-A)

Via: Commanding Officer, Brigade Service Support Group

Subj: After Action Report; Weikane Valley Training Area

-7

Encl:

Dud Ordnance Destroyed
 Depolition Material Used

(3) Yap of Waikans Valley Training Area

(4) List of Fersonnel Clearing Impact Area

1. <u>BACEGROUND</u>. By CG, FEFPac massage 2019563 JUL 76, the lat Marine Brigar was assigned the task of decraterizing/resoval of ordnance from the NAMAKA partion of the Maikane Valley Training Area. The Commanding General, 1st. Marine Brigade easigned the Brigade Service Support Group the project of cloaring this area. Coptain K. V. BERKEY 316 40 1161, Brigade Explosive Ordnance Disposal Officer, was assigned as everall Project Officer.

2. SURVERY OF OFERATIONS. Three Flanning Meetings were held with the Marine Corps Mir Station Fublic Works Department, to formulate Operational Flans, Equipment/Personnel Requirements, etc..

a. Nork started on the clearing operation on 9 August 1976, with person support from the following: B'DIA Company, 3/3

LINA Company, 3/3 MYO Technicians, BSSG ENOR. Personael, BSSG EOD Technicians, BSSG Radio Supports 3/3 end BSSG

b. Safety Loctures were hold daily for all personnel working in the area. On 9 August 1976, two Gerganics of Infantry conducted a Sweep of the ligh Ground in Area 2 of enclosure (3). The dense jungle in the valleys prealeded taking a large body of verspanel into such areas as control, and not ment the inconstitute. The lafantry troops polled the area of discarded reliefs cane, encounted brass, and can other Government items heated. One 37 Fight Exclusive rooms was found at 2016 163776, 200 personnel disposed of the root at 2016 Schoolition Same. All recomment from 3/3 were reported after the first day due to the above and not brieg able to galize these personal is the large to the start at a second.

Therefore al 1

1273: 505 2027 20 September 1973

221

c. From 10 to 17 August 1976, the main Tapact Arona in Arons 1 and 2 (htp:Short 542) 111 5% and Sheet 5420 1V NE, enclosure (3)) were cleared of all surface ordnance located.

d. Explosive Ordnance Disposal Technicians, Engineers, and Armunition Technicians would clear the Target Areas of practice ordnance and stack these items in large toxes for H.S.T. lifts to DMCAS for further discosal. A total of 9 H.S.T. lifts were made, carrying over 24,400 pounds of practic ordnance and scrap from the area, 42 items of explosive ordnance were disposed of by detenation in the KANSKA mortion of the Training Areas 1 and (enclosure 1).

e. Explosives utilized in the destruction of dud ordnance found in the Impact Areas are listed in enclosure (2). A total of five shots were made.

f. The Engineer Company, NSSC, graded and compacted the roads in the Training Area. Work was finished on 13 September 1976. There were many delays due to wet weather conditions.

3. <u>FROBLES</u>. The following problems were encountered while clearing the Maikana Valley Training Area.

a. Due to the dense coverage and ground cover in the Impact Areas, all rounds could never be located and removed.

b. Due to the degree of incline of the Impact Area, I feel that several V rounds have washed down the hills and are covered by a two to three feet layer of earth.

c. Due to the degree of incline which necessitated personnel to hant by ropes to remove practice 3.5 inch Rogkets from the two Ispact Areas.

d. Due to the extremely rough terrain and dense jungle most ordnance and trach found in the valleys of the Impact Arana had to be removed by hand and carried out in haversacks on the backs of the personnel.

4. <u>CONCLUCIONS</u>. The Maikane Valley Training Area can never be certified from of duds, practice ordnance, etc.. Due to the ground cover, ordnance, Ibeirg buried or items not located due to various reasons.

A. As the dense jungle gradib is glound on the ground in the Ternet Area, is buildeded, it is highly probable that and another util be ancoverforce, M. is highly memoranial that 200 personnal is rule available when the ETTERN's start to clear the reals and traits is the Inyack Areas. I feet which if A scheme the presis and traits is the Inyack Areas. I feet which if A scheme the presis and traits is the Inyack Areas. I feet which if A scheme the presis and traits is determined by keep the Fit allower much form a formula design and which determines of bryled arfabres.

_ ERCLOSUNE 7[]

D-21

1.4 K-7: Jwb 2027 20 Saptember 1976 . 21 DUD ORDMANCE DEST APRICIPIT ITEM 32 9 1 75cm HE rounds 6Ccm HE Nortar rounds M-28 HEAT Rifle Grenada 37cm HE round 1 20 -1-in 1.2 110100123 (1) Enclosing (1) D-24

(:.) 6 1291:jub 8027 70 September 1975 b. Personnel clearing the Impact Areas are listed in enclosure (4). K. W. BERKET CAPT USMC . Copy to: G-3 1 CC, 9350 ECD 1 P1:0 1 File 2 Bda Legal 2 ÷, i.31 INCLOSURE 7 . ų D-25

Staneohe Bay, Hawaii 96

0MWE/SHN/sk 8027 : 1 6 JAN 1984

From: Explosive Ordnance Disposal Officer To: Commanding Officer, Marine Corps Air Station, Kaneohe Bay Via: Commanding Officer, Station Operations and Maintenance Squadron

Subj: After Action Report of Ordnance Survey on the Kamaka Portion of the Waikane Valley Training Area

- Ref: (a) COMMARCORBASESPAC CAMP H M SMITH HI 241745Z DEC 83
- Encl: (1) Map and photographs of Waikane Valley Training Area : (2) Project Officer, EOD Team, BSSG, 1stMarBde, After Action Report KWB:jwb 8027 of 20 Sep 1976
 - (3) NAVEODTECHCEN Technical Note 207

1. <u>Background</u>. Unexploded (dud) and training ordnance has been found in the Kamaka portion of the Waikane Valley Training Area (see enclosure (1)). The Waikane Valley Training Area is an area of Oahu which was leased by the Marine Corps for training from 1961 to 1976. This area was used by other services prior to 1961, including its use during WWII for air-to-ground ordnance. Upon termination of the Marine Corps lease in 1976; the Marine Corps conducted an extensive ordnance sweep of the training impact area and disposed of all surface ordnance which could be located. The after action report of the 1976 ordnance sweep concluded that the Waikane Valley Training Area can never be certified free of duds or training ordnance due to the ground cover and ordnance being buried (enclosure (2), paragraph 4). Land erosion is the primary cause for the recent reappearance of ordnance in the subject area.

2. <u>Tasking</u>. The reference assigns Marine Corps Air Station, Kancohe Bay the responsibility to direct and supervise the overall operation of sweeping the Kamaka portion of the Waikane Valley Training Area for unexploded (dud) or training ordnance. Ist Marine Brigade is tasked to provide engineer/EOD/personnel/ equipment support as necessary for sweeping subject area. Prior to issuing an operation plan for an ordnance sweep of the subject area, a combined EOD on-site survey was conducted 27-30 December 1983.

3. Ordnance Survey Results. The survey consisted of a complete walk-through of the Kamaka land and a testing of three tracts that were laid out by EOD personnel. Each tract was marked off with engineer's tape, 50 feet by 125 feet. The areas were surveyed by personnel at two-foot intervals on a line abreast of

CLOSURE (2)

each other, visually searching for ordnance items. The following information is the result of the three tests and ordnance found:

a. First tract: There were 60, 3.5-inch rockets and associated parts (rocket motors, fins, etc.) found, with an estimated 30,000 small arms.

b. Second tract: There were 160, 3.5-inch rockets and associated parts found.

c. Third tract: There were 260, 3.5-inch rockets and associated parts found, with an estimated 56,0000 small arms.

d. All three areas posed serious problems, both in sweeping technique and personnel safety. The terrain had steep hills and was covered with thick vegetation. In the second survey area, the survey personnel had to break branches and walk through thick underbrush. Keeping on line was difficult and slow. The most difficult problem for personnel was trying to look for ordnance while "tangling" with the environment. See enclosure (1).

e. The back part of the impact area near the base of the mountain, sweeping was most difficult to negotiate because of poor footing. Personnel had to depend mainly on upper body strength to traverse this area.

f. Various locations of the impact area had unexploded ordnance sticking out of the ground. The depth of penetration of the different type of ordnance is unknown at this time due to the lack of knowledge of what type of ordnance was fired. The fact remains that unexploded ordnance does exist beneath the surface, quantity and depth unknown.

Conclusion/Opinions

a. That Waikane Valley Training Area will be difficult to surface sweep and time-consuming. The weather will play an important part as to when personnel will be able to sweep. Rain will make the area slippery and unsafe.

b. It is my opinion that the <u>surface</u> sweep/search effectiveness will never be 100%, and that additional ordnance will remain subsurface. It is opined that the <u>Marine Corps should consider</u> <u>purchasing the Kamaka portion</u> of the <u>Waikane Valley Training</u> Area as total sanitation of the subject area cannot be accomplished without extensive subsurface clearance. Enclosure (3) contains similar case studies.

akusuet

ENCLOSURE (2.)

be Squadron

OMWE/SHN/sk 8027 7 JUN 1984

From: Explosive Ordnance Disposal Officer To: Commanding Officer, Marine Corps Air Station, Kaneohe Bay Via: Commanding Officer, Station Operations and Maintenance Squadron

Marine Corps Air Station Kaneohe Bay, Hawaii 96863

Stai in Operations and Maintena

Subj: Explosive Ordnance Disposal (EOD) After Action Report of Ordnance Surface Clearance of Waikane Valley Training Area

. Ref:

11

- (a) COMMARCORBASESPAC CAMP H M SMITH HI 241745Z DEC 83
 - (b) Fonecon btwn Col McKeown (FMFPac Force Engr) and LtCol Frizell (CO SOMS) of 6 Apr 1984
- Encl: (1) Project Officer, EOD Team, BSSG, 1stMarBde. After Action Report KWB:jwb 8027 of 20 Sep 1976
 - (2) After Action Report of Ordnance Survey on Kamaka Portion of the Waikane Valley Training Area, OMWE/SHN/sk 8027 of 6 Jan 1984
 - (3) Joint LOI for the removal of surface ordnance from the Kamaka Portion of the Waikane Valley Training Area, OMO/DRE/sk Bde 4 8027 of 11 Jan 1984
 - (4) Maps and Photographs of the Waikane Valley Training Area
 - (5) List of personnel involved with clearance operations of the Waikane Valley Training Area

1. <u>Background</u>. Unexploded (dud) and training ordnance was recently found in the Kamaka portion of the Waikane Valley Training Area (WVTA). The WVTA is an area of Oahu which was leased by the Marine Corps for ordnance training from 1961 to 1976. The Kamaka family, currently owns the majority of land involved herein. This area was used by other services prior to 1961. Upon termination of the Marine Corps' lease in 1976, the Marine Corps conducted an extensive ordnance sweep of the training impact area and disposed of all surface ordnance which could be located. The after action report of the 1976 ordnance sweep (enclosure (1)) concluded at that time that the WVTA could never be certified free of duds or training ordnance due to the ground cover and ordnance being buried. Enclosure (2) is the 1984 EOD survey of the subject area which concluded that land erosion is the primary cause for the recent reappearance of ordnance.

2. <u>Tasking</u>. Reference (a) assigned the Commanding Officer, Marine Corps Air Station, Kaneohe Bay with the overall responsibility to direct and supervise the overall operation of sweeping the Kamaka portion of the WVTA for unexploded (dud) or training ordnance. Enclosure (3) is the joint MCAS Kaneohe Bay and 1st Marine Brigade Letter of Instruction (LOI) assigning various

OMWE/SHN/sk 8027

units of both commands with individual taskings, with the 1st Marine Brigade being tasked primarily in providing engineer/EOD/ personnel/equipment support.

3. Operation Results. Sweep operations started on 2 February 1984 with 14 Marines, 2 Navy and 2 Army personnel present. The operation was supported by all four services. During the operational period, the amount of personnel varied due to various operational commitments. The Air Force EOD Team joined the sweep operation in late February. Prior to sweeping for ordnance, the EOD teams and 1st Battalion, 12th Marines conducted line surveys to establish sweep lanes within the operational area. These lanes helped to control the personnel on the sweep line and establish which areas had been swept.

a. Engineer Company, BSSG, 1st Marine Brigade, supported the operation with HST from road grader support. It was felt that the road in WVTA was in need of grading. Grading the road didn't work as planned because the road was all dirt and during the month of February, it rained almost everyday. Instead of the grader fixing the road, it made the road more slippery. The road grader was secured back to MCAS Kaneohe Bay for use at a later date. After talking with Mr. Kamaka, he indicated he did not want the road grader back. I feel the road in WVTA is in better shape now than it was before the operation started. Although the road was slippery during February, after the road dried, it is in better condition than before.

b. At 0715 each morning the EOD team, working party, and corpsmen departed the Station enroute for WVTA. Upon arrival, a safety lecture was given to all hands on the hazards of dud ordnance located within the training area and medevac procedures. After the safety lecture, all hands departed the CP area to commence sweep operations. Because of the hazardous conditions within the training area it was felt that a two-hour lunch break from 1100 to 1300 was needed for a rest. After the lunch period work was started once again until 1530. All hands were then loaded in vehicles and taken back to the Air Station.

c. During the sweep operations, all ordnance that was "live" was marked with red plastic tape to ensure relocation of the item. After sweeping an area that was saturated with ordnance, an explosive disposal day was set up. During these disposal days, there were no sweep operations, just destruction of dud and demilitarization of training ordnance.

d. The use of explosives to demilitarize practice warheads, fuzes, and rocket mortars was deemed to be economical and feasible. After testing different procedures for demilitarization, the most effective procedure was to have the warheads and rocket motor sections laid out with 30 rounds on line. Blocks of C-4 were cut in thirds lengthwise and molded around the break between

D-29 2

the fuze and motor. The entire disposal system was then covered with two alternating layers of sandbags to help contain the rounds in place during detonation. Upon returning to the site, the ordnance was again inspected to determine if all demilitarization had been accomplished.

e. After destruction of dud ordnance and demilitarization of training ordnance, all pieces were picked up and placed in large boxes for helicopter lifts back to MCAS Kaneohe Bay. The weight of the boxes were approximately 2,000 pounds per box. There was a total of eight helicopter sorties. A total of 16,000 lbs of demilitarized practice ordnance was flown out of WVTA.

f. The following information is the amount of explosives that has been used, high explosive rounds that have been destroyed (some of these rounds may have been practice, but in their condition it was impossible to identify them), and practice rounds demilitarized:

- Explosives expended:
 - (a) 865 lbs of C-4.

(b) 9,950 ft. of time fuse.

(c) 2,000 feet of detonating cord.

(d) 422 nonelectric blasting caps.

(e) 354 fuse lighters.

(f) 6 thermite grenades.

(g) 10 red smoke grenades.

(h) 10 green smoke grenades.

(i) 10 yellow smoke grenades.

(2) High explosive rounds destroyed:

(a) 146 - 3.5" HEAT rounds.

(b) 24 - 2.36" HEAT rounds.

(c) 11 - M-28 HEAT rounds.

(d) 9 - M9A1 HEAT rounds.

(3) Practice rounds demilitarized:

(a) 87 - M29 practice rifle grenades.

OMWE/SHN/sk 8027

(b) 3,735 - 3.5" practice rounds.

g. Search Effectiveness Probability (SEP)

(1) To validate the sweep procedures utilized during the clearance operation, a total of 20 test items were emplaced in various different vegetation areas throughout the valley. EOD personnel were informed of these emplacements and how they were marked.

(2) Sweep personnel had to inform the sweep leader when a test item was discovered. There were four different types of vegetation areas which effected the effectiveness of the sweeping operations. The following information is a list of the vegetation areas and the SEP:

- (a) Bare ground 100%.
- (b) Sparse grass and vegetation 90%.
- (c) Heavy grass 65%.
- (d) Heavy vegetation 85%.

(3) The following formula was used to determine the SEP:

100% + 90% + 85% + 65% = 85% effectiveness

(4) The only factor that has to be considered is the <u>human one</u>. The mood, desire, and level of intensity among the men were high. The experience level varied from mid-level to high. I would consider the figure of 85% to be close to correct.

(5) With this information, it is estimated that there was a 85% surface clearance of the WVTA.

h. Ordnance surveys of areas to the west and the south of the Kamaka portion of WVTA were conducted as the conclusion of the ordnance sweep directed by reference (b) (see enclosure (4) for area locations). The Kamaka portion of WVTA is approximately 187 acres; the west area is approximately 170 acres and the south area, 80 acres. During the ordnance survey, there was no ordnance found in either area.

i. The operation was finished on <u>13 April 1984</u>. On 9 May 1984, the EOD team responded to a call from Mr. Kamaka. He found some more dud rounds in his area. There were 35, 3.5" practice rocket rounds located. Some of these items became exposed . because of erosion, the other were missed during sweep operations. They were taken back to MCAS Kaneohe Bay for proper disposal.

