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Overview and Reference Document for  
Operational Experience Results and Databases Trending 

1 Introduction 
Trend methods differ depending on the nature of the data under study.  When raw data, 

such as counts of failures and either demands or operating times are available for each fiscal year, 

a more complicated calculation is performed than ordinary least squares regression because the 

failures are discrete and the variances in the data are not the same from year to year.   

Also, because all of the data considered in this study represent either probabilities that must 

lie between zero and 1, or rates that must be non-negative, the linear models are applied to simple 

functions of the observed data. 

Table 1 provides an overview of the trending methods for various types of data.  

Subsections below provide further details, including specific references to thorough explanations 

in Reference 1.  Two sections at the end provide reference information in the form of a glossary 

of terms and a list of acronyms. 

2 Trend Method for Data that Includes Event Counts 
To create the trend charts, the failure counts and associated number of demands or mission 

times from EPIX for each fiscal year from 1998 to 2006 were obtained for the applicable failure 

modes.  A Bayesian update was applied separately for each failure mode or event type and year.  

A beta prior distribution was used for the failure-to-operate probability, and a gamma prior 

distribution was selected for the spurious operation rates.  The means of the prior distributions 

were based on a pooling of the component or event type data for the years going into the plot, but 

other aspects of the prior distributions were relatively flat, so that the prior distributions did not 

create large changes in the data.  The probability counts were taken to be binomial in each year, 

while Poisson data in each year were assumed for the rates.  The specific priors used were the 

“constrained noninformative” distributions (CNID) described in Reference 1, Sections 6.2.2.5.3 

and 6.3.2.3.3.  The Bayesian update process is straight-forward for the beta/binomial and 

gamma/Poisson prior/likelihood pairs because the posterior distributions are in the same family of 

probability distributions as the prior distributions.  The Bayesian update process was performed in 

order to obtain yearly estimates that are all strictly greater than zero. 

In the plots, the means of the posterior distributions from the Bayesian update process were 

trended across the years.  The posterior distributions were also used for the vertical bounds for 

each year.  The 5
th
 and 95

th
 percentiles of these distributions give an indication of the relative data 

variation within each year?.  When there are no failures, the interval tends to be larger than the 

interval for years when there are one or more failures.  The larger interval reflects the uncertainty 

that comes from having little information in that year’s data.  Such uncertainty intervals are 

determined by the prior distribution.  In each plot, a relatively “flat” constrained noninformative 

prior distribution (CNID) is used, which has large bounds. 
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Table 1.  Trend methods. 

Type of data Web pages 

having 

the data type 

Examples Distribution whose 5
th

 and 95
th 

percentiles form the vertical bars 

Trend model Method for estimating 

slope and intercept 

Raw data:  failures or 

other event counts in 

time (occurrence 

rates or failure rates) 

(see Section 2) 

All types of 

component 

performance, 

initiating 

events, fires 

Rate for failure 

to run or for 

spurious 

operation; 

frequency of 

demands per 

reactor year 

Perform Bayesian updates of the gamma 

constrained noninformative prior distribution 

(CNID)
a
 using each year’s total occurrences or 

failures (fi) and operating or standby time (Ti).  

The CNID prior distribution mean is 

µ=(f + 0.5)/T, where f=∑ fi,  and T=∑ Ti.  The 

resulting posterior distribution mean for the i
th

 

year is (fi + 0.5) / (0.5/µ + Ti). 

log[R(t)] = a + b t, where 

R(t) is the mean of the 

rate for the t
th

 year. 

The fitted R(t) is  

exp(a + b t). 

Iteratively reweighted 

least squares, with 

weights inversely 

proportional to the 

estimated variance of 

the log of the Bayesian 

updated rate in each 

year. 

Raw data:  failures  

on demand 

(probabilities) 

(see Section 2) 

All types of 

component 

performance 

Probability of 

failure to start, 

probability of 

failure to 

open/close 

Perform a Bayesian updates of the beta CNID 

using the each year’s failures (fi) and demands 

(Di).  The CNID prior distribution mean is  

µ= (f + 0.5)/(D + 1), where f=∑ fi, and D=∑ Di.  

The resulting posterior distribution mean for the 

i
th

 year is (fi + α) / [(α / µ) + Di],  

where α is a computed number based on µ that 

lies between 0.3 and 0.5 when µ is <0.5. 

logit[P(t)] = a + b t, 

where P(t) is the mean of 

the probability for the t
th

 

year and  

logit[P] ≡ log[P/(1-P)]. 

The fitted P(t) is  

exp(a+bt)/[1+exp(a+bt)]. 

Iteratively reweighted 

least squares, with 

weights inversely 

proportional to the 

estimated variance of 

the logit of the 

Bayesian updated 

probability in each year. 

Unavailabilities 

(down times  

divided by total 

required times)  

(see Section 3) 

Component 

performance 

(MDP, TDP, 

EDG) 

Total (planned 

& unplanned) 

maintenance 

unavailability 

for EDG 

Find the beta distribution which has the same 

mean and variance as the sample mean and 

variance estimated from the train unavailabilities 

in each year. 

logit[U(t)] = a + b t, 

where U(t) is the 

unreliability for the t
th

 

year.  If the p-value for a 

statistical test for the 

significance of the slope 

was lower, U(t) = a + b t 

was used directly. 

