

Modulating Retro-reflector Links for High Bandwidth Free-Space Lasercomm

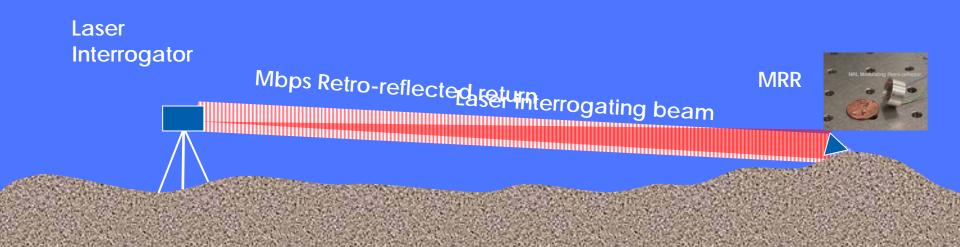
Dr. William Rabinovich US Naval Research Laboratory,

4/8/2009

MRRs in ONR BAA 09-18

- Product 2 Modulating retro-reflector (MRR) communications terminals The MRR terminal contains in very general terms:
 - 1. A multiple quantum well (MQW) based MRR (transmitter) and a photodetector (receiver) for two-way communications
 - 2. MRR driver electronics
 - 3. Modem for communication between the lasercomm link and USN/USMC network

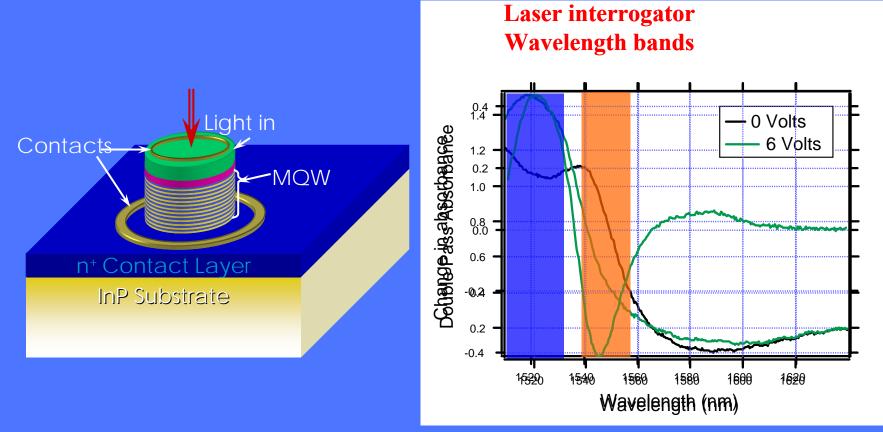
Items 1 & 2 in Product 2 will be supplied as government furnished equipment (GFE) for integration into lasercomm systems developed in this program. Item 3 will be developed as part of this program.



Modulating retro-reflector links

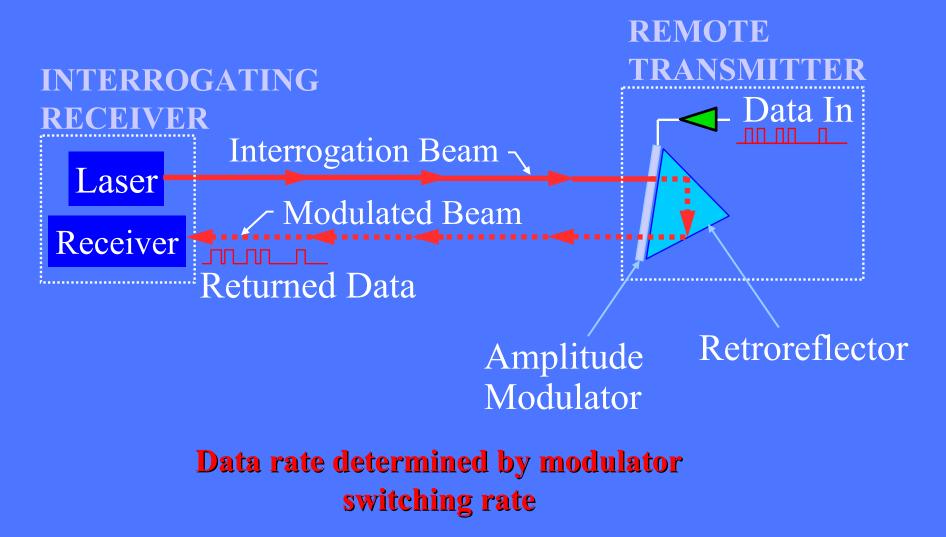
•Uses transmitter optics, laser, pointing and tracking, receive optics at <u>one</u> end of the link