OMWE/SHN/sk 8027

4. <u>Problems</u>. There were several problems that were encountered during the operation. The following is a summary:

a. The terrain had steep hills and was covered with thick vegetation. This made sweeping slow and hazardous. Safety was the paramount consideration during this time.

b. When it rained during the operation, it made footing impossible on the sides of the hills. For personal safety, operations were secured from the slopes of the hills and sweeping operations were confined to flat terrain. Four-wheel drive was needed on vehicles during the rainy season.

c. Because of the terrain, all pieces of ordnance had to be hand carried to the top of the hills and be helo-lifted out.

d. Due to the terrain and thick vegetation not all of the ordnance in the WVTA could be located.

e. On one occasion, there was a fire in the Kamaka portion. The fire was started from a demolition disposal shot. The fire extinguished itself after burning for approximately 45 minutes. There were no other fire incidents after that.

5. Conclusion

a. The WVTA has an 85% surface clearance. The remaining 15% of ordnance is covered over with vegetation or was not located. The Kamaka portion cannot be considered safe.

b. Additional ordnance is subsurface, and some of these rounds will be exposed at a later date due to erosion. The quantity and depth of these rounds is unknown. Without subsurface clearance operations, this area can never be cleared of dud ordnance.

c. The support that was received from all units during the operation was nothing less than outstanding.

d. Personnel involved with the clearance operation of the WVTA are listed in enclosure (5).

S. H. NEGAHNQUET

D-33

÷

JEOD FORM 3571/1

Data Received 4 Re.o.	87		Incident	Report #	101- 8	37
Time Received 1146		Receive	Received by Sat Williams			
ature of Call - Duc	1 Certa	0000				
eported by/Assistance Requested by	Afical	Dack Paca	ck	Inganization/Unit	HPD)
ddress Kanaa	Par Pali	Dial Dial	SA I		11 1 12	Telephone # 943-3328
escription (DODIC and LOT #)	M28	HEAT	fle. G.	epondo		1 10 0000
angth 15.5"	Weight	1.5 16	Qlamate	2.95	11	Calos GREEn/Black
ecation Assistance Regulred	Waikane	Unlley	_			
		ASSIS	TANCE PROVIDE	0 T0		
Marine Corp	1		Air Force			Coast Guard
Качу			Army		X	Civilian
Gy Sg 7 SSg 7	GiRoua Collorati	and Si	T The	mpson		
Model of Travel	Vahicia	5	Ale		Boat	Other
		Oud Lecture	X	Oud Call		Bomb Threat
ASSISTANCE PROVIDED		Pick-up		Training Exercise		Accident/incident Site
		Class/Demonstration		Grade III Operation		Technical Auflatanca
		Turn-In		Runway Emergenc	Y I	
Round M	28 HEA	T RIFLE C	SREWADE	PIBD.		
Filler/WL 80/2	20 RDX/TI	NT 216.	R	elerences (Round/Fu	IN TM	9-1385-51
RSP used/not used [REFERENCE]						
	BIP					
Tools and Equipmentused / b	IK C-4	2 21	lect bla	sting cap	S	M122
	PUCA to SOA	X	13	iw in Place		Return to Service
GISPOSAL	FUCA to CP			Scrap		Gther
REMARKS	00 420	F & PL of	ende	was los	eted	on Me Kamaka'r
Le I TI de	an dan	tened	alera	Mr. Kan	ic ka	stated that the
land. The liem	1047 11451	LI D'	11	1 L		had in 10
, i l	mone /	ocarra rai	RTHER .	Deere on	und 1	La La
lequestral out a	lisistance	e to disp	ose of	these .	KOU.ACT	s ar a large
late.				5.4		
Departure [Time/Dale] 1200	y Sep	87 Campi	lation (Time/Date	1 1610 -1	Sep "	S7 Total Man Hours 2
	v n.	1			1	NITE O
SIGNATURE	NUT		D-34			WIL J V. h an
	11-116	Part & Ma				

Commanding Officer, Station Operations and Maintenance Squadron LTCOL Medinger phone # 257-3584 Explosive Ordnance Disposal, LT Peternel phone # 257-2466/3560/3677

Yqos

- e 1

SITE INSPECTION REPORT MUNITIONS RESPONSE SITES WAIKANE VALLEY TRAINING AREA KANEOHE, HAWAII

APPENDIX E. MUNITIONS RESPONSE SITE PRIORITY PROTOCOL (MRSPP)

Table 1 EHE Module: Munitions Type Data Element Table

DIRECTIONS: Below are 11 classifications of munitions and their descriptions. Circle the scores that correspond with <u>all</u> the munitions types known or suspected to be present at the MRS.

Note: The terms *practice munitions, small arms ammunition, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Sensitive	 UXO that are considered most likely to function upon any interaction with exposed persons (e.g., submunitions, 40mm high-explosive [HE] grenades, white phosphorus [WP] munitions, high-explosive antitank [HEAT] munitions, and practice munitions with sensitive fuzes, but excluding all other practice munitions). Hand grenades containing energetic filler. Bulk primary explosives, or mixtures of these with environmental media, such that the mixture poses an explosive hazard. 	<u>30</u>
High explosive (used or damaged)	 UXO containing a high-explosive filler (e.g., RDX, Composition B), that are not considered "sensitive." DMM containing a high-explosive filler that have: Been damaged by burning or detonation Deteriorated to the point of instability. 	<u>25</u>
Pyrotechnic (used or damaged)	 UXO containing a pyrotechnic filler other than white phosphorus (e.g., flares, signals, simulators, smoke grenades). DMM containing a pyrotechnic filler other than white phosphorus (e.g., flares, signals, simulators, smoke grenades) that have: Been damaged by burning or detonation Deteriorated to the point of instability. 	20
High explosive (unused)	 DMM containing a high-explosive filler that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability. 	15
Propellant	 UXO containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor) that are: Damaged by burning or detonation Deteriorated to the point of instability. 	15
Bulk secondary high explosives, pyrotechnics, or propellant	 DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). DMM that are bulk secondary high explosives, pyrotechnic compositions, or propellant (not contained in a munition), or mixtures of these with environmental media such that the mixture poses an explosive hazard. 	10
Pyrotechnic (not used or damaged)	 DMM containing a pyrotechnic filler (i.e., red phosphorus), other than white phosphorus filler, that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability. 	10
Practice	 UXO that are practice munitions that are not associated with a sensitive fuze. DMM that are practice munitions that are not associated with a sensitive fuze and that have not: Been damaged by burning or detonation Deteriorated to the point of instability. 	<u>5</u>
Riot control	• UXO or DMM containing a riot control agent filler (e.g., tear gas).	3
Small arms	 Used munitions or DMM that are categorized as small arms ammunition. (Physical evidence or historical evidence that no other types of munitions [e.g., grenades, subcaliber training rockets, demolition charges] were used or are present on the MRS is required for selection of this category.) 	<u>2</u>
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present. 	0
MUNITIONS TYPE	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	<u>30</u>

DIRECTIONS: Document any MRS-specific data used in selecting the *Munitions Type* classifications in the space provided.

From Section 2.34.2 of the Range Identification and Preliminary Range Assessment (RIPRA), Marine Corps Base, Hawaii and Associated Sites, Oahu, Hawaii of Dec 2001, the site was identified as having the following munitions: 2.36-inch HEAT rocket, 2.36-inch practice rocket, 3.5-inch HEAT rocket, M28 HEAT rifle grenade, M29 practice rifle grenade, hand grenade (practice), 60 mm HE mortar, 60 mm practice mortar, 50 mm Japanese mortar, 105 mm HE projectile, 75 mm HE projectile, 37 mm HE projectile, and small arms. Based on the 2008 Site Investigation, this table has been updated because pyrotechnics were not observed (Draft Site Investigation Report, dated 2009).

Table 2 EHE Module: Source of Hazard Data Element Table

DIRECTIONS: Below are 11 classifications describing sources of explosive hazards. Circle the scores that correspond with <u>all</u> the sources of explosive hazards known or suspected to be present at the MRS.

Note: The terms former range, practice munitions, small arms range, physical evidence, and historical evidence are defined in Appendix C of the Primer.

Classification	Description	Score		
Former range	 The MRS is a former military range where munitions (including practice munitions with sensitive fuzes) have been used. Such areas include impact or target areas and associated buffer and safety zones. 	<u>10</u>		
Former munitions treatment (i.e., OB/OD) unit	 The MRS is a location where UXO or DMM (e.g., munitions, bulk explosives, bulk pyrotechnic, or bulk propellants) were burned or detonated for the purpose of treatment prior to disposal. 	8		
Former practice munitions range	 The MRS is a former military range on which only practice munitions without sensitive fuzes were used. 	6		
Former maneuver area	• The MRS is a former maneuver area where no munitions other than flares, simulators, smokes, and blanks were used. There must be evidence that no other munitions were used at the location to place an MRS into this category.	<u>5</u>		
Former burial pit or other disposal area	• The MRS is a location where DMM were buried or disposed of (e.g., disposed of into a water body) without prior thermal treatment.	5		
Former industrial operating facilities	 The MRS is a location that is a former munitions maintenance, manufacturing, or demilitarization facility. 	4		
Former firing points	 The MRS is a firing point, where the firing point is delineated as an MRS separate from the rest of a former military range. 	4		
Former missile or air defense artillery emplacements	 The MRS is a former missile defense or air defense artillery (ADA) emplacement not associated with a military range. 	2		
Former storage or transfer points	 The MRS is a location where munitions were stored or handled for transfer between different modes of transportation (e.g., rail to truck, truck to weapon system). 	2		
Former small arms range	 The MRS is a former military range where only small arms ammunition was used. (There must be evidence that no other types of munitions [e.g., grenades] were used or are present to place an MRS into this category.) 	1		
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that no UXO or DMM are present, or there is historical evidence indicating that no UXO or DMM are present. 	0		
SOURCE OF HAZARD	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	<u>10</u>		
DIRECTIONS: Document any MRS-specific data used in selecting the Source of Hazard classifications in the space provided.				
Between 1943 and 1953, the Army leased over 2000 acres for maneuvers, jungle training, and small arms, artillery, and				
mortar firing. The U.S. Marines leased 1061 acres of the training area in 1953 and continued the leases until 1976.				
Training consisted of small arms fire, 3.5-inch rockets and possibly medium artillery fire. After the Marines investigated				
and conducted an ordnance clearance in 19/6, they reported 18/ acres of the WVIA would never be free of duds,				
practice organize, etc. (From Sec.	Sites, Oahu, Hawaii of Dec 2001, and Section 2.34.2 of the Range Identification and Preliminary Range Assessment.			

Marine Corps Base Hawaii and Associated Sites, Oahu, Hawaii of Dec 2001).

Table 3 EHE Module: Location of Munitions Data Element Table

DIRECTIONS: Below are eight classifications of munitions locations and their descriptions. Circle the scores that correspond with <u>all</u> the locations where munitions are known or suspected to be present at the MRS.

Note: The terms confirmed, surface, subsurface, small arms ammunition, physical evidence, and historical evidence are defined in Appendix C of the Primer.

Classification	Description	Score	
Confirmed surface	 Physical evidence indicates that there are UXO or DMM on the surface of the MRS. Historical evidence (i.e., a confirmed report such as an explosive ordnance disposal [EOD], police, or fire department report that an incident or accident that involved UXO or DMM occurred) indicates there are UXO or DMM on the surface of the MRS. 	<u>25</u>	
Confirmed subsurface, active	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS, and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, dredging) at the MRS are likely to expose UXO or DMM. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. 	<u>20</u>	
Confirmed subsurface, stable	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. 	<u>15</u>	
Suspected (physical evidence)	 There is physical evidence (e.g., munitions debris such as fragments, penetrators, projectiles, shell casings, links, fins), other than the documented presence of UXO or DMM, indicating that UXO or DMM may be present at the MRS. 	10	
Suspected (historical evidence)	• There is historical evidence indicating that UXO or DMM may be present at the MRS.	5	
Subsurface, physical constraint	 There is physical or historical evidence indicating that UXO or DMM may be present in the subsurface, but there is a physical constraint (e.g., pavement, water depth over 120 feet) preventing direct access to the UXO or DMM. 	2	
Small arms (regardless of location)	 The presence of small arms ammunition is confirmed or suspected, regardless of other factors such as geological stability. (There must be evidence that no other types of munitions [e.g., grenades] were used or are present at the MRS to place an MRS into this category.) 	1	
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present. 	0	
LOCATION OF MUNITIONS	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 25).	<u>25</u>	
 DIRECTIONS: Document any MRS-specific data used in selecting the <i>Location of Munitions</i> classifications in the space provided. From Section 2.34.2 of the RIPRA, Marine Corps Base, Hawaii and Associated Sites, Oahu, Hawaii of Dec 2001, an Army sweep in 1945 found the following ammunition which were identified and destroyed: 8 each 2.36 inch HE rockets and 1 each 50mm mortar shell (HE). In August 1976, Marine EOD conducted a clearance operation in the main impact areas. The following ammunition was recovered and/or destroyed: 32 each 75mm HE; 9 each 60mm HE; 1 each M26 rifle grenade, AT; 1 each 37mm HE; and 24,400 pounds of practice ordnance and scrap. In January 1984, an ordnance survey (a complete walk through of the Kamaka land and three test tracts which discovered the following ammunition: 480 each 3.5 rockets and associated parts and an estimated 86,000 small arms. In April 1984, Marine EOD conducted a range clearance which recovered and/or destroyed the following ammunition: 146 each 3.5 inch HEAT rockets; 24 each 2.36 inch HEAT rockets; 24 			

each 2.36 inch HEAT rockets; 9 each M9A1 HEAT rifle grenades; 11 each M28 HEAT rifle grenades; 87 each M29 practice rifle grenades; and 3,735 each 3.5 practice rockets. In May 1984, Marine EOD responded to the same area after heavy rains uncovered additional munitions. They found an additional 35 each 3.5 inch practice rockets.

Table 4 EHE Module: Ease of Access Data Element Table

DIRECTIONS: Below are four classifications of barrier types that can surround an MRS and their descriptions. The barrier type is directly related to the ease of public access to the MRS. Circle the score that corresponds with the ease of access to the MRS.

Note: The term *barrier* is defined in Appendix C of the Primer.

Classification	Description	Score	
No barrier	 There is no barrier preventing access to any part of the MRS (i.e., all parts of the MRS are accessible). 	10	
Barrier to MRS access is incomplete	There is a barrier preventing access to parts of the MRS, but not the entire MRS.	<u>8</u>	
Barrier to MRS access is complete but not monitored	• There is a barrier preventing access to all parts of the MRS, but there is no surveillance (e.g., by a guard) to ensure that the barrier is effectively preventing access to all parts of the MRS.	5	
Barrier to MRS access is complete and monitored	• There is a barrier preventing access to all parts of the MRS, and there is active, continual surveillance (e.g., by a guard, video monitoring) to ensure that the barrier is effectively preventing access to all parts of the MRS	0	
EASE OF ACCESS	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	<u>8</u>	
DIRECTIONS: Document any MRS-specific data used in selecting the <i>Ease of Access</i> classification in the space provided. From Section 1.2 of the Site Inspection Work Plan, Munitions Response Sites, Waikane Valley Training Area, Kaneohe,			
Hawaii of 28 Nov 2006, and site observation, most of the area is fenced off with warning signs and the area is restricted			
to authorized personnel only. Gaps in the fenceline are at stream crossings and at the steepest portions of the site. The			
area is currently controlled and maintained by MCBH Kaneohe Bay. Authorized entry into this area requires escort by			
Military Police and EOD personnel.			

Table 5 EHE Module: Status of Property Data Element Table

DIRECTIONS: Below are three classifications of the status of a property within the Department of Defense (DoD) and their descriptions. Circle the score that corresponds with the status of property at the MRS.

