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STONESOUP Program

• Program kicked off September 2010

• BAA closed

• Performers:
– GrammaTech

– SAIC

– Kestrel Institute

– University of Illinois Urbana-Champagne

– Columbia University

• Test and evaluation team is led by MITRE



STONESOUP Goals

• Provide  end users/enterprises the capability 
to transform a software executable to create a 
safer version

• Automatically analyze, confine, and diversify 
software without regard to its provenance

• Address implementation defects, not design 
defects

• Address inadvertent defects, not malicious 
logic



Technical Approach

• Analysis

– Must be fully automated

• Confinement

– Render weaknesses identified by analysis 
unexploitable

• Diversification

– Address residual risk to raise the cost or lower the 
impact of an attack on the software



Targeted Software

• Each proposal chose a class of software to 
target from among:

– A type-safe language (Java or C#--no proposer 
chose C#)

– A non-type-safe languages (C or C++)

– Binary executables (x86 Windows or x86 Linux)



Targeted Weaknesses

• Each proposal chose six classes of weakness to 
target from among:
1. Number handling
2. Tainted data/Input Validation errors
3. Error handling
4. Resource drains
5. Injections (SQL, command)
6. Concurrency handling/Race conditions
7. Buffer overflows/Memory safety violations (C, C++, 

binary only)
8. Null pointer errors (C, C++, binary only)



Program Balance

• The STONESOUP Program has achieved good 
coverage over the space of possible targets:

1 2 3 4 5 6 7 8

A      

B       

C        



Program Metrics (1)

• STONESOUP metrics focus on soundness: 
identification and neutralization of nearly all 
vulnerabilities of a given class:
– Phase 1 (18 mos): Solutions must find and render 

unexploitable 75% of the vulnerabilities in a suite of 
small (<10K SLOC) test programs

– Phase 2 (12 mos): 90% of the phase 1 vulnerabilities 
and 80% of the vulnerabilities in a suite of medium-
sized (~100K SLOC) test programs

– Phase 3 (18 mos): 95% of the phase 1&2 
vulnerabilities and 90% of the vulnerabilities in a suite 
of large (~500K SLOC) test programs

– For each phase a small percentage of C, C++, or binary 
test programs may be rejected (not processed)



Program Metrics (2)

• Phase 3 includes

– Measurement of the performance overhead of 
the processed software (no more than +10% 
increase in running time is sought)

– Assessment of the additional work factor imposed 
on an attacker due to the diversification 
(measures to be determined)



Program Reality Check

• Test and Evaluation team has been tasked by 
Program Manager to develop a baseline 
solution using an integrated toolbox of 
commercial off the shelf products
– Will be evaluated in conjunction with STONESOUP 

Test and Evaluation to provide context

– Likely will not be fully automated/integrated: goal 
is to get reasonably close given resource 
constraints

– Some custom generation of “rules” may be 
allowed, but not custom tool development



Analysis Advances Sought (1)

• Results of a 2009 study of Java tools:



Analysis Advances Sought (2)

• Results of a 2009 study of C/C++ tools:



Analysis Advances Sought (3)

• Current analysis techniques lead to an end-user 
decision
– False positives must be identified by human review

– False negatives are common

– The end-user must select and apply countermeasures

• STONESOUP analysis must lead to automated response
– Program metrics are designed to drive advances in both 

precision and soundness
• False positives could result in unnecessary countermeasures, 

degrading performance

• False negatives could result in failure to meet the test and 
evaluation targets



Confinement Advances Sought (1)

• STONESOUP confinement must be precise 
enough to limit performance overhead

• Confinement may be software or hardware 
based, but should use widely available 
commodity systems

• Automation requirements drive novel 
approaches to error response and recovery



Confinement Advances Sought (2)

• Weakness targeting requirements drive novel 
mixtures of confinement techniques
– Precise/sound input filtering

– Runtime inspection of program state

– Resource virtualization

– Adaptive code rewriting

• Diversification requirements  drive exploration 
of variations within each confinement 
technique



Diversification Advances Sought (1)

• Current diversification techniques address 
generic attack elements

– Program state data is more difficult to find or predict

– Faulty program states are more difficult to replicate

– Exploitation impact is more difficult to predict

• Current diversification is rarely driven by analysis

– Vulnerabilities may simply be shuffled around

– Uncertain where and how much diversification can be 
applied due to lack of data dependency information 
that analysis could provide



Diversification Advances Sought (2)

• STONESOUP seeks diversification techniques  that 
protect against specific classes of weakness
– Program requires effectiveness estimates for chosen 

diversification techniques against a targeted weakness 
class

• Diversification  techniques can be mixed
– Address space layout randomization + instruction set 

randomization + function call variants, etc.

– Techniques can be adaptive

– Each executing instance may be unique, and thus at 
most one instance can be exploited with each 
malicious input
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