- Uses a passive retro-reflector with modulator at the other end
- Asymmetric comms
 - -Good when very little power/weight capability at one end of the link
 - -Appropriate for unattended sensors or disadvantaged users
 - -Link falls off as 1/R⁴
 - -Ranges of a few kilometers to tens of kilometers depending on link
 - -Data rates of up to 10 Mbps (corner cube) or 10's Mbps (cat's eye)



Multiple Quantum Well Modulators

- Coupled quantum well structure requires ~ 5V drive
- Approximately 3 dB extinction
- Capacitance of 5 nF/cm², Sheet resistance of 5-10 Ohms
- Power consumption ~ CV^2f , where f is the drive frequency
- Absorption of light changes when voltage is applied
- NRL GFE devices operate in telecom c-band
- Data rates limited by RC time


• Corner cubes: prisms

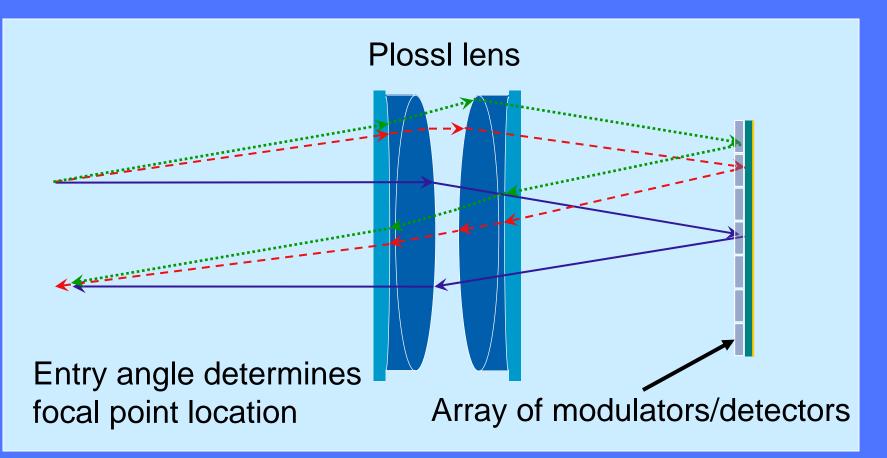
Cat's eyes: optical systems using lenses and mirrors

Corner Cube MRRs

Corner Cube Retro-reflectors (CCR)

Simple, rugged, inexpensive
 Single component, no possibility of misalignment

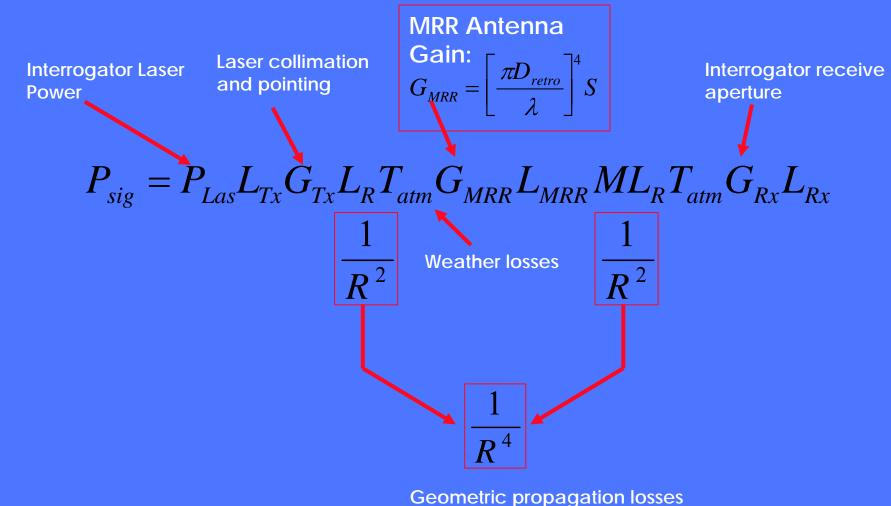
D_{modulator} ≈ **D**_{aperture}
 ○ Bandwidths<10 MHz