Classification	Description	Score		
Non-DoD control	 The MRS is at a location that is no longer owned by, leased to, or otherwise possessed or used by DoD. Examples are privately owned land or water bodies; land or water bodies owned or controlled by state, tribal, or local governments; and land or water bodies managed by other federal agencies. The MRS is at a location that is owned by DoD, but that DoD has leased to another entity and for which DoD does not control access 24 hours per day. 	5		
Scheduled for transfer from DoD control	• The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD, and DoD plans to transfer that land or water body to the control of another entity (e.g., a state, tribal, or local government; a private party; another federal agency) within 3 years from the date the Protocol is applied.	3		
DoD control	• The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD. With respect to property that is leased or otherwise possessed, DoD must control access to the MRS 24 hours per day, every day of the calendar year.	<u>0</u>		
STATUS OF PROPERTY	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	<u>0</u>		
DIRECTIONS: Document any MRS-specific data used in selecting the Status of Property classification in the space provided.				
From Section 4.1.21 of the Archives Search Report, Marine Corps Base Hawaii and Associated Sites, Oahu, Hawaii of				
Dec 2001 and Section 1.2 of the	Dec 2001 and Section 1.2 of the Site Inspection Work Plan, Munitions Response Sites, Waikane Valley Training Area,			
Kaneohe, Hawaii of 28 Nov 2006, the property is currently controlled and maintained by the Marine Corps.				

EHE Module: Population Density Data Element Table

DIRECTIONS: Below are three classifications for population density and their descriptions. Determine the population density per square mile that most closely corresponds with the population of the MRS, including the area within a two-mile radius of the MRS's perimeter. Circle the most appropriate score.

Note: Use the U.S. Census Bureau tract data available to capture the <u>highest</u> population density within a two-mile radius of the perimeter of the MRS.

Classification	Description	Score	
> 500 persons per square mile	There are more than 500 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	<u>5</u>	
100–500 persons per square mile	 There are 100 to 500 persons per square mile in the U.S. Census Bureau tract in which the MRS is located. 	3	
< 100 persons per square mile	There are fewer than 100 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	1	
POPULATION DENSITY	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	<u>5</u>	
DIRECTIONS: Document any MRS-specific data used in selecting the <i>Population Density</i> classification in the space provided.			
The 2000 U.S. Census Bureau, Hawaii Profile map of Hawaii indicates that the Waikane Valley area population is less			
than 15.0 persons per square mile. However, the Waikane and Waihole areas are within two miles of the WVTA. The			
Census map indicates that the population is between 200.0 to 999.9 persons per square mile.			

EHE Module: Population Near Hazard Data Element Table

DIRECTIONS: Below are six classifications describing the number of inhabited structures near the MRS. The number of inhabited buildings relates to the potential population near the MRS. Determine the number of inhabited structures within two miles of the MRS boundary and circle the score that corresponds with the number of inhabited structures.

Note: The term *inhabited structures* is defined in Appendix C of the Primer.

Classification	Description	Score	
26 or more inhabited structures	 There are 26 or more inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	<u>5</u>	
16 to 25 inhabited structures	 There are 16 to 25 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	4	
11 to 15 inhabited structures	 There are 11 to 15 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	3	
6 to 10 inhabited structures	 There are 6 to 10 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	2	
1 to 5 inhabited structures	 There are 1 to 5 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	1	
0 inhabited structures	 There are no inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	0	
POPULATION NEAR HAZARD	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	<u>5</u>	
DIRECTIONS: Document any MRS-specific data used in selecting the Population Near Hazard classification in the space provided.			
Figure A-1 of the Site Inspection Work Plan, Munitions Response Sites, Waikane Valley Training Area, Kaneohe, HI of 28 Nov 2006 identifies single family homes, industrial or warehouse areas, and a park within two miles of the site.			

EHE Module: Types of Activities/Structures Data Element Table

DIRECTIONS: Below are five classifications of activities and/or inhabited structures and their descriptions. Review the types of activities that occur and/or structures that are present within two miles of the MRS and circle the scores that correspond with all the activities/structure classifications at the MRS.

Note: The term *inhabited structure* is defined in Appendix C of the Primer.

Classification	Description	Score	
Residential, educational, commercial, or subsistence	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with any of the following purposes: residential, educational, child care, critical assets (e.g., hospitals, fire and rescue, police stations, dams), hotels, commercial, shopping centers, playgrounds, community gathering areas, religious sites, or sites used for subsistence hunting, fishing, and gathering. 	<u>5</u>	
Parks and recreational areas	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with parks, nature preserves, or other recreational uses. 	<u>4</u>	
Agricultural, forestry	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with agriculture or forestry. 	3	
Industrial or warehousing	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with industrial activities or warehousing. 	2	
No known or recurring activities	There are no known or recurring activities occurring up to two miles from the MRS's boundary or within the MRS's boundary.	1	
TYPES OF ACTIVITIES/STRUCTURES	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	<u>5</u>	
DIRECTIONS: Document any MRS-specific data used in selecting the Types of Activities/Structures classifications in the space provided.			

Section 1.2 and Figure A-1 of the Site Inspection Work Plan, Munitions Response Sites, Waikane Valley Training Area, Kaneohe, HI of 28 Nov 2006, identifies single family homes, industrial or warehouse areas, and a park within two miles of the site.

EHE Module: Ecological and/or Cultural Resources Data Element Table

DIRECTIONS: Below are four classifications of ecological and/or cultural resources and their descriptions. Review the types of resources present and circle the score that corresponds with the ecological and/or cultural resources present on the MRS.

Note: The terms ecological resources and cultural resources are defined in Appendix C of the Primer.

Classification	Description	Score	
Ecological and cultural resources present	There are both ecological and cultural resources present on the MRS.	5	
Ecological resources present	There are ecological resources present on the MRS.	3	
Cultural resources present	There are cultural resources present on the MRS.	<u>3</u>	
No ecological or cultural resources present	 There are no ecological resources or cultural resources present on the MRS. 	0	
ECOLOGICAL AND/OR CULTURAL RESOURCES	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	3	
DIRECTIONS: Document any MRS-specific data used in selecting the Ecological and/or Cultural Resources classification in the space provided.			
From Sections 1.3.4 and 1.3.5 of the Site Inspection Work Plan, Munitions Reponse Sites, Waikane Valley Training Area,			
Kaneohe, HI of 28 Nov 2006, no ecological resources are present on the property. The Environmental Assessment notes			
that a heiau or shrine within the National Register of Historic Places was identified and recorded in Feb 2004. The			

property was divided into three zones; A, B and C. Zone A, along Waikane Stream; Zone b, a transition area between the flatter areas near Waikane Stream and the extremely steep slopes along the valley walls; and Zone C, the extremely steep slopes along the valley walls. Seven sites were evaluated, several of them within a National Historic Register site. Four were confirmed as significant, two were recommended for deletion from state inventory and one was newly identified as historic. All culturally significant sites appear to be located in Zone A, less than 0.2 kilometers from Waikane Stream.

Table 10 Determining the EHE Module Rating

DIRECTIONS:

- From Tables 1–9, record the data element scores in the Score boxes to the right.
- 2. Add the **Score** boxes for each of the three factors and record this number in the **Value** boxes to the right.
- Add the three Value boxes and record this number in the EHE Module Total box below.
- 4. Circle the appropriate range for the **EHE Module Total** below.
- 5. Circle the EHE Module Rating that corresponds to the range selected and record this value in the EHE Module Rating box found at the bottom of the table.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

g the EHE Module Rating			
	Source	Score	Value
Explosive Hazard Factor Data El	ements		
Munitions Type	Table 1	30	40
Source of Hazard	Table 2	10	40
Accessibility Factor Data Elemen	nts		
Location of Munitions	Table 3	25	
Ease of Access	Table 4	8	33
Status of Property	Table 5	0	
Receptor Factor Data Elements			
Population Density	Table 6	5	
Population Near Hazard	Table 7	5	40
Types of Activities/Structures	Table 8	5	18
Ecological and/or Cultural	Table 9	3	
100001000			
EHE	MODULE	TOTAL	91
EHE Module Total	MODULE	TOTAL Module R	91 ating
EHE Module Total 92 to 100	MODULE	E TOTAL Module R A	91 ating
EHE Module Total 92 to 100 82 to 91	MODULE	E TOTAL Module R A <u>B</u>	91 ating
EHE Module Total 92 to 100 82 to 91 71 to 81	MODULE	E TOTAL Module R A <u>B</u> C	91 ating
EHE EHE Module Total 92 to 100 82 to 91 71 to 81 60 to 70	MODULE	E TOTAL Module R A <u>B</u> C D	91 ating
EHE EHE Module Total 92 to 100 82 to 91 71 to 81 60 to 70 48 to 59	MODULE	E TOTAL Module R A E C D E	91 ating
EHE EHE Module Total 92 to 100 82 to 91 71 to 81 60 to 70 48 to 59 38 to 47	MODULE	E TOTAL Module R A C C D E F	91 ating
EHE EHE Module Total 92 to 100 82 to 91 71 to 81 60 to 70 48 to 59 38 to 47 less than 38	MODULE	E TOTAL Module R A C C D E F G	91 ating
EHE EHE Module Total 92 to 100 82 to 91 71 to 81 60 to 70 48 to 59 38 to 47 less than 38	MODULE	E TOTAL Module R A C D E F G Iuation Peno	91 ating
EHE Module Total 92 to 100 92 to 100 82 to 91 71 to 81 60 to 70 48 to 59 38 to 47 less than 38 Alternative Module Ratings	MODULE EHE	E TOTAL Module R A B C D E F G Iuation Pend	91 ating ding
EHE Module Total 92 to 100 82 to 91 71 to 81 60 to 70 48 to 59 38 to 47 less than 38 Alternative Module Ratings	MODULE EHE	E TOTAL Module R A B C D E F G Iuation Pend onger Requ own or Susp	91 ating ding uired pected ard

Table 11 CHE Module: CWM Configuration Data Element Table

DIRECTIONS: Below are seven classifications of CWM configuration and their descriptions. Circle the scores that correspond with <u>all</u> the CWM configurations known or suspected to be present at the MRS.
 Note: The terms *CWM/UXO*, *CWM/DMM*, *physical evidence*, and *historical evidence* are defined in Appendix C of the

Note: The terms *CWM/UXO*, *CWM/DMM*, *physical evidence*, and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score	
CWM, that are either UXO, or explosively configured damaged DMM	 The CWM known or suspected of being present at the MRS are: CWM that are UXO (i.e., CWM/UXO) Explosively configured CWM that are DMM (i.e., CWM/DMM) that have been damaged. 	30	
CWM mixed with UXO	 The CWM known or suspected of being present at the MRS are undamaged CWM/DMM or CWM not configured as a munition that are commingled with conventional munitions that are UXO. 	25	
CWM, explosive configuration that are undamaged DMM	 The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged. 	20	
CWM/DMM, not explosively configured or CWM, bulk container	 The CWM known or suspected of being present at the MRS are: Nonexplosively configured CWM/DMM either damaged or undamaged Bulk CWM (e.g., ton container). 	15	
CAIS K941 and CAIS K942	 The CWM/DMM known or suspected of being present at the MRS are CAIS K941-toxic gas set M-1 or CAIS K942-toxic gas set M- 2/E11. 	12	
CAIS (chemical agent identification sets)	 CAIS, other than CAIS K941 and K942, are known or suspected of being present at the MRS. 	10	
Evidence of no CWM	 Following investigation, the physical evidence indicates that CWM are not present at the MRS, or the historical evidence indicates that CWM are not present at the MRS. 	0	
CWM CONFIGURATION	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).		
DIRECTIONS: Document any MRS-specific data used in selecting the CWM Configuration classifications in the space provided.			

Table 12 CHE Module: Sources of CWM Data Element Table DIRECTIONS: Below are 11 sources of CWM hazards and their descriptions. Review these classifications and circle the scores that correspond with all the sources of CWM hazards known or suspected to be present at the MRS. Note: The terms CWM/UXO, CWM/DMM, CAIS/DMM, surface, subsurface, physical evidence, and historical evidence are defined in Appendix C of the Primer. Classification Description Score The MRS is a former military range that supported live-fire of explosively configured CWM and the CWM/UXO are known or suspected of being present on the surface or in the subsurface. Live-fire involving CWM ٠ The MRS is a former military range that supported live-fire with 10 conventional munitions, and CWM/DMM are on the surface or in the subsurface commingled with conventional munitions that are UXO. Damaged CWM/DMM surface There are damaged CWM/DMM on the surface or in the ٠ 10 or subsurface subsurface at the MRS. Undamaged CWM/DMM ٠ There are undamaged CWM/DMM on the surface at the MRS. 10 surface **CAIS/DMM** surface There are CAIS/DMM on the surface. 10 ٠ Undamaged CWM/DMM, There are undamaged CWM/DMM in the subsurface at the ٠ 5 subsurface MRS. **CAIS/DMM** subsurface There are CAIS/DMM in the subsurface at the MRS. 5 ٠ The MRS is a facility that formerly engaged in production of CA ٠ Former CA or CWM or CWM, and CWM/DMM is suspected of being present on the 3 **Production Facilities** surface or in the subsurface. The MRS is at a facility that formerly was involved in non-live-Former Research, fire RDT&E activities (including static testing) involving CWM, Development, Testing, and 3 Evaluation (RDT&E) facility and there are CWM/DMM suspected of being present on the using CWM surface or in the subsurface. The MRS is a location that formerly was involved in training activities involving CWM and/or CAIS (e.g., training in Former Training Facility recognition of CWM, decontamination training) and CWM/DMM 2 using CWM or CAIS or CAIS/DMM are suspected of being present on the surface or in the subsurface. Former Storage or Transfer The MRS is a former storage facility or transfer point (e.g., 1 points of CWM intermodal transfer) for CWM. Following investigation, the physical evidence indicates that ٠ Evidence of no CWM CWM are not present at the MRS, or the historical evidence 0 indicates that CWM are not present at the MRS. DIRECTIONS: Record the single highest score from above in SOURCES OF CWM the box to the right (maximum score = 10). **DIRECTIONS:** Document any MRS-specific data used in selecting the **Sources of CWM** classifications in the space provided.

Table 13 CHE Module: Location of CWM Data Element Table

DIRECTIONS: Below are seven classifications of CWM locations and their descriptions. Review these locations and circle the scores that correspond with <u>all</u> the locations where CWM are known or suspected of being found at the MRS.

Note: The terms *confirmed, surface, subsurface, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Confirmed surface	 Physical evidence indicates that there are CWM on the surface of the MRS. Historical evidence (i.e., a confirmed report such as an explosive ordnance disposal [EOD], police, or fire department report, that an incident or accident that involved CWM, regardless of configuration, occurred) indicates there are CWM on the surface of the MRS. 	25
Confirmed subsurface, active	 Physical evidence indicates the presence of CWM in the subsurface of the MRS and the geological conditions at the MRS are likely to cause CWM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose CWM. Historical evidence indicates that CWM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause CWM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose CWM. 	20
Confirmed subsurface, stable	 Physical evidence indicates the presence of CWM in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause CWM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause CWM to be exposed. Historical evidence indicates that CWM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause CWM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause CWM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause CWM to be exposed. 	15
Suspected (physical evidence)	 There is physical evidence, other than the documented presence of CWM, indicating that CWM may be present at the MRS. 	10
Suspected (historical evidence)	• There is historical evidence indicating that CWM may be present at the MRS.	5
Subsurface, physical constraint	 There is physical or historical evidence indicating that CWM may be present in the subsurface, but there is a physical constraint (e.g., pavement, water depth over 120 feet) preventing direct access to the CWM. 	2
Evidence of no CWM	Following investigation of the MRS, there is physical evidence that there is no CWM present or there is historical evidence indicating that no CWM are present.	0
LOCATION OF CWM	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 25).	
DIRECTIONS: Document any MRS-specific data used in selecting the Location of CWM classifications in the space provided.		
Table 14 CHE Module: Ease of Access Data Element Table

DIRECTIONS: Below are four classifications of barrier types that can surround an MRS and their descriptions. The barrier type is directly related to the ease of public access to the MRS. Circle the score that corresponds with the ease of access to the MRS.

Note: The term *barrier* is defined in Appendix C of the Primer.

Classification	Description	Score
No barrier	 There is no barrier preventing access to any part of the MRS (i.e., all parts of the MRS are accessible). 	10
Barrier to MRS access is incomplete	 There is a barrier preventing access to parts of the MRS, but not the entire MRS. 	
Barrier to MRS access is complete but not monitored	 There is a barrier preventing access to all parts of the MRS, but there is no surveillance (e.g., by a guard) to ensure that the barrier is effectively preventing access to all parts of the MRS. 	
Barrier to MRS access is complete and monitored	• There is a barrier preventing access to all parts of the MRS, and there is active continual surveillance (e.g., by a guard, video monitoring) to ensure that the barrier is effectively preventing access to all parts of the MRS.	0
EASE OF ACCESS	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	
DIRECTIONS: Document any M provided.	IRS-specific data used in selecting the <i>Ease of Access</i> classification in the s	pace

Table 15 CHE Module: Status of Property Data Element Table

DIRECTIONS: Below are three classifications of the status of a property within the Department of Defense (DoD) and their descriptions. Circle the score that corresponds with the status of property at the MRS.

Classification	Description	Score
Non-DoD control	 The MRS is at a location that is no longer owned by, leased to, or otherwise possessed or used by DoD. Examples are privately owned land or water bodies; land or water bodies owned or controlled by state, tribal or local governments; and land or water bodies managed by other federal agencies. The MRS is at a location that is owned by DoD, but that DoD has leased to another entity and for which DoD does not control access 24 hours per day. 	5
Scheduled for transfer from DoD control	 The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD, and DoD plans to transfer that land or water body to control of another entity (e.g., a state, tribal, or local government; a private party; another federal agency) within 3 years from the date the Protocol is applied. 	3
DoD control	 The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD. With respect to property that is leased or otherwise possessed, DoD controls access to the MRS 24 hours per day, every day of the calendar year. 	0
STATUS OF PROPERTY	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	
DIRECTIONS: Document any M provided.	MRS-specific data used in selecting the <i>Status of Property</i> classification in th	e space

Table 16 CHE Module: Population Density Data Element Table

DIRECTIONS: Below are three classifications for population density and their descriptions. Determine the population density per square mile that most closely corresponds with the population of the MRS, including the area within a two-mile radius of the MRS's perimeter. Circle the most appropriate score.

Note: Use the U.S. Census Bureau tract data available to capture the <u>highest</u> population density within a two-mile radius of the perimeter of the MRS.

Classification	Description	Score
> 500 persons per square mile	There are more than 500 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	5
100–500 persons per square mile	There are 100 to 500 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	
< 100 persons per square mile	There are fewer than 100 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	1
POPULATION DENSITY	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	
DIRECTIONS: Document any I provided.	MRS-specific data used in selecting the <i>Population Density</i> classification in t	he space

CHE Module: Population Near Hazard Data Element Table

DIRECTIONS: Below are six classifications describing the number of inhabited structures near the MRS. The number of inhabited buildings relates to the potential population near the MRS. Determine the number of inhabited structures within two miles of the MRS boundary and circle the score that corresponds with the number of inhabited structures.

Note: The term *inhabited structures* is defined in Appendix C of the Primer.

Classification	Description	Score
26 or more inhabited structures	• There are 26 or more inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	5
16 to 25 inhabited structures	 There are 16 to 25 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	4
11 to 15 inhabited structures	 There are 11 to 15 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	3
6 to 10 inhabited structures	 There are 6 to 10 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	2
1 to 5 inhabited structures	 There are 1 to 5 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	1
0 inhabited structures	• There are no inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	0
POPULATION NEAR HAZARD	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	
DIRECTIONS: Document any MRS-s space provided.	pecific data used in selecting the Population Near Hazard classification	n in the

Table 18 CHE Module: Types of Activities/Structures Data Element Table

DIRECTIONS: Below are five classifications of activities and/or inhabited structures and their descriptions. Review the types of activities that occur and/or structures that are present within two miles of the MRS and circle the scores that correspond with <u>all</u> the activities/structures classifications at the MRS. **Note:** The term *inhabited structures* is defined in Appendix C of the Primer.

Classification	Description	Score
Residential, educational, commercial, or subsistence	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with any of the following purposes: residential, educational, child care, critical assets (e.g., hospitals, fire and rescue, police stations, dams), hotels, commercial, shopping centers, playgrounds, community gathering areas, religious sites, or sites used for subsistence hunting, fishing, and gathering. 	5
Parks and recreational areas	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with parks, nature preserves, or other recreational uses. 	4
Agricultural, forestry	• Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with agriculture or forestry.	3
Industrial or warehousing	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with industrial activities or warehousing. 	2
No known or recurring activities	• There are no known of recurring activities occurring up to two miles from the MRS's boundary or within the MRS's boundary.	1
TYPES OF ACTIVITIES/STRUCTURES	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	
DIRECTIONS: Document any MRS-s the space provided.	specific data used in selecting the Types of Activities/Structures clas	sifications in

CHE Module: Ecological and/or Cultural Resources Data Element Table

DIRECTIONS: Below are four classifications of ecological and/or cultural resources and their descriptions. Review the types of resources present and circle the score that corresponds with the ecological and/or cultural resources present on the MRS.

Note: The terms ecological resources and cultural resources are defined in Appendix C of the Primer.

Classification	Description	Score
Ecological and cultural resources present	There are both ecological and cultural resources present on the MRS.	5
Ecological resources present	There are ecological resources present on the MRS.	3
Cultural resources present	There are cultural resources present on the MRS.	3
No ecological or cultural resources present	There are no ecological resources or cultural resources present on the MRS.	0
ECOLOGICAL AND/OR CULTURAL RESOURCES	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	
DIRECTIONS: Document any M classification in t	/IRS-specific data used in selecting the <i>Ecological and/or Cultural Resource</i> the space provided.	es

Table 20 Determining the CHE Module Rating

		Source	Score	Value
	CWM Hazard Factor Data Elemer	nts		
	CWM Configuration	Table 11		
d the	Sources of CWM	Table 12		
	Accessibility Factor Data Elemen	nts		
each	Location of CWM	Table 13		
cord ooxes	Ease of Access	Table 14		
	Status of Property	Table 15		
s and	Receptor Factor Data Elements			
	Population Density	Table 16		
ge for	Population Near Hazard	Table 17		
low.	Types of Activities/Structures	Table 18		
ating	Ecological and/or Cultural Resources	Table 19		
alue in box	CHE MODULE TOTAL			
table.	CHE Module Total	CHE	Module R	ating
	92 to 100		А	
be ting is	82 to 91	В		
dule	71 to 81	С		
allon is a	60 to 70	D		
RS was no	48 to 59	E		
was	38 to 47	F		
	less than 38		G	
		Eva	luation Pene	ding
	Alternative Module Ratings	No I	Longer Requ	uired
		No Know	n or Suspec <u>Hazard</u>	cted CWM
	CHE MODULE RATING	No Know	n or Suspeo Hazard	cted CWM

DIRECTIONS:

- From Tables 11–19, record the data element scores in the Score boxes to the right.
- 2. Add the **Score** boxes for each of the three factors and record this number in the **Value** boxes to the right.
- Add the three Value boxes and record this number in the CHE Module Total box below.
- 4. Circle the appropriate range for the **CHE Module Total** below.
- Circle the CHE Module Rating that corresponds to the range selected and record this value in the CHE Module Rating box found at the bottom of the table.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

HHE Module: Groundwater Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's groundwater and their **comparison values** (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the **ratios** for each contaminant by dividing the **maximum concentration** by the **comparison value**. Determine the **CHF** by adding the contaminant **ratios** together, including any additional groundwater contaminants recorded on Table 27. Based on the **CHF**, use the **CHF Scale** to determine and record the **CHF Value**. If there is no known or suspected MC hazard present in the groundwater, select the box at the bottom of the table.

Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios
CHF Scale	CHF Value	Sum The Ratios	
CHF > 100	H (High)		ontaminantl
100 > CHF > 2	M (Medium)	$CHF = \sum_{i=1}^{n} \frac{1}{10000000000000000000000000000000000$	
2 > CHF	L (Low)	[Comparison value for Conta	aminantj
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> (maximum value = H).	from above in the box to the right	
DIRECTIONS: Circle t	Migratory Pathw he value that corresponds most closely to	vay Factor the groundwater migratory pathway at the	MRS.
Classification	Des	cription	Value
Evident	Analytical data or observable evidence indicates that contamination in the groundwater is present at, moving toward, or has moved to a point of exposure.		Н
Potential	Contamination in groundwater has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		М
Confined	Information indicates a low potential for contaminant migration from the source via the groundwater to a potential point of exposure (possibly due to the presence of geological structures or physical controls).		L
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single high right (maximum value =	hest value from above in the box to the = H).	
DIRECTIONS: Circle the	Receptor Face that corresponds most closely to	actor o the groundwater receptors at the MRS.	
Classification	Des	cription	Value
Identified	There is a threatened water supply well downgra source of drinking water or source of water for oth (equivalent to Class I or IIA aquifer).	dient of the source and the groundwater is a current her beneficial uses such as irrigation/agriculture	Н
Potential	There is no threatened water supply well downgradient of the source and the groundwater is currently or potentially usable for drinking water, irrigation, or agriculture (equivalent to Class I, IIA, or IIB aquifer).		М
Limited	There is no potentially threatened water supply well downgradient of the source and the groundwater is not considered a potential source of drinking water and is of limited beneficial use (equivalent to Class IIIA or IIIB aquifer, or where perched aquifer exists only).		
RECEPTOR FACTOR	DIRECTIONS: Record the single high right (maximum value =	hest value from above in the box to the = H).	
	No Kno	wn or Suspected Groundwater MC Hazard	

HHE Module:	Surface Water	– Human Endp	point Data Elemen	t Table
--------------------	---------------	--------------	-------------------	---------

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's surface water and their **comparison values** (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the **ratios** for each contaminant by dividing the **maximum concentration** by the **comparison value**. Determine the **CHF** by adding the contaminant **ratios** together, including any additional surface water contaminants recorded on Table 27. Based on the **CHF**, use the **CHF Scale** to determine and record the **CHF Value**. If there is no known or suspected MC hazard with human endpoints present in the surface water, select the box at the bottom of the table.

Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios
CHF Scale	CHF Value	Sum The Ratios	
CHF > 100	H (High)	Maximum Concentration of C	ontominantl
100 > CHF > 2	M (Medium)	$CHF = \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2$	ontaninantj
2 > CHF	L (Low)	[Comparison Value for Conta	aminant]
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> (maximum value = H).	from above in the box to the right	
	Migratory Bathy	vav Factor	
DIRECTIONS: Circle t	he value that corresponds most closely to	o the surface water migratory pathway at the	MRS.
Classification	Dese	cription	Value
Evident	Analytical data or observable evidence indicates t moving toward, or has moved to a point of expose	that contamination in the surface water is present at, ure.	Н
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		М
Confined	Information indicates a low potential for contaminant migration from the source via the surface water to a potential point of exposure (possibly due to the presence of geological structures or physical controls).		L
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).		
	Receptor F	actor	
DIRECTIONS: Circle t	ne value that corresponds most closely to	o the surface water receptors at the MRS.	
Classification	Dese	cription	Value
Identified	Identified receptors have access to surface water	to which contamination has moved or can move.	н
Potential	Potential for receptors to have access to surface move.	water to which contamination has moved or can	М
Limited	Little or no potential for receptors to have access to surface water to which contamination has moved or can move.		
RECEPTOR FACTOR	DIRECTIONS: Record the single high the right (maximum value)	nest value from above in the box to ue = H).	

No Known or Suspected Surface Water (Human Endpoint) MC Hazard

HHE Module: Sediment – Human Endpoint Data	Element Table
--	---------------

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's sediment and their **comparison values** (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the **ratios** for each contaminant by dividing the **maximum concentration** by the **comparison value**. Determine the **CHF** by adding the contaminant **ratios** together, including any additional sediment contaminants recorded on Table 27. Based on the **CHF**, use the **CHF Scale** to determine and record the **CHF Value**. If there is no known or suspected MC hazard with human endpoints present in the sediment, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios
CHF Scale	CHF Value	Sum The Ratios	
CHF > 100	H (High)	- [Maximum Concentration of C	ontaminantl
100 > CHF > 2	M (Medium)	$CHF = \sum_{i=1}^{n} \frac{1}{(Comparison Value for Conta$	
2 > CHF			iminantj
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> maximum value = H).	from above in the box to the right	
DIRECTIONS: Circle th	Migratory Pathw he value that corresponds most closely to	vay Factor the sediment migratory pathway at the MR	S.
Classification	Des	cription	Value
Evident	Analytical data or observable evidence indicates that contamination in the sediment is present at, moving toward, or has moved to a point of exposure.		Н
Potential	Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		М
Confined	Information indicates a low potential for contaminant migration from the source via the sediment to a potential point of exposure (possibly due to the presence of geological structures or physical controls).		L
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single high</u> right (maximum value =	hest value from above in the box to the = H).	
	Receptor F	actor	
DIRECTIONS: Circle the	he value that corresponds most closely to	o the sediment receptors at the MRS.	
Classification	Des	cription	Value
Identified	Identified receptors have access to sediment to v	which contamination has moved or can move.	Н
Potential	Potential for receptors to have access to sediment to which contamination has moved or can move.		М
Limited	Little or no potential for receptors to have access can move.	to sediment to which contamination has moved or	L
RECEPTOR FACTOR	DIRECTIONS: Record the single high the right (maximum val	hest value from above in the box to $ue = H$).	
	No Known or Suspecte	d Sediment (Human Endpoint) MC Hazard	

HHE Module: Surface Water – Ecological Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's surface water and their **comparison values** (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the **ratios** for each contaminant by dividing the **maximum concentration** by the **comparison value**. Determine the **CHF** by adding the contaminant **ratios** together, including any additional surface water contaminants recorded on Table 27. Based on the **CHF**, use the **CHF Scale** to determine and record the **CHF Value**. If there is no known or suspected MC hazard with ecological endpoints present in the surface water, select the box at the bottom of the table.

Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios	
CHF Scale	CHF Value	Sum the Ratios		
CHF > 100	H (High)	— [Maximum Concentration of C	ontaminantl	
100 > CHF > 2	M (Medium)	$CHF = \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2$		
2 > CHF			aminantj	
CONTAMINANT HAZARD FACTOR	(maximum value = H).	from above in the box to the right		
	Migratory Pathw	vay Factor	MDS	
DIRECTIONS: Circle II	ne value that corresponds most closely to	o the surface water migratory pathway at the	INIKO.	
Classification	Description			
Evident	Analytical data or observable evidence indicates that contamination in the surface water is present at, moving toward, or has moved to a point of exposure.			
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.			
Confined	Information indicates a low potential for contaminant migration from the source via the surface water to a potential point of exposure (possibly due to the presence of geological structures or physical controls).			
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).			
Receptor Factor DIRECTIONS: Circle the value that corresponds most closely to the surface water receptors at the MRS.				
Classification	Des	cription	Value	
Identified	Identified receptors have access to surface water	r to which contamination has moved or can move.	Н	
Potential	Potential for receptors to have access to surface water to which contamination has moved or can move.			
Limited	Little or no potential for receptors to have access or can move.	to surface water to which contamination has moved	L	
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).			
	No Known or Suspected Surface	ce Water (Ecological Endpoint) MC Hazard		