Only design parameter is index of refraction
 ○ High index materials ⇒ larger field of view (FOV)

Cat's Eye Retroreflectors (CER) Light focused onto a mirrored surface

Cat's Eye Retro-reflectors (CER)

- Complex, custom optical design
 - Requires multiple optical elements for practical MRRs
 - Can achieve bandwidths of 10's of MHz
 - $\circ~$ Field of view: 5°-20°
- **D**_{modulator} << **D**_{aperture}
 - Allows small (fast) modulators in long links



LINK BUDGETS

MRR Link Budgets

W. S. Rabinovich, et al, "Free-space optical communications link at 1550 nm using multiple quantum well modulating retro-reflectors in a marine environment," *Optical Engineering*, 44(5), (2005)

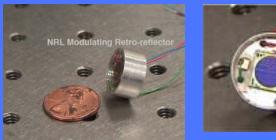
W.S. Rabinovich et al., "45-Mbit/s cat's-eye modulating retroreflectors", Optical Engineering, 46(10) (2007)

MRR Link Budgets Detail $P_{sig} = P_{Las}L_{Tx}G_{Tx}L_{R}T_{atm}G_{MRR}L_{MRR}ML_{R}T_{atm}G_{Rx}L_{Rx}$

Term	Formula		
P _{Las} , Transmit Power	Measured		
L _{Tx} , Transmitter loss	Measured		
G _{Tx,} Transmitter antenna gain	$\frac{32}{\theta_{div}^2}$		
L _R , Range loss	$\left[\frac{\lambda}{4\pi R}\right]^2$		
T _{Atm} , Atmospheric transmission	Measured		
M, MRR Modulation efficiency,	~ 0.25		
L _{MRR} , MRR loss	Measured		
G _{MRR,} MRR Antenna gain	$\left[\frac{\pi D_{retro}}{\lambda}\right]^4 S$		
G _{Rx} , Receiver antenna gain	$\left[\frac{\pi D_{Rx}}{\lambda}\right]^2$		
L _{Rx} , Receiver loss	Measured		
	·		

Definitions: θ_{div} :Tx divergence (1/e² full) λ : laser wavelength R: range D_{retro}: MRR diameter S: MRR Strehl ratio D_{Rx}: Receiver diameter

Example Link Budget


Term	Parameter	Formula	dB
Transmit Power	5 Watts	Measured	37 dBm
Transmitter loss	Measured		-1.0
Transmitter antenna gain	Full angle e^{-2} divergence θ_{div} =300 microradians	$\frac{32}{\theta_{div}^2}$ Gaussian beam underfilling transmit aperture	85.5 dB
Range loss (interrogator)	Range, R=7 Km λ= 1550 nm	$\left[\frac{\lambda}{4\pi R}\right]^2$	-215
Atmospheric transmission	16 Km visibility		-1.5
MRR Modulation efficiency, M	Coupled-well modulator	$e^{-lpha_{Off}} \cdot \left[C_{MQW} - 1\right]$	-7.0
MRR loss	Loss due to anti-	Measured	-0.7
MRR T/R Antenna gain, G _{retro}	D _{retro} =1.6 cm S=0.4	$\left[rac{\pi D_{retro}}{\lambda} ight]^4$ S	177
Range loss (retro return)	7 Km	$\left[\frac{\lambda}{4\pi R}\right]^2$	-215
Atmospheric transmission	16 Km visibility		-1.5
Receiver antenna gain	D _{rec} =15 cm	$\left[rac{\pi D_{rec}}{\lambda} ight]^2$	108
Receiver loss	Fiber coupling loss		-1
Predicted received power	0.28 μW		-35.0 dBm
Actual received power	0.4 µW		-34 dBm