Table 25 HHE Module: Sediment – Ecological Endpoint Data Element Table				
HHE Module: Sediment – Ecological Endpoint Data Element Table Contaminant Hazard Factor (CHF) DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's sediment and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional sediment contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with ecological endpoints present in the sediment, select the box at the bottom of the table.				
Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios	
CHF Scale	CHF Value	Sum the Ratios		
CHF > 100	H (High)	— [Maximum Concentration of Co	ontaminantl	
100 > CHF > 2	M (Medium)	$CHF = \sum_{i=1}^{n} \frac{1}{10000000000000000000000000000000000$	minontl	
		[Comparison value for Conta	minanij	
HAZARD FACTOR	(maximum value = H).	CONTAMINANT DIRECTIONS: Record <u>the CHF Value</u> from above in the box to the right		
Migratory Pathway Factor DIRECTIONS: Circle the value that corresponds most closely to the sediment migratory pathway at the MRS.				
DIRECTIONS: Circle t	Migratory Path he value that corresponds most closely	way Factor to the sediment migratory pathway at the MRS	S.	
DIRECTIONS: Circle the Classification	Migratory Path he value that corresponds most closely Des	way Factor to the sediment migratory pathway at the MRS scription	S. Value	
DIRECTIONS: Circle the Classification Evident	Migratory Path he value that corresponds most closely Des Analytical data or observable evidence indicates moving toward, or has moved to a point of expo	way Factor to the sediment migratory pathway at the MRS scription s that contamination in the sediment is present at, sure.	S. Value H	
DIRECTIONS: Circle the Classification Evident Potential	Migratory Pathy he value that corresponds most closely Des Analytical data or observable evidence indicates moving toward, or has moved to a point of expo Contamination in sediment has moved only slig but is not moving appreciably, or information is Confined.	way Factor to the sediment migratory pathway at the MRS scription s that contamination in the sediment is present at, sure. htly beyond the source (i.e., tens of feet), could move not sufficient to make a determination of Evident or	S. Value H M	
DIRECTIONS: Circle the Classification Evident Potential Confined	Migratory Pathy he value that corresponds most closely Des Analytical data or observable evidence indicates moving toward, or has moved to a point of expo Contamination in sediment has moved only slig but is not moving appreciably, or information is Confined. Information indicates a low potential for contami potential point of exposure (possibly due to the	way Factor to the sediment migratory pathway at the MRS scription s that contamination in the sediment is present at, sure. htly beyond the source (i.e., tens of feet), could move not sufficient to make a determination of Evident or nant migration from the source via the sediment to a presence of geological structures or physical controls).	S. Value H M L	
DIRECTIONS: Circle the Classification Evident Potential Confined MIGRATORY PATHWAY FACTOR	Migratory Path he value that corresponds most closely Des Analytical data or observable evidence indicates moving toward, or has moved to a point of expo Contamination in sediment has moved only slig but is not moving appreciably, or information is Confined. Information indicates a low potential for contami potential point of exposure (possibly due to the DIRECTIONS: Record <u>the single hig</u> right (maximum value	way Factor to the sediment migratory pathway at the MRS scription s that contamination in the sediment is present at, sure. htly beyond the source (i.e., tens of feet), could move not sufficient to make a determination of Evident or nant migration from the source via the sediment to a presence of geological structures or physical controls). thest value from above in the box to the = H).	S. Value H M L	
DIRECTIONS: Circle the Classification Evident Potential Confined MIGRATORY PATHWAY FACTOR DIRECTIONS: Circle the	Migratory Path he value that corresponds most closely Des Analytical data or observable evidence indicates moving toward, or has moved to a point of expo Contamination in sediment has moved only slig but is not moving appreciably, or information is Confined. Information indicates a low potential for contami potential point of exposure (possibly due to the DIRECTIONS: Record <u>the single hig</u> right (maximum value <u>Receptor I</u> he value that corresponds most closely	way Factor to the sediment migratory pathway at the MRS scription to that contamination in the sediment is present at, sure. htly beyond the source (i.e., tens of feet), could move not sufficient to make a determination of Evident or mant migration from the source via the sediment to a presence of geological structures or physical controls). thest value from above in the box to the = H). Factor to the sediment receptors at the MRS.	S. Value H M L	
DIRECTIONS: Circle the Classification Evident Potential Confined MIGRATORY PATHWAY FACTOR DIRECTIONS: Circle the Classification	Migratory Path he value that corresponds most closely Des Analytical data or observable evidence indicates moving toward, or has moved to a point of expo Contamination in sediment has moved only slig but is not moving appreciably, or information is Confined. Information indicates a low potential for contami potential point of exposure (possibly due to the DIRECTIONS: Record <u>the single hig</u> right (maximum value <u>Receptor I</u> he value that corresponds most closely Des	way Factor to the sediment migratory pathway at the MRS scription a that contamination in the sediment is present at, sure. http beyond the source (i.e., tens of feet), could move not sufficient to make a determination of Evident or nant migration from the source via the sediment to a presence of geological structures or physical controls). Thest value from above in the box to the = H). Factor to the sediment receptors at the MRS. scription	S. Value H L L	
DIRECTIONS: Circle the Classification Evident Potential Confined MIGRATORY PATHWAY FACTOR DIRECTIONS: Circle the Classification Identified	Migratory Pathy he value that corresponds most closely Des Analytical data or observable evidence indicates moving toward, or has moved to a point of expo Contamination in sediment has moved only slig but is not moving appreciably, or information is Confined. Information indicates a low potential for contami potential point of exposure (possibly due to the DIRECTIONS: Record <u>the single hig</u> right (maximum value he value that corresponds most closely Des Identified receptors have access to sediment to	way Factor to the sediment migratory pathway at the MRS scription a that contamination in the sediment is present at, sure. httly beyond the source (i.e., tens of feet), could move not sufficient to make a determination of Evident or nant migration from the source via the sediment to a presence of geological structures or physical controls). thest value from above in the box to the = H). Factor to the sediment receptors at the MRS. scription which contamination has moved or can move.	S. Value H L L Value H	
DIRECTIONS: Circle the Classification Evident Potential Confined MIGRATORY PATHWAY FACTOR DIRECTIONS: Circle the Classification Identified Potential Continued Potential Continued Classification Classif	Migratory Path he value that corresponds most closely Des Analytical data or observable evidence indicates moving toward, or has moved to a point of expo Contamination in sediment has moved only slig but is not moving appreciably, or information is Confined. Information indicates a low potential for contami potential point of exposure (possibly due to the DIRECTIONS: Record the single hig right (maximum value Meceptor I he value that corresponds most closely Des Identified receptors have access to sediment to Potential for receptors to have access to sediment	way Factor to the sediment migratory pathway at the MRS scription s that contamination in the sediment is present at, sure. htly beyond the source (i.e., tens of feet), could move not sufficient to make a determination of Evident or mant migration from the source via the sediment to a presence of geological structures or physical controls). Thest value from above in the box to the = H). Factor to the sediment receptors at the MRS. scription which contamination has moved or can move.	S. Value H L Value H H M	
DIRECTIONS: Circle the Classification Evident Potential Confined MIGRATORY PATHWAY FACTOR DIRECTIONS: Circle the Classification Identified Potential Limited	Migratory Pathy he value that corresponds most closely Des Analytical data or observable evidence indicates moving toward, or has moved to a point of expo Contamination in sediment has moved only slig but is not moving appreciably, or information is Confined. Information indicates a low potential for contami potential point of exposure (possibly due to the DIRECTIONS: Record <u>the single hig</u> right (maximum value <u>Receptor I</u> he value that corresponds most closely Des Identified receptors have access to sediment to Potential for receptors to have access can move.	way Factor to the sediment migratory pathway at the MRS scription a that contamination in the sediment is present at, sure. http beyond the source (i.e., tens of feet), could move not sufficient to make a determination of Evident or mant migration from the source via the sediment to a presence of geological structures or physical controls). Thest value from above in the box to the = H). Factor to the sediment receptors at the MRS. scription which contamination has moved or can move. ent to which contamination has moved or can move.	S. Value H L Value H L L L L L L	
DIRECTIONS: Circle the Classification Evident Evident Confined Confined DIRECTIONS: Circle the Classification Identified Potential Limited RECEPTOR FACTOR	Migratory Pathy he value that corresponds most closely Des Analytical data or observable evidence indicates moving toward, or has moved to a point of expo Contamination in sediment has moved only slig but is not moving appreciably, or information is Confined. Information indicates a low potential for contami potential point of exposure (possibly due to the DIRECTIONS: Record <u>the single hig</u> right (maximum value Me value that corresponds most closely Des Identified receptors have access to sediment to Potential for receptors to have access can move. DIRECTIONS: Record <u>the single hig</u> right (maximum value	way Factor to the sediment migratory pathway at the MRS scription a that contamination in the sediment is present at, sure. http://www.mathematicular.externation http://www.mathematicular.externation not sufficient to make a determination of Evident or nant migration from the source via the sediment to a presence of geological structures or physical controls). hest value from above in the box to the = H). Factor to the sediment receptors at the MRS. scription which contamination has moved or can move. ent to which contamination has moved or can move. s to sediment to which contamination has moved or thest value from above in the box to the = H).	S. Value H L Value H L L L L L	

Table 26 HHE Module: Surface Soil Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface soil and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface soil contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the surface soil, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratio
Copper	1,300	3100	0.4194
Lead	960	400	2.4000
CHF Scale	CHF Value	Sum the Ratios	2.8194
CHF > 100	H (High)	- [Maximum Concentration of Co	ontaminantl
100 > CHF > 2	M (Medium)	$CHF = \sum_{i=1}^{n} \frac{1}{2} $	ontanniantj
2 > CHF	L (Low) [Comparison Value for Cont		iminant]
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> from above in the box to the right (maximum value = H)		
DIRECTIONS: Circle th	Migratory Path ne value that corresponds most closely	way Factor to the surface soil migratory pathway at the M	IRS.
DIRECTIONS: Circle th Classification	Migratory Path ne value that corresponds most closely De	to the surface soil migratory pathway at the M scription	IRS. Value
DIRECTIONS: Circle th Classification Evident	Migratory Path ne value that corresponds most closely De Analytical data or observable evidence indicate moving toward, or has moved to a point of exp	to the surface soil migratory pathway at the M escription es that contamination in the surface soil is present at, osure.	IRS. Value H
DIRECTIONS: Circle th Classification Evident Potential	Migratory Path ne value that corresponds most closely De Analytical data or observable evidence indicate moving toward, or has moved to a point of exp Contamination in surface soil has moved only move but is not moving appreciably, or informa or Confined.	to the surface soil migratory pathway at the Nescription es that contamination in the surface soil is present at, osure. slightly beyond the source (i.e., tens of feet), could ation is not sufficient to make a determination of Evident	IRS. Value H M

Receptor Factor

DIRECTIONS: Record the single highest value from above in the box to the

Μ

DIRECTIONS: Circle the value that corresponds most closely to the surface soil receptors at the MRS.

right (maximum value = H).

MIGRATORY

PATHWAY FACTOR

Classification	Description	Value
Identified	Identified receptors have access to surface soil to which contamination has moved or can move.	Н
Potential	Potential for receptors to have access to surface soil to which contamination has moved or can move.	М
Limited	Little or no potential for receptors to have access to surface soil to which contamination has moved or can move.	L
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).	Μ
	No Known or Suspected Surface Soil MC Hazard	

HHE Module: Supplemental Contaminant Hazard Factor Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Only use this table if there are more than five contaminants in any given medium present at the MRS. This is a supplemental table designed to hold information about contaminants that do not fit in the previous tables. Indicate the media in which these contaminants are present. Then record all contaminants, their maximum concentrations and their comparison values (from Appendix B of the Primer) in the table below. Calculate and record the ratio for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF for each medium on the appropriate media-specific tables.

Note: Do not add ratios from different media.

Image: series of the series	Media	Contaminant	Maximum Concentration	Comparison Value	Ratio
Image: series of the series					
Image: section of the section of th					
Image: section of the section of th					
Image: series of the series					
Image: series of the series					
Image: section of the section of th					
Image: section of the section of th					
Image: second					
Image: section of the section of th					
Image: section of the section of th					
Image: section of the section of th					
Image: section of the section of th					
Image: second					
Image: second					
Image: second					
Image: second					
Image: second					
Image: second					
Image: Sector					
Image: Second					
Image: Sector					
Image: Sector					
Image: Constraint of the second sec					

Table 28 **Determining the HHE Module Rating**

DIRECTIONS:

- 1. Record the letter values (H, M, L) for the **Contaminant Hazard**, **Migration Pathway**, and **Receptor Factors** for the media (from Tables 21–26) in the corresponding boxes below.
- 2. Record the media's three-letter combinations in the Three-Letter Combination boxes below (three-letter combinations are arranged from Hs to Ms to Ls).
- 3. Using the **HHE Ratings** provided below, determine each media's rating (A–G) and record the letter in the corresponding Media Rating box below.

Media (Source)	Contaminant Hazard Factor Value	Migratory Pathway Factor Value	Receptor Factor Value		Three-Letter Combination (Hs-Ms-Ls)		Media Rating (A-G)
Groundwater (Table 21)							
Surface Water/Human Endpoint (Table 22)							
Sediment/Human Endpoint (Table 23)							
Surface Water/Ecological Endpoint (Table 24)							
Sediment/Ecological Endpoint (Table 25)							
Surface Soil (Table 26)	М	М	М		MMM		D
DIRECTIONS (cont.):			HH	ΕM	ODULE RATI	NG	D

DIRECTIONS (cont.):

4. Select the single highest Media Rating (A is highest; G is lowest) and enter the letter in the HHE Module Rating box.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more media, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

HHE Ratings (for referen	ice only)	
Combination	Rating	
ННН	A	
ННМ	В	
HHL	0	
HMM	C	
HML	P	
MMM		
HLL	_	
MML	E	
MLL	F	
LLL	G	
	Evaluation Pending	
Alternative Module Ratings	No Longer Required	
, , , , , , , , , , , , , , , , , , ,	No Known or Suspected MC Hazard	

Table 29 MRS Priority

- **DIRECTIONS:** In the chart below, circle the letter **rating** for each module recorded in Table 10 (EHE), Table 20 (CHE), and Table 28 (HHE). Circle the corresponding numerical **priority** for each module. If information to determine the module rating is not available, choose the appropriate alternative module rating. The MRS Priority is the single highest priority; record this relative priority in the **MRS Priority or Alternative MRS Rating** at the bottom of the table.
- **Note:** An MRS assigned Priority 1 has the highest relative priority; an MRS assigned Priority 8 has the lowest relative priority. Only an MRS with CWM known or suspected to be present can be assigned Priority 1; an MRS that has CWM known or suspected to be present cannot be assigned Priority 8.

EHE Rating	Priority	CHE Rating	Priority	HHE Rating	Priority
		A	1		
A	2	В	2	A	2
В	<u>3</u>	C	3	В	3
С	4	D	4	С	4
D	5	E	5	D	5
E	6	F	6	E	6
F	7	G	7	F	7
G	8			G	8
Evaluation Pending		Evaluation Pending		Evaluatio	n Pending
No Longer Required		No Longer	No Longer Required No Longer Re		r Required
No Known or Susp Haza	pected Explosive ard	<u>No Known or Su</u> <u>Haza</u>	spected CWM ard	No Known or Sus	pected MC Hazard
MRS PRIORITY or ALTERNATIVE MRS RATING					3

Table A MRS Background Information

DIRECTIONS: Record the background information below for the MRS to be evaluated. Much of this information is available from Service and DoD databases. If the MRS is located on a FUDS property, the suitable FUDS property information should be substituted. In the **MRS Summary**, briefly describe the UXO, DMM, or MC that are known or suspected to be present, the exposure setting (the MRS's physical environment), any other incidental nonmunitions-related contaminants (e.g., benzene, trichloroethylene) found at the MRS, and any potentially exposed human and ecological receptors. If possible, include a map of the MRS.

Munitions Response Site Name: Waikane Valley Training Area

Component: Marine Corps

Installation/Property Name: Marine Corps Base Hawaii, Kaneohe Bay

Location (City, County, State): Kaneohe Bay, Honolulu, Hawaii

Site Name/Project Name (Project No.): MCBH Kaneohe Bay, UXO 0022

Date Information Entered/Updated: 22 Jan 2009

Point of Contact (Name/Phone): Wray Kakugawa (808) 472-1421

Project Phase (check only one):

D PA	¥ SI	🗆 RI	G FS	🗖 RD
RA-C		RA-O	□ RC	

Media Evaluated (check all that apply):

Groundwater	Sediment (human receptor)
Surface soil	□ Surface Water (ecological receptor)
Sediment (ecological receptor)	Surface Water (human receptor)

MRS Summary:

MRS Description: Describe the munitions-related activities that occurred at the installation, the dates of operation, and the UXO, DMM, or MC known or suspected to be present. When possible, identify munitions, CWM, and MC by type: Based on results of the Range Identification and Preliminary Range Assessment (RIPRA) completed in 2001, the Army leased this property for maneuvers, jungle training, and small arms, artillery, and mortar firing between 1943 and 1953. The U.S. Marines leased 1061 acres of the training area in 1953 and continued the leases until 1976. Training consisted of small arms fire, 3.5-inch rockets and possibly medium artillery fire. After the Marines investigated and conducted an ordnance clearance in 1976, they reported 187 acres of the WVTA would never be free of duds, practice ordnance, etc.

Description of Pathways for Human and Ecological Receptors From the Site Inspection Work Plan, Munitions Response Sites, Waikane Valley Training Area, Kaneohe, HI of 28 Nov 2006, potential human receptors include construction workers, and recreational users coming in direct contact or inhaling munitions constituents (MCs) in soil during construction activities. Terrestrial and aquatic wildlife may come in contact with subsurface soil containing MCs.

Description of Receptors (Human and Ecological): See above.

Table DP-1. Profile of General Demographic Characteristics: 2000

Geographic Area: Waikane CDP, Hawaii

[For information on confidentiality protection, nonsampling error, and definitions, see text]

Subject	Number	Percent	Subject	Number	Percent
Total population	726	100.0	HISPANIC OR LATINO AND RACE	700	100.0
SEX AND AGE			Hispanic or Latino (of any race)	7 26 37	100.0 5 1
Male	356	49.0	Mevican	37	12
Female	370	51.0	Puerto Rican	18	2.5
	5,6	7.4	Cuban	-	-
	54	7.4	Other Hispanic or Latino	10	1.4
5 10 9 years	60 50	9.0	Not Hispanic or Latino	689	94.9
10 to 14 years	50	0.9	White alone	116	16.0
20 to 24 years	33	0.4 4 5			
25 to 34 years	107	14.7	RELATIONSHIP	700	100.0
35 to 44 years	88	12.1		726	100.0
45 to 54 years	117	16.1	Householder	/20	100.0
55 to 59 years	55	7.6	Spouso	100	15.9
60 to 64 years	27	3.7	Child	224	30.0
65 to 74 years	43	5.9	Own child under 18 years	116	16.0
75 to 84 years	21	2.9	Other relatives	150	20.7
85 years and over	5	0.7	Under 18 years	83	11.4
Median age (vears)	34.1	(X)	Nonrelatives	53	7.3
	04.1	(//)	Unmarried partner	21	2.9
18 years and over	522	71.9	In group quarters	-	-
Male	254	35.0	Institutionalized population.	-	-
Female	268	36.9	Noninstitutionalized population	-	-
21 years and over	490	67.5			
62 years and over	89	12.3	HOUSEHOLD BY TYPE		
65 years and over	69	9.5	Total households	188	100.0
Male	25	3.4	Family households (families)	157	83.5
Female	44	6.1	With own children under 18 years	61	32.4
			Married-couple family	111	59.0
RACE		00.7	With own children under 18 years	46	24.5
	441	60.7	Female householder, no husband present	27	14.4
	123	16.9	With own children under 18 years	12	6.4
	1	0.1	Nonfamily households	31	16.5
	120	10.1	Householder living alone	21	11.2
Asian Indian	105	13.1	Householder 65 years and over	8	4.3
Chinese	14	19	Households with individuals under 18 years	89	47.3
Filinino	52	72	Households with individuals 65 years and over	51	27.1
Japanese	55	7.6			
Korean	-	-	Average household size	3.86	(X)
Vietnamese	-	-	Average family size	4.09	(X)
Other Asian ¹	18	2.5			
Native Hawaiian and Other Pacific Islander	163	22.5	Total housing units	109	100.0
Native Hawaiian	136	18.7	Occupied housing units	190	04.0
Guamanian or Chamorro	1	0.1	Vacant housing units	100	5 1
Samoan	2	0.3	For seasonal recreational or	10	5.1
Other Pacific Islander ²	24	3.3	occasional use	4	2.0
Some other race	13	1.8			
Two or more races	285	39.3	Homeowner vacancy rate (percent)	-	(X)
Bace alone or in combination with one			Rental vacancy rate (percent)	3.8	(X)
or more other races: ³					
White	318	43.8	HOUSING LENUKE	400	100.0
Black or African American	6	0.8	Occupied nousing units	188	100.0
American Indian and Alaska Native	13	1.8	Owner-occupied housing units	112	59.6
Asian	344	47.4		76	40.4
Native Hawaiian and Other Pacific Islander	409	56.3	Average household size of owner-occupied units.	3.77	(X)
Some other race	56	7.7	Average household size of renter-occupied units.	4.00	(X)

- Represents zero or rounds to zero. (X) Not applicable. ¹ Other Asian alone, or two or more Asian categories.

² Other Pacific Islander alone, or two or more Native Hawaiian and Other Pacific Islander categories.

³ In combination with one or more of the other races listed. The six numbers may add to more than the total population and the six percentages may add to more than 100 percent because individuals may report more than one race.

Source: U.S. Census Bureau, Census 2000.

SITE INSPECTION REPORT MUNITIONS RESPONSE SITES WAIKANE VALLEY TRAINING AREA KANEOHE, HAWAII

APPENDIX F. STEP 3A ECOLOGICAL RISK ASSESSMENT

Ecological Risk Evaluation for Waikane Valley Training Area, Kaneohe, O'ahu, Hawaii

PREPARED FOR:	NAVFAC Pacific USA Environmental
PREPARED BY:	Dennis Shelton/CH2M HILL Jeff Schut/CH2M HILL
DATE:	July 24, 2009

This memorandum provides the results of the ecological risk evaluation (ERE) for soil samples collected at the Waikane Valley Training Area (WVTA), Kaneohe, O'ahu, Hawaii. The objective of this ERE was to determine the nature, magnitude, and probability of actual or potential harm to the environment posed by the threatened or actual release of hazardous substances at or from the WVTA to soil. This ERE was conducted using a tiered framework consistent with U.S. Department of Navy (Navy, 2003) and U.S. EPA guidance (EPA 1997, 1998), and is consistent with the objectives and requirements of Step 3a of Tier 2 (Baseline Ecological Risk Assessment, or BERA) of the Navy's overall tiered process. The results of Tier 1 (Screening Risk Assessment, or SRA) were provided in Section 3 of this Site Inspection (SI) Report.

1.0 Organization of the Ecological Risk Evaluation

This ERE includes the following components:

- **Exposure Pathways and Receptors of Concern** identifies the potentially complete pathways through which ecological receptors could be exposed to chemicals in soil (Section 2).
- Chemicals of Potential Ecological Concern (COPEC) identifies those constituents of greatest importance for evaluation in the ERE, based on available soil data (Section 3).
- **Ecological Risk Evaluation Methods and Results** provides the methodology for calculating site-specific risk estimates and the results (Section 4).
- **Uncertainties and Assumptions** identifies uncertainties and assumptions from the ecological risk evaluation (Section 5).
- **Conclusions** provide the overall conclusions of this ERE (Section 6).
- **References** provides citation of references used for the ERE (Section 7).

2.0 Exposure Pathways and Receptors of Concern

On the basis of the habitat types and wildlife using the area, this section identifies the means by which ecological receptors on or near the site may contact chemicals in soil. Considering the habitat types at or near WVTA, wildlife populations potentially using these habitats have been identified and are summarized in this section.

2.1 Ecological Setting

The ecological setting, including terrestrial and nearby aquatic habitats and wildlife, are described in Section 1.2 of this SI Report. Mechanical disturbances at the project site have left only remnants of native vegetation. Native plant communities such as 'Ohi'a Scrub and Koa/'Uluhe Woodland occur on some of the ridges that extend to the northern ridge line. The *Ohi'a Scrub* community occurs on the ridges at the north side of the project site, and particularly on the eastern end. It is characterized by low and shrubby 'ohi'a trees with dense clumps of the native fern *pala'a* (Sphenomeris chinensis) between the shrubs. Koa/'Uluhe Woodland dominates the northwestern portion of the project site on the ridge leading up the hills that separate Waikane Valley from Kaaawa Valley. This plant community comprises *Dicranopteris linearis ('uluhe)*. Two plant communities (that is, Managed Land Vegetation and Secondary Forest) found in most of the flat to sloping areas south of the hills on the northern portion of the project site reflect extensive disturbance. Managed Land Vegetation exhibits the characteristics of abandoned agricultural clearings that cover large patches on the alluvial plain of the Waikane Stream, and the areas around the abandoned living sites. Most of the lowlands of the site are covered by Secondary Forest, which is a plant community almost entirely dominated by alien tree species. The most prevalent of these alien tree species is Paraserianthes falcataria ("albizia"), which is a large, fast-growing tree with an open, spreading canopy. No distinct wetlands are found within the project site.

2.2 Conceptual Exposure Model for Ecological Receptors

The potential pathways for human and ecological exposures at the WVTA are depicted in Figure A-8 of this SI Report. On the basis of the current understanding of available habitat types and wildlife potentially using the WVTA, and the beneficial uses in the vicinity of the site, the most plausible potentially complete ecological pathway of exposure to soil is the potential bioaccumulation through the ingestion of food items (for example, prey) and surface soil by avian wildlife potentially using the WVTA. These exposure pathways are the focus of this ERE. The potential exposures to ecological receptors associated with surface water and sediment will be evaluated during the Remedial Investigation (RI).

2.3 Selection of Ecological Assessment Endpoints

Assessment endpoints define the environmental characteristics of actual value that, if found to be substantially affected, indicate a need for remediation (for example, the survival and health of avian species using WVTA). For the WVTA, assessment endpoints are based on the habitat types that occur within the locality of the project site. The selection of assessment endpoints depends on (EPA, 1997):

- contaminants present and their concentrations
- mechanisms of toxicity of the contaminants to different groups of organisms

- ecologically relevant receptor groups that are potentially sensitive or highly exposed to the contaminant and attributes of their natural history
- potentially complete exposure pathways

As an example, the ecological health of Hawaiian short-eared owl (*Asio flammeus sandwichensis*) or pueo is considered a significant assessment endpoint because pueo may occur in the terrestrial habitat areas and forage on small mammals and birds at WVTA, are highly valued, and are susceptible to exposure and toxicity from contaminants occurring there. An appropriate assessment endpoint for the WVTA would be the survival and health of terrestrial birds, as represented by the Hawaiian short-eared owl. This assessment endpoint meets the criteria listed above and is considered a primary endpoint for this ERE.

2.4 Measures of Exposure and Effect

Assessment endpoints frequently cannot be directly measured because they tend to correspond to complex ecosystem attributes. Because of this, the ERE identifies other related measures that serve as representations or surrogates of each assessment endpoint. These measures are called "measures of effect" and "measures of exposure" (EPA, 1998). The strength of the relationships between these measures and their corresponding assessment endpoints is critical to the identification of ecological adversity. For this ERE, these measures are defined as follows:

- Measures of exposure are quantitative or qualitative indicators of the occurrence and movement of a contaminant in the environment in a way that results in contact with the assessment endpoint. For this ERE, chemical concentrations measured in surface soil and modeled to prey tissue serve as direct measures of exposure via the food web to wildlife users of the WVTA (as represented by the Hawaiian short-eared owl).
- Measures of effect are measurable adverse changes in an attribute of an assessment endpoint (or its surrogate) in response to a chemical to which it is exposed. For this ERE, literature-derived critical toxicity values from available laboratory studies on birds are used to indicate when the Hawaiian short-eared owl may be adversely affected.

The assessment endpoints identified for WVTA, and the corresponding measures of exposure and effect, are summarized in Table 1.

2.5 Selection of Representative Endpoint Species

To facilitate quantitative evaluation of potential exposures and effects associated with constituent stressors and assessment endpoints, wildlife are identified that are considered representative of indigenous wildlife functional groups at a site. The endpoint species should preferably be one that has ecological relevance, is of social value, is susceptible to constituent stressors, and allows risk managers to meet policy goals. These four factors collectively describe the ecological value of the species selected, as well as the functional groups they represent. Another consideration in the selection of endpoint species is the availability of literature-based exposure parameters such as body weight. A short description of the species chosen to represent the potentially exposed wildlife is presented below.

2.5.1 Hawaiian Short-Eared Owl

The *Draft Environmental Assessment (EA) for the Proposed United States Marine Corps (USMC) Jungle Warfare Training Waikane Valley, Oahu, Hawaii* (2004) noted that the endemic Hawaiian short-eared owl (*Asio flammeus sandwichensis*) or pueo was not detected during surveys but may occasionally use resources present within the site, especially in the more open '*uluhe* dominated higher elevations of the valley wall. Pueo primarily feed on small rodents and occasionally on small birds and invertebrates. Pueo grow between 12 and 17 inches in size and are most active during dawn and dusk. Pueo are highly regarded by Hawaiians as a guardian spirit and a good omen. The Hawaiian short-eared owl was selected as a representative of terrestrial wildlife, particularly raptors and other owls, that may use the site because they are potential users (that is, foragers) of the habitat in the locality of WVTA, are highly valued by the society, and would be expected to have a high exposure to site-related constituents. The pueo is considered a species of concern in the State of Hawaii. Since the pueo would be expected to experience a high-end exposure to site-related constituents because of its position in the food web, risk assessment of this receptor would be anticipated to provide a conservative representation of other birds using the site.

3.0 Chemicals of Potential Ecological Concern

The following subsections describe the data used for this ERE, and the means for identification of COPECs.

3.1 Data Used for this Risk Evaluation

Data used for this ERE were collected in October 2008 as part of the SI. Samples used in this ERE are presented in Table 2. The data set evaluated for ecological risk includes surface soil samples collected for the purpose of site characterization. All chemicals detected in at least one sample were evaluated to identify COPECs. A detailed description of previous site investigations and analyses conducted are provided in Section 1 this SI Report. The sample location map is provided as Figure A-7 of the SI Report.

3.2 Comparison to Background and Ecological Screening Levels

For this ERE, the following screening process and benchmarks are used to identify COPECs for the WVTA:

- 1. First, maximum detected COPEC concentrations were screened against the State of Hawaii Department of Health (HDOH) Environmental Action Levels or EALs for sites where drinking water is threatened and less than 150 meters from the surface water (HDOH, March, 2009), conservative screening levels believed to be protective of potential terrestrial wildlife.
- 2. Second, maximum detected COPEC concentrations were compared with soil background levels from *Environmental Background Analysis of Metals in Soil at Navy Oahu Facilities*, Pacific Division, Naval Facilities Engineering Command (Earth Tech, 2006).

Table 3 provides the screening results for COPEC selection. Because EALs were developed as conservative benchmarks, along with the screening assumption that all wildlife exposure

is limited to the location where samples were collected, exceedance of some of these benchmarks is not surprising. Only two constituents had maximum COPEC concentrations exceeding both the HDOH EALs and the background levels, as summarized below:

- Copper maximum concentration (1,300 mg/kg) exceeds the EAL (230 mg/kg) by a factor of 5.7. The background level for copper is reported as 183 mg/kg.
- Lead maximum concentration (960 mg/kg) exceeds the EAL (200 mg/kg) by a factor of 4.8. The background level for lead is reported as 100 mg/kg.

Additionally, ecological EALs are not available for several munitions-related constituents, including; 2,6-dinitrotoluene, HMX, nitrobenzene, 2-nitrotoluene, 3-nitrotoluene, 4-nitrotoluene, RDX, 1,3,5-trinitrobenzene, and trinitrophenylmethylnitramine.

Copper and lead were identified as exceeding Project Action Levels (PALs) in Section 3 of this SI Report (Tier 1 SRA), and are therefore considered the primary COPEC for the WVTA. For the purposes of this ESE (Step 3a of Tier 2) each of the munitions-related constituents listed above are also identified as COPECs (due to their lack of EALs) and carried forward to site-specific assessment for further evaluation.

4.0 Ecological Risk Evaluation Methods and Results

This ERE uses exposure estimates for receptors specific to the site to characterize risks, for those chemicals identified as COPECs. The methodology and results for this ERE are provided in the following subsections.

4.1 Estimation of Exposure to Wildlife

According to the conceptual exposure model, the most feasible means through which receptors may be exposed to site COPECs is through direct ingestion of surface soil and food-chain transfer of chemicals via ingestion of prey items (that is, small mammals and/or birds). Quantitative exposure estimates for the pueo are developed using food-web modeling procedures consistent with EPA guidance (EPA, 1993). These models use best available information for predicting the ability and extent of the movement of a chemical through the food chain with ultimate uptake into an endpoint species. In addition, the food web models consider concomitant chemical intake from soil incidentally ingested with food items and during preening or foraging activities.

For evaluating exposure to avian species through a food chain, the equation used to estimate chemical-specific intake is as follows:

 $I_{diet} = [C_s \ x \ DIR_f \ x \ AUF \ x \ ((BAF_m \ x \ Frac_m) + (Frac_s))]/BW$

Where:

I _{diet}	=	Dietary exposure rate (mg/kg body weight-day)
Cs	=	Chemical concentration in soil (mg/kg dry weight)
DIR _f	=	Daily food ingestion rate (kg/day dry weight)
AUF	=	Area use factor (unitless)
BAF _m	=	Bioaccumulation factor for small mammals and birds (unitless)
Fracm	=	Fraction of diet represented by small mammals and birds (unitless)

 $Frac_s$ = Fraction of diet represented by soil (unitless)

BW = Body weight of wildlife receptor (kg)

4.1.1 Exposure Parameters

As can be seen from the intake equation, to estimate avian exposure from surface soil and prey, media concentration data are needed, as well as exposure parameters that are specific to the endpoint species. Exposure point concentrations (EPCs) that serve as input to the intake equations (designated as C_s in the equation) were estimated by aggregating concentration data from soil samples collected from across the project site. The EPCs for aggregate risk estimation were calculated by using the best statistical estimate of an upper bound on the average exposure concentrations, in accordance with U.S. EPA guidance for statistical analysis of monitoring data (EPA, 2002). The 95 percent upper confidence limit (UCL) on the mean concentration is considered by these guidance documents as a conservative upper bound estimate that is not likely to underestimate the mean concentration and most likely overestimates that concentration. EPCs were calculated for each detected constituent using U.S. EPA's statistical program ProUCL, Version 4.00.04 (EPA, 2009). This procedure identifies the statistical distribution type (that is, normal, lognormal, or non-parametric) for each constituent within the defined exposure area and computes the corresponding 95 percent UCL for the identified distribution type. Summary statistics and UCLs for all detected soil constituents are provided in Table 4.

The species-specific exposure parameters used for this ERE include body weight, food intake rate, diet composition, percent of diet as soil, and area-use factor. The exposure parameters and references used for the Hawaiian short-eared owl (pueo) are summarized in Table 5. All weight-based exposure parameters are listed on a dry-weight basis. For this ERE, a body weight of 0.348 kg for the owl was used in the food-web model (INHS, 2004). The fraction of diet represented by each food item is obtained by evaluating the entire diet of the representative species; Hawaiian short-eared owls almost exclusively forage on small mammals and birds. Biological information was unavailable for some parameters. When this occurred, allometric equations were used to approximate some exposure parameters (EPA, 1993), such as the food ingestion rate. The allometric conversion for food ingestion is discussed below.