GFE MRR Options



Single Corner cube MRR 30° FOV, 5 Mbps, 8.5 g

Corner cube MRR array 60° FOV, ~5 Mb/s 86 g, including drive electronics

Cat's eye MRR 1.6 cm aperture 20° FOV optic, 45 Mb/s 410 g, including drive electronics

Some MRR Configurations

Corner cube MRR array Tested on USNS Yukon

4/8/2009

Design	Aperture	G _{retro}	FOV (degrees)	Bandwidth
CCR	0.63 cm	163 dB	26-70	10 MHz
CCR	1 cm	171 dB	26	5 MHz
CER	1 cm	171 dB	20	5-45 MHz
CER	1.6 cm	179 dB	20	5-20 MHz
CER	2.8 cm	189 dB	5	5-45 MHz

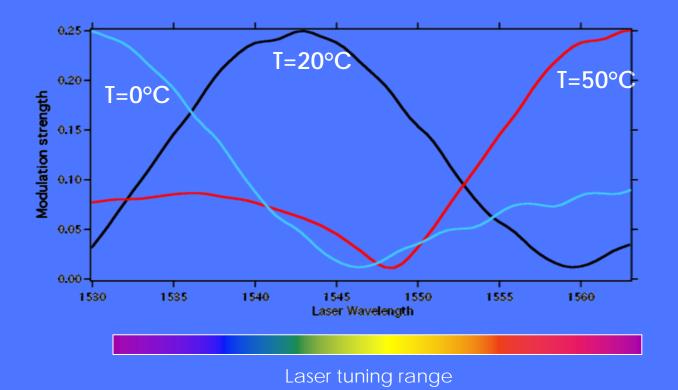
Notes:

Field of view for single elements; MRR arrays can broaden FOV CCR field of view depends on corner cube material: glass vs silicon

Electrical input to all MRRs: 5V TTL, power consumption < 1 Watt

Wide FOV MRR Photodetectors

- The MRR terminal photodetector must match the field of view of the MRR
- GFE design: PIN photodetector with 5 mm lens 35° FOV
 - Sensitivity at 5 MHz bandwidth~ -30 dBm
- Other variants are possible
- Note: optical fluence on the MRR terminal is much higher than on the interrogator (1/R² vs 1/R⁴)


Other Design Considerations

MQW Temperature Dependence

- The response of the MQW modulator shifts with temperature
 - the optimal laser wavelength shifts by 0.67 nm/°C
 - Changes of less than $\pm 10^{\circ}$ C have a small effect
- Can use a tunable laser to compensate: more complex interrogator
- Can thermally control the MRR: more complex MRR terminal

Interrogator Considerations

- Optical power levels
 - Typical MRR links will return ~ -50 dBm to the interrogator
 - Your system must be able to track on these levels
- MQW modulator has about 3 dB extinction
 - Needs to be considered in interrogator receiver design
- Tx/Rx isolation
 - Typical Tx powers will be on the order of +30 dBm
 - => 80 dB of Tx/Rx isolation needed
 - Return beam is at same wavelength as Tx beam => No spectral isolation
- Optical scintillation is higher in a retro-reflected link
 - Modem designs must deal with deep and frequent fades

Conclusions

- MRRs can be used in your designs for asymmetric links
- Corner cube vs cat's eye MRRs offer different advantages
 - Corner Cubes:
 - Simple and rugged
 - Easy to array for wide field of view
 - Cat's eye:
 - Larger aperture yields high antenna gain
 - Capable of higher bandwidth
- MRR links can use the same interrogator as direct links, but have special requirements