The area-use factor (AUF) represents the percentage of time the representative species is likely to forage in the study area. There are no available studies documenting the home range for the pueo in Hawaii, but the site-specific home range size is expected to be indirectly related to prey availability. As previously noted, the EA indicated that the Hawaiian Short-eared Owl was not detected during surveys but may occasionally use resources present within the site, especially in the more open *'uluhe* dominated higher elevations of the valley wall. Because the lower portions of the site are densely vegetated/forested (most predatory birds such as owls prefer to hunt/forage in more open settings), a conservative assumption was made that pueo could receive as much as 50 percent of their forage from the WVTA. Therefore an AUF of 0.5 was used in the food-web exposure model for the pueo.

The numerical results of exposure quantification are provided in Table 6.

4.1.2 Allometric Conversions for Food Intake Rate

Allometric equations provided in EPA (1993) are used to estimate daily food ingestion rates (in kg/day) for the pueo as follows:

Non-passerine birds (kg/day) = $(0.301^* BW^{0.751})/1000$

Where:

BW = Body weight (g)

Using this equation for the pueo with a body weight of 0.348 kg, the daily food intake rate is estimated to be 0.136 kg/day (dry weight basis).

4.1.3 Estimation of Bioaccumulation into Food Items

Bioaccumulation can be defined as the uptake and accumulation of chemicals by organisms from the nonliving (abiotic) environment and through the diet. The concentration of a site-related chemical in a food chain item is not always available, but often must be estimated. For the purposes of exposure estimation, partitioning of chemicals from soil to prey items is estimated from literature values (for example, small mammal bioaccumulation factors). Pueo almost exclusively forage on small mammals and birds. Chemical-specific bioaccumulation factors used to estimate chemical concentrations in prey items are provided in Table 7.

4.2 Ecological Effects Assessment

The ecological effects assessment identifies the toxicological properties associated with the chemical stressors at WVTA. It determines the type of effect that could result to the ecosystem if exposure is excessive, and identifies which benchmarks provide a measure of the potential for ecological effects.

The toxicity of chemicals to wildlife as a result of potential exposure to contaminated media at WVTA is identified by using literature-derived critical toxicity values. A literature review of the toxicological properties for site chemicals was conducted to identify the highest exposure level considered to be without adverse ecological impact. This exposure level is called the toxicity reference value (TRV). TRVs were derived by interpreting existing literature-derived toxicological studies and adjusting the data, if necessary, to obtain values that are expected to protect the selected endpoint species. When necessary, literature references citing use of laboratory animals that have similar sensitivity, life history, or habitat requirements are used as surrogates for the wild ecological receptor species. Additionally, a few munitions-related constituents that were detected do not have adequate toxicity information to quantify ecological risks. These are addressed in the uncertainties section. In some cases, data for surrogate chemicals (for example, 2,4-dinitrotoluene for other dinitrotoluenes) were used.

For the pueo, the primary toxicological endpoint used for development of the TRV is the chronic no observed adverse effects level (NOAEL). Because ecological populations are the primary focus of this ERE, population-type endpoints such as reproduction or survival are of greatest concern. NOAELs are obtained from studies using animal species that are as closely related as possible to the selected endpoints species (for example, with similar

dietary habits), and the exposure route and duration are similar to those feasible at the project site.

Derivation of wildlife TRVs for the Hawaiian short-eared owl is a three-step process:

- 1. Conduct a literature search to compile toxicity data for the COPECs using surrogate (that is, laboratory test) avian species
- 2. Review these toxicity data to select the most appropriate values (that is, considering exposure duration, route, etc.) for each COPEC or chemical surrogate
- 3. Use uncertainty factors (UF) from the toxicology literature to derive a chronic NOAEL from other less sensitive endpoints (that is, subchronic lowest observed adverse effect level [LOAEL], etc.), if necessary

4.2.1 Toxicological Uncertainty Factors

Uncertainty factors are applied to the literature-derived toxic level to account for any differences in the reported effect level and exposure duration. For example, if a chronic NOAEL is unavailable and only the chronic LOAEL is reported, an uncertainty factor of 5 (that is, LOAEL/5) is applied to derive the NOAEL used to calculate the TRV. The following uncertainty factors are used in deriving chronic NOAELs for TRVs (Wentsel et al., 1996):

- Chronic NOAEL to Chronic NOAEL = 1
- Chronic LOAEL to Chronic NOAEL = 5
- Subchronic NOAEL to Chronic NOAEL = 10

The selected literature-derived toxic level, uncertainty factors applied, and the TRVs derived for each COPEC are provided in Table 8.

4.2.2 Toxicity Data Sources

Sources used for ecological toxicity information include:

- EPA Ecological Soil Screening Levels (<u>http://www.epa.gov/ecotox/ecossl/</u>)
- U.S. Army Wildlife Toxicity Reference Values (TRVs) for Ecological Risk Assessments (<u>http://chppm-www.apgea.army.mil/erawg/tox/index.htm</u>)

4.3 Ecological Risk Characterization

The purpose of the ecological risk characterization is to evaluate the evidence linking site contaminants with potential adverse ecological effects. This link is established by combining the ecological exposure assessment and ecological effects assessment through quantitative or qualitative evaluations, or both. The uncertainties associated with the evaluations are presented in Section 5.

4.3.1 Ecological Risk Quantification Method for Avian Wildlife

The primary means for quantifying ecological risk for avian species at WVTA is to determine the ratio of the estimated chemical exposure level for the endpoint species of concern with the chemical-specific TRV:

Ecological
$$HQ = I/TRV$$

where:

HQ = Ecological hazard quotient (unitless) I = Chemical intake level (mg/kg body weight-day) TRV = Toxicity reference value (mg/kg body weight-day)

This ratio is called the ecological HQ. When the HQ exceeds unity, there is a potential for ecological risk. When a cumulative effect from potential exposure to more than one chemical is suspected or known, an ecological HI is calculated. An ecological HI is a measure of the potential for adverse effects due to multiple COPECs and is based on the assumption that the effects are additive for COPECs that act by the same toxicological mechanism. An ecological HI is the sum of all hazard quotients for chemicals with similar toxicological mechanisms and is calculated as follows:

$$HI = HQ_1 + HQ_2 + \dots + HQ_i$$

where:

HI = Ecological hazard index (unitless)
HQ_i = Ecological hazard quotient for the *i*th constituent (unitless)

For the COPECs identified at WVTA, this ERE calculates an HI for all organic munitionsrelated compounds, but the HQ estimates for copper and lead are considered toxicologically distinct.

4.3.2 Risk Characterization Results for Wildlife

Ecological HQs were derived for WVTA by comparing the calculated chemical intake of constituents detected in surface soil during the October 2008 SI with TRVs identified to be protective of the Hawaiian short-eared owl. Exposure was assumed to occur to COPECs in surface soil and prey items collectively. The results of the HQ and HI estimates for WVTA are provided in Table 6.

A total of 50 surface soil samples were used for this ERE. None of the 18 detected chemicals evaluated for ecological risk occur at concentrations resulting in an ecological NOAELbased HQ exceeding 1.0 for the Hawaiian short-eared owl. Considering the aggregate ecological risk calculated for toxicologically-similar munitions-related compounds, the HI is 0.01, well below the regulatory limit of 1.0.

5.0 Uncertainties and Assumptions

Full characterization of ecological risks requires that numerical estimates of ecological health risks must be accompanied by a discussion of the uncertainties inherent in the assumptions used to estimate risks. Uncertainties in risk evaluation methods may result either in understating or in overstating the ecological risks.

Risk estimates are subject to uncertainty from a variety of sources, including:

• Sampling, analysis, and data evaluation

- Fate and transport estimation
- Exposure estimation
- Toxicological data

General and site-specific uncertainties, as well as the potential effects on risk evaluation results, are discussed in the following sections.

5.1 Sampling, Analysis, and Data Evaluation

Uncertainty associated with sampling and analysis includes the inherent variability (standard error) in the analysis, representativeness of the samples, sampling errors, and heterogeneity of the sample matrix. The QA/QC program used in the investigation serves to reduce these errors, but it cannot eliminate all errors associated with sampling and analysis. The degree to which sample collection and analyses reflect real EPCs partly determines the reliability of the risk estimates.

5.2 Fate and Transport

This ERE makes simplifying assumptions about environmental fate and transport of COPECs; specifically, that no chemical loss or transformation occurred. This assessment also assumes that the chemical concentrations detected in surface soil remain constant during the assessed exposure duration. In cases where natural attenuation processes are high, the analytical data chosen to represent EPCs may overstate actual long-term exposure levels.

5.3 Exposure

The estimation of exposure requires many assumptions to describe potential exposure situations. There are uncertainties regarding the likelihood of exposure, frequency of contact with contaminated media, the concentration of contaminants at exposure points, and the time period of exposure. Natural attenuation is not accounted for during these risk estimates. The assumptions used tend to simplify and approximate actual site conditions and may over- or underestimate the actual risks. In general, these assumptions are intended to be conservative and yield an overestimate of the true risk or hazard.

5.4 Toxicological Data

Uncertainties in toxicological data can also influence the reliability of risk management decisions. As with many contaminants, data on toxicity to wildlife is limited. In addition, the usefulness of existing toxicity information in assessing ecological impacts is constrained by several factors. Most wildlife toxicity information is generated by laboratory studies with selected test species. These studies frequently evaluate domestic animals under controlled laboratory conditions, with few tests involving native wildlife. Basic toxicity information can be extrapolated to native species in the wild, but consideration must be given to the species involved and specific site conditions. Where toxicity information on a particular contaminant is available for a species found onsite, such as the owl, consideration was given to the type of data available

The toxicity values used for quantifying risk in this assessment have varying levels of confidence that will affect how useful the resulting risk estimates are. Uncertainty factors were used for extrapolation between exposure durations (i.e., subchronic to chronic). The

use of uncertainty factors in the derivation of the TRV while striving for protectiveness may result in an overestimation of risk. Because some of the constituents detected did not have available toxicity information on which to quantify risks, these constituents could not be evaluated. However, most of the constituents that have no available toxicity data are considered less toxic, because most of the toxicological literature focuses on those constituents considered more toxic to ecological receptors. In some cases where adequate toxicity data were unavailable, structurally similar surrogates were generally used. The use of surrogates for these chemicals may lead to overestimation of risk to ecological receptors if the surrogate is more toxic than the chemical with unavailable toxicity data.

Another uncertainty in the ERE is the bioavailability of the forms of metals that occur in soil at the site. Site-specific bioavailability data were unavailable. This assessment conservatively assumes that bioavailability from soil is the same as that in the toxicological studies from which the toxicity values were derived. Depending on whether the chemical form at the site is less or more bioavailable than assumed, actual risk would be proportionately lower or higher, respectively.

6.0 Conclusions

This ERE was conducted consistent with methodology recommended in the HDOH, Navy, and EPA guidances, focusing on site-related constituents, receptors, and areas where the greatest potential for ecological exposure might be expected. Specifically, this ERE is consistent with the objectives and requirements of Step 3a of Tier 2 (Baseline Ecological Risk Assessment, or BERA) of the Navy's overall tiered process (Navy, 2003). The resulting characterization is expected to provide sufficient information for informed risk management decisions at the WVTA. As such, the results here are key for consideration by risk managers during the scientific management decision point (SMDP), as outlined in the tiered process.

The primary decision for which the results of the ERE provide input is whether additional actions are necessary at the site to reduce the potential threat of ecological risk. The results of the risk characterization for avian receptors potentially using habitat at WVTA, as represented by the Hawaiian short-eared owl, indicate that risk to these receptors is *de minimis* and meets the HDOH regulatory limits.

7.0 References

- Department of Navy (Navy). February 2003. Navy Guidance for Conducting Ecological Risk Assessments.
- Earth Tech, 2006. *Environmental Background Analysis of Metals in Soil at Navy Oahu Facilities*, Pacific Division, Naval Facilities Engineering Command.
- Illinois Natural History Service. 2004. Short-eared owl (*Asio flammeus*) [online]. <u>http://www.inhs.uiuc.edu/chf/pub/ifwis/birds/short-eared-owl.html</u>.
- Oak Ridge National Laboratory (ORNL). 2009. *Chemical Specific Factors: Soil-to-Plant Dry Uptake*. Oak Ridge National Laboratory Internet Site. http://risk.lsd.ornl.gov/cgibin/tox/TOX_select?select=csf.

- Sample, B.E. et al. 1996. *Toxicological Benchmarks for Wildlife: 1996 Revision*. Oak Ridge National Laboratory, Environmental Sciences Division. ES/ER/TM-86/R3.
- Sample, B.E. et al., 1998. *Development and Validation of Bioaccumulation Models for Small Mammals*. Oak Ridge National Laboratory, U.S. Department of Energy. ES/ER/TM-119.
- State of Hawaii Department of Health (HDOH). March, 2009. *Screening for Environmental Hazards at Sites with Contaminated Soil and Groundwater*. HDOH Environmental Management Division, Honolulu, Hawaii.
- U.S. Army Corps of Engineers (Army). (2005). *Wildlife Toxicity Reference Values (TRVs) for Ecological Risk Assessments*. Online at http://chppmwww.apgea.army.mil/erawg/tox/index.htm
- U.S. Environmental Protection Agency (EPA). 1993. *Wildlife Exposure Factors Handbook.* Office of Research and Development. EPA/600/R-93/187b. December 1993.
- U.S. Environmental Protection Agency (EPA). 1997. *Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments.* EPA 540-R-97-006. Office of Solid Waste and Emergency Response, Washington, D.C.
- U.S. Environmental Protection Agency (EPA). 1998. *Guidelines for Ecological Risk Assessment*. EPA/630-R-95/002F.
- U.S. Environmental Protection Agency (EPA). 2002. Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites.
- U.S. Environmental Protection Agency (EPA). 2003-2008. *Ecological Soil Screening Levels*. Office of Solid Waste and Emergency Response. OSWER Directive 9285.7.
- U.S. Environmental Protection Agency (EPA). 2009. Software for Calculating Upper Confidence Limits (UCLs) ProUCL Version 4.00.04 [Online] <u>http://www.epa.gov/nerlesd1/tsc/form.htm</u>
- Wentsel, R.S., et al. 1996. Tri-Service Procedural Guidelines for Ecological Risk Assessments, Volume I. U.S. Army; The Institute of Wildlife and Environmental Toxicology, Clemson University; Geo-Centers, Inc.; EA Engineering, Science and Technology; and EBA, Inc.

TABLE 1Ecological Assessment Endpoints and Endpoint SpeciesWaikane Valley Training Area, Kaneohe, O'ahu, Hawaii

Assessment Endpoint	Assessment	Representative	Measure of	Measure of
Functional Group	Endpoint	Endpoint Species	Exposure	Effect
Terrestrial Wildlife	Survival and health of terrestrial	Represented by the Hawaiian	Measured COPEC levels in	HDOH soil EALs protective of
	wildlife using the Waikane Valley	Short-eared Owl or "pueo"	surface soil and modeled	wildlife (for initial screening) and
	Training Area, and potentially		prey tissue	chronic no-observed adverse
	exposed to COPECs in surface			effect level (NOAEL) for birds,
	soil and prey items			converted to a toxicity reference
				value for the Hawaiian short-
				eared owl (for site-specific
				evaluation)

TABLE 2

Samples Used in the Ecological Risk Evaluation for the NAVFAC Munitions Response Site

Waikane Valley Training Area, Kaneohe, O'ahu, Hawaii

Sample ID	Sample	Sample		
Number	Date	Туре	Media	Units
MEC001	10/14/2008	PS	Surface soil	mg/Kg
MEC002	10/14/2008	PS	Surface soil	mg/Kg
MEC003	10/14/2008	PS	Surface soil	mg/Kg
MEC004	10/14/2008	PS	Surface soil	mg/Kg
MEC005	10/14/2008	PS	Surface soil	ma/Ka
MEC006	10/14/2008	PS	Surface soil	ma/Ka
MEC007	10/14/2008	PS	Surface soil	ma/Ka
MEC008	10/15/2008	PS	Surface soil	ma/Ka
MEC009	10/15/2008	PS	Surface soil	ma/Ka
MEC010	10/15/2008	PS	Surface soil	ma/Ka
MEC011	10/15/2008	QC	Surface soil	ma/Ka
MEC012	10/15/2008	PS	Surface soil	ma/Ka
MEC013	10/15/2008	PS	Surface soil	ma/Ka
MEC014	10/15/2008	PS	Surface soil	ma/Ka
MEC015	10/15/2008	PS	Surface soil	ma/Ka
MEC016	10/15/2008	PS	Surface soil	ma/Ka
MEC017	10/15/2008	PS	Surface soil	ma/Ka
MEC018	10/16/2008	PS	Surface soil	ma/Ka
MEC019	10/16/2008	PS	Surface soil	ma/Ka
MEC020	10/16/2008	PS	Surface soil	ma/Ka
MEC021	10/16/2008	QC	Surface soil	ma/Ka
MEC022	10/16/2008	PS	Surface soil	ma/Ka
MEC023	10/16/2008	PS	Surface soil	ma/Ka
MEC024	10/16/2008	PS	Surface soil	ma/Ka
MEC025	10/16/2008	PS	Surface soil	ma/Ka
MEC026	10/16/2008	PS	Surface soil	ma/Ka
MEC027	10/16/2008	PS	Surface soil	ma/Ka
MEC028	10/16/2008	PS	Surface soil	mg/Kg
MEC029	10/16/2008	PS	Surface soil	mg/Kg
MEC030	10/16/2008	PS	Surface soil	mg/Kg
MEC031	10/16/2008	QC	Surface soil	mg/Kg
MEC032	10/16/2008	PS	Surface soil	mg/Kg
MEC033	10/16/2008	PS	Surface soil	mg/Kg
MEC034	10/20/2008	PS	Surface soil	mg/Kg
MEC035	10/20/2008	PS	Surface soil	mg/Kg
MEC036	10/20/2008	PS	Surface soil	mg/Kg
MEC037	10/20/2008	PS	Surface soil	mg/Kg
MEC038	10/20/2008	PS	Surface soil	mg/Kg
MEC039	10/20/2008	PS	Surface soil	mg/Kg
MEC040	10/20/2008	PS	Surface soil	mg/Kg
MEC041	10/20/2008	QC	Surface soil	mg/Kg
MEC042	10/20/2008	PS	Surface soil	mg/Kg
MEC043	10/20/2008	PS	Surface soil	mg/Kg
MEC044	10/20/2008	PS	Surface soil	mg/Kg
MEC045	10/21/2008	PS	Surface soil	mg/Kg
MEC046	10/21/2008	PS	Surface soil	mg/Kg
MEC047	10/21/2008	PS	Surface soil	mg/Kg
MEC048	10/21/2008	QC	Surface soil	mg/Kg
MEC049	10/21/2008	PS	Surface soil	mg/Kg
MEC050	10/21/2008	PS	Surface soil	mg/Kg

Notes: PS = Primary sample QC = Quality control sample

					Maximum	Soil Ecotoxicity		
					Detect Less	Environmental	Maximum	
		Maximum		Background	than	Action Levels	Detect Less	Selected as
Constituent	Units	Detect	95% UCL	Concentration ^b	Background?	(EALs) ^a	than EALs	COPEC
Aluminum	mg/Kg	73,000	43,824	93,900	≻	:	≻	z
Antimony	mg/Kg	4.3	0.49	6.9	≻	20	≻	z
Barium	mg/Kg	120	61	181	≻	750	≻	z
Chromium (total)	mg/Kg	400	251	483	≻	750	≻	z
Copper	mg/Kg	1,300	248	183	z	230	z	≻
ron	mg/Kg	140,000	98,123	177,000	≻	ł	≻	z
-ead	mg/Kg	960	125	100	z	200	z	≻
Nickel	mg/Kg	230	121	346	≻	150	≻	z
Zinc	mg/Kg	190	88.1	197	≻	600	≻	z
2,6-Dinitrotoluene	mg/Kg	0.072	0.072	1	1	1	1	≻
HMX	mg/Kg	0.092	0.043	1	ł	ł	ł	≻
Vitrobenzene	mg/Kg	0.043	0.02	1	ł	1	ł	≻
2-Nitrotoluene	mg/Kg	0.11	0.06	1	1	1	1	≻
3-Nitrotoluene	mg/Kg	0.23	0.10	1	1	1	1	≻
4-Nitrotoluene	mg/Kg	0.27	0.08	ł	I	ł	ł	≻
RDX	mg/Kg	0.08	0.08	1	ł	1	1	≻
1,3,5-Trinitrobenzene	mg/Kg	0.042	0.03	1	ł	1	1	≻
Trinitrophenylmethylnitramine	mg/Kg	0.052	0.052	:	:	:	1	≻

Notes:

Bold indicates value exceeds both the EAL and Background Level EAL - Hawaii Environmental Action Level

-- - No value available or applicable

^a EAL = State of Hawaii Department of Health Environmental Action Level (HDOH, March, 2009) for sites where drinking water is threatened and less than 150 meters from surface water.

^b Background = Ambient background metal concentration established for Naval Oahu facilities (Earth Tech, 2006).

TABLE 3

Selection of Chemicals of Potential Ecological Concern (COPEC) Waikane Valley Training Area, Kaneohe, O'ahu, Hawaii

TABLE 4 Summary Statistics and 95% UCLs for Detected Constituents in Surface Soil Waikane Valley Training Area, Kaneohe, Oʻahu, Hawaii

		No.	No.	Frequency of	Minimum	Maximum						
Soil Constituent	Units	Detects	Analyses	Detection	Detect	Detect	Mean	Median	SD	95% UCL	Basis	Distribution
Aluminum	mg/Kg	50	50	100%	25,000	73,000	41,280	41,000	10,618	43,824	Gamma	95% Approximate Gamma UCL
Antimony	mg/Kg	7	50	14%	0.2	4.3	1.16	0.57	1.4	0.49	Nonparametric	95% KM (t) UCL
Barium	mg/Kg	50	50	100%	14	120	54.9	57.5	24.9	60.9	Normal	95% Student's-t UCL
Chromium (total)	mg/Kg	50	50	100%	140	400	234.2	225	68.2	251	Gamma	95% Approximate Gamma UCL
Copper	mg/Kg	50	50	100%	62	1300	138.7	99.5	178	248	Nonparametric	95% Chebyshev (Mean, Sd) UCL
Iron	mg/Kg	50	50	100%	64,000	140,000	93,600	86,500	19,076	98,123	Normal	95% Student's-t UCL
Lead	mg/Kg	43	50	86%	0.25	096	42.1	3.6	154	125	Nonparametric	95% KM (Chebyshev) UCL
Nickel	mg/Kg	50	50	100%	33	230	111.1	96.5	42.7	121	Normal	95% Student's-t UCL
Zinc	mg/Kg	50	50	100%	50	190	82.0	77.5	25.7	88.1	Normal	95% Student's-t UCL
2,6-Dinitrotoluene	mg/Kg	-	50	2%	0.072	0.072	0.072	0.072	N/A	0.072	Maximum Detect	Too few to calculate
HMX	mg/Kg	7	50	4%	0.039	0.092	0.0655	0.0655	0.04	0.043	Nonparametric	95% KM (t) UCL
Nitrobenzene	mg/Kg	5	50	10%	0.019	0.043	0.03	0.025	0.01	0.02	Nonparametric	95% KM (t) UCL
2-Nitrotoluene	mg/Kg	1	50	22%	0.055	0.11	0.078	0.076	0.02	0.06	Nonparametric	95% KM (t) UCL
3-Nitrotoluene	mg/Kg	0	50	4%	0.091	0.23	0.1605	0.1605	0.10	0.10	Nonparametric	95% KM (t) UCL
4-Nitrotoluene	mg/Kg	5	50	10%	0.068	0.27	0.12	0.074	0.09	0.08	Nonparametric	95% KM (t) UCL
RDX	mg/Kg	ر	50	2%	0.08	0.08	0.08	0.08	N/A	0.08	Maximum Detect	Too few to calculate
1,3,5-Trinitrobenzene	mg/Kg	С	50	6%	0.027	0.042	0.037	0.041	0.01	0.03	Nonparametric	95% KM (t) UCL
Trinitrophenylmethylnitramine	mg/Kg	-	50	2%	0.052	0.052	0.052	0.052	N/A	0.052	Maximum Detect	Too few to calculate

Notes: COPEC = chemicals of potential ecological concern SD = standard deviation UCL = upper confidence limit

LE 5	life Exposure Factors for Receptor of Concern	kane Valley Training Area, Kaneohe, O'ahu, H
	Exposi	e Valle

Endpoint	Body Weight	Food Intake	Area Use	Food Ingestion	% of Diet as	% of Diet
Species	(kg) ^a	(kg/day) ^b	Factor	from Site (kg/day)	Small Mammal/Birds	as Soil
Hawaiian short-eared owl ("pueo") <i>Asio flammeus sandwichensis</i>	0.348	0.136	0.5	0.136	100	2

Notes:

All units are in terms of dry weight ^a Body weight for the Short-eared owl (*Asio flammeus*) (INHS,2004) ^b Food intake rate calculated using the following equation for non-passerines from the EPA Wildlife Exposure Factors Handbook (EPA, 1993): FI (kg/day) = [0.301*BW0.751(g)]/1000
Intake Estimation and Hazard Quotient for the Hawaiian Short-eared Owl ("pueo") Waikane Valley Training Area, Kaneohe, O'ahu, Hawaii **TABLE 6**

				Daily Food							NOAEL-based	
	Body	Daily Food		Ingestion	Fraction of	Soil-to-		Fraction	Soil	Chemical	Toxicity	Short-eared
	Weight	Intake	Area Use	from Site	Diet as Small	Mammal/Bird	BAF	of Diet as	Concentration	Intake	Reference Value	Owl Hazard
Soil Constituent	(kg)	(kg/day)	Factor ^c	(kg/day)	Mammal/Bird	BAF	Source	Soil	(mg/kg)	(mg/kg-d)	(mg/kg-d)	Quotient
Copper	0.348	0.136	0.5	0.068	1	0.07	в	0.02	2.48E+02	2.13E+00	4.05E+00	0.5
Lead	0.348	0.136	0.5	0.068	-	0.07	a	0.02	1.25E+02	1.11E+00	1.63E+00	0.7
2,6-Dinitrotoluene	0.348	0.136	0.5	0.068	-	0.0000013	q	0.02	7.20E-02	2.81E-04	1.00E-01	0.003
HMX	0.348	0.136	0.5	0.068	-	0.00000000	q	0.02	4.25E-02	1.66E-04	ł	ł
Nitrobenzene	0.348	0.136	0.5	0.068	-	0.0000016	q	0.02	2.10E-02	8.22E-05	1	ł
2-Nitrotoluene	0.348	0.136	0.5	0.068	-	0.0000050	q	0.02	6.32E-02	2.47E-04	1.00E-01	0.002
3-Nitrotoluene	0.348	0.136	0.5	0.068	-	0.0000063	q	0.02	1.00E-01	3.92E-04	1.00E-01	0.004
4-Nitrotoluene	0.348	0.136	0.5	0.068	-	0.0000063	q	0.02	8.06E-02	3.15E-04	1.00E-01	0.003
RDX	0.348	0.136	0.5	0.068	-	0.000050	q	0.02	8.00E-02	3.13E-04	8.70E+00	0.00004
1,3,5-Trinitrobenzene	0.348	0.136	0.5	0.068	-	0.0000004	q	0.02	2.84E-02	1.11E-04	;	ł
Trinitrophenylmethylnitramine	0.348	0.136	0.5	0.068	1	NA	q	0.02	5.20E-02	NA	1	1

Cs with Similar Toxicological Mechanisms	Muntions-Related Compounds	0.01
Hazard Index for COPE	Receptor	Pueo

Notes:

a) Soil to small mammal regression (Sample et al., 1998); 90% UCL soil to small mammal BAF (Sample, 1998) - See Table 7 b) For COPECs without available regression equations for calculation of site-specific BAFs, Source: ORNL RAIS, 2009 - See Table 7

c) An area use factor of 0.5 was conservatively assumed with consideration of available habitat and since pueo are known to relocate to areas of higher prey populations. - This ERE calculates an HI for all organic munitions-related compounds, but the HQ estimates for copper and lead are considered toxicologically distinct.

TABLE 7

Site-Specific Biotransfer Factors Using Log-Linear Regression Models and Other Available Resources Waikane Valley Training Area, Kaneohe, O'ahu, Hawaii

						ollidi			
		Soil EPC			Prey Conc.	Mammal			
Soil Constituent	Receptor	(mg/kg)	BO	B1	(dry weight)	BAF	Source	Beef BAF	Source
Copper	General Small Mammal	248	2.042	0.1444	17.1	0.069	ø	0.00	q
Lead	General Small Mammal	125	0.0761	0.4422	9.1	0.073	ŋ	0.0004	q
2,6-Dinitrotoluene	NA	0.072	NA	NA	NA	ΝA	AN	0.0000013	bc
HMX	NA	0.043	NA	NA	NA	ΝA	AN	0.00000007	bc
Nitrobenzene	NA	0.021	NA	NA	NA	ΝA	AN	0.0000016	bc
2-Nitrotoluene	NA	0.063	NA	NA	NA	ΝA	AN	0.0000050	bc
3-Nitrotoluene	NA	0.100	NA	NA	NA	ΝA	AN	0.0000063	bc
4-Nitrotoluene	NA	0.081	NA	NA	NA	ΝA	AN	0.0000063	bc
RDX	NA	0.080	NA	NA	NA	ΝA	AN	0.000050	pc
1,3,5-Trinitrobenzene	NA	0.028	NA	NA	NA	ΝA	AN	0.000004	pc
Trinitrophenylmethylnitramine	NA	0.052	NA	NA	NA	NA	NA	NA	bc

Notes:

In(Prey Conc.[dry]) = B0 + B1(In[soil conc])

a) Source: Sample, B.E., J.J. Beauchamp, R.A. Efroymson, and G.W. Suter II. 1998. Development and Validation of

Bioaccumulation Models for Small Mammals . Oak Ridge National Laboratory, Oak Ridge, TN. ES/ER/TM-219.

b) Source: Oak Ridge National Laboratory Chemical-Specific Factors (ORNL RAIS, 2009) online at: http://rais.ornl.gov/cgi-bin/tox/TOX_select?select=chem c) Consistent with EPA 2007, Talmage et al. 1999, and considering their low log Kow; munitions related compounds are readily

metabolized and not expected to bioaccumulate.

NA = not available

EPC = exposure point concentration

BAF = bioaccumulation factor

					Dose	Toxicity	
Soil Constituent	Source for TRV	Chemical Form or Surrogate Tested	Laboratory Test Species Used in Selected Study	Toxicity Endpoint	(mg/kg- bw-day)	Endpoint UFs ^a	TRV (mg/kg- bw-day)
Copper	EPA Eco SSL (2007)	1	U	U	4.05	-	4.05
-ead	EPA Eco SSL (2005)	1	U	U	1.63	-	1.63
2,6-Dinitrotoluene	q	2,4-dinitrotoluene	Northern Bobwhite (quail)	Subchronic NOAEL	1.0	10	0.10
TMX	NA	NA	NA	NA	NA	NA	:
Vitrobenzene	NA	NA	NA	NA	NA	NA	1
2-Nitrotoluene	q	2,4-dinitrotoluene	Northern Bobwhite (quail)	Subchronic NOAEL	1.0	10	0.10
3-Nitrotoluene	q	2,4-dinitrotoluene	Northern Bobwhite (quail)	Subchronic NOAEL	1.0	10	0.10
1-Nitrotoluene	q	2,4-dinitrotoluene	Northern Bobwhite (quail)	Subchronic NOAEL	1.0	10	0.10
RDX	q	RDX	Northern Bobwhite (quail)	Chronic NOAEL	8.7	-	8.7
1,3,5-Trinitrobenzene	NA	NA	NA	NA	NA	NA	1
Frinitrophenylmethylnitramine	NA	NA	NA	NA	NA	NA	-

Notes:

a) Toxicity uncertainty factors used for extrapolating to chronic NOAELs are as provided by Wentsel et al., 1996

b) Wildlife Toxicity Reference Values (TRVs) for Ecological Risk Assessments: http://chppm-www.apgea.army.mil/erawg/tox/index.htm

c) EPA Ecological Soil Screening Levels conservatively compare the geometric mean of NOAELs for mortality, growth, and reproduction with the lowest LOAEL for multiple species. The geometric mean of the NOAELs is used if it is below the lowest LOAEL. If it exceeds the LOAEL, then the highest bounded NOAEL below the lowest LOAEL is used

LOAEL = lowest observed adverse effect level NOAEL = no observed adverse effect level UF = uncertainty factor NA = not available

Calculation of Pueo NOAEL-Based Toxicity Reference Values (TRVs) Waikane Valley Training Area, Kaneohe, O'ahu, Hawaii **TABLE 8**