Ordinary least squares 
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Type of data Web pages 

having 

the data type 

Examples Distribution whose 5
th

 and 95
th 

percentiles form the vertical bars 

Trend model Method for estimating 

slope and intercept 

Unreliabilities 

(system-level failures 

to start and run, or 

failures to start and 

run for the required 

mission time) 

(see Section 4) 

System studies 

and the EDG 

component 

Probability of 

AFW system 

failing to start 

The empirical distribution made up of all the 

unreliability values simulated in Saphire for the 

year (using the Latin hypercube sampling 

method). 

logit[U(t)] = a + b t, 

where U(t) is the 

unreliability for the t
th

 

year.  If the p-value for a 

statistical test for the 

significance of the slope 

was lower, U(t) = a + b t 

was used directly. 

Ordinary least squares 

a.  The CNID is a relatively “flat” prior distribution that is constructed to have little influence on the posterior distribution, other than that its mean value is 

specified.   
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The trends themselves were modeled using a log model for rates and a logit model for 

probabilities.  More specifically, for rates, the fitted model is  

log(Ri) = a+bi, (1) 

where “Ri” is an estimated mean for the plotted failure rate in the i
th
 year.  For the failure-to-

operate probability, the model is  

logit(Pi) = log[Pi/(1-Pi)] = a+bi, (2) 

where, as the equation shows, logit(Pi) is defined as the logarithm of [Pi/(1-Pi)].  In this equation, 

Pi is the estimated mean of the failure-to-start probability for the i
th
 year.  The log and logit 

transformations ensure that the rates remain positive and the failure probabilities lie between zero 

and one. 

A further refinement in the regression calculations comes from the fact that inferences 

based on simple regression assume that the variances of the data in each year are the same across 

years.  With count data underlying the failure rates and probabilities, the variances are known to 

differ.  An iterative reweighted least-squares procedure, described in Sections 7.2.4.6 and 7.4.4.5 

of Reference 1, accounts for this variation. 

The horizontal curves plotted around the regression lines in the graphs form simultaneous 

confidence bands for the fitted lines.  They are based on the asymptotic normality of the estimates 

of the intercept and slope coefficients, which make the fitted i b̂  â   data normally distributed 

also.  On the scale of the linear data, bounds that have a 90% probability of containing the entire 

regression line are computed.  The bounds are larger than ordinary confidence intervals for the 

trended values because they form a band that has a 90% probability of containing the entire line.  

The values are translated back to the scale of the rates and probabilities using the relationships,  

R̂ i = exp( i b̂  â  ) and P̂ i = exp( i b̂  â  ) / [1 + exp( i b̂  â  )].  Details of this calculation are 

presented in the Reference 1 sections mentioned above.  In the Data Tables section at the end of 

each document, these bounds are labeled as the “Lower (5%)” and “Upper (95%)” values in the 

“Regression Curve Data Points” columns. 

In the lower left hand corner of the trend figures, the regression p-values are reported.  

They come from a statistical test on whether the slope of the regression line might be zero.  Low 

p-values indicate that the slopes are not likely to be zero, and that trends exist.   

3 Unavailability Trend Method 
The mean for each year is the samples mean calculated from the train-level unavailabilities 

for that year.  The vertical bar spans the calculated 5
th
 to 95

th
 percentiles of the beta distribution 

whose mean and variance agree with the sample mean and variance of the unavailabilities for that 

year. 

For the trend graphs, two fits are performed; linear and logit.  

The linear model uses the standard equation of the point-slope formula Y=a+bt where Y is 

the random variable and t is a known quantity.  In many applications, Y is a failure rate or failure 

probability and t is the year.  A least squares fit is sought for the coefficients of the equation. 
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The logit model uses the equation of the point-slope formula ln[P/(1−P)] = a+bt where P 

is the random variable and t is the year.  This model is useful when P is between 0 and 1, such as 

when P is a failure probability.  If the P is a small probability, then the logit(P) is close to ln(P), 

and the logit model could be approximated by ln(P)=a+bt.  [Eq. (2)]. 

The fit that shows the lower P is used for the trend shown in the component performance 

study trend.  

4 Unreliability Trend Method 
The trend charts show the results of using data for each year based on selected system-

specific failure probabilities and maintenance unavailability data over time.  The uncertainty 

distribution and mean for each year vertical bar are the simulated percentiles and mean from the 

combined Latin-hypercube samples. 

For the trend graphs, two fits are performed; linear and logit.  

The linear model uses the standard equation of the point-slope formula Y=a+bt where Y is 

the random variable and t is a known quantity.  In many applications, Y is a failure rate or failure 

probability and t is the year.  A least squares fit is sought for the coefficients of the equation. 

The logit model uses the equation of the point-slope formula ln[P/(1−P)] = a+bt where P 

is the random variable and t is the year.  This model is useful when P is between 0 and 1, such as 

when P is a failure probability.  If the P is a small probability, then the logit(P) is close to ln(P), 

and the logit model could be approximated by ln(P)=a+bt.  [Eq. (2)]. 

The fit that shows the lower P is used for the trend shown in the component performance 

or system study trend. 

5 Glossary 
Constrained non-

informative distribution 

(CNID)  

A relatively “flat” prior distribution that is constructed to have little 

influence on the posterior distribution, other than that its mean value is 

specified.   

Demand  An automatic or manual signal for the component to start or operate. 

Demand rate  The number of demands divided by the operating time, in years. 

Distribution  A function that describes the values a random variable or an uncertain 

quantity can take on and the associated probabilities.  In this document, 

we use two families of distributions to describe uncertainty:  beta 

distributions apply to quantities that lie in the interval from 0 to 1, and 

are used for failure probabilities and maintenance unavailabilities.  

Gamma distributions apply to quantities that are greater than or equal 

to zero, and are used for failure and occurrence rates.  Particular 

distributions in each family are defined by two parameters, α and β. 

Failed state (of a 

component) 

A condition in which a component could not perform its function if it 

were to be demanded. 
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Failure (of a 

component)  

A condition in which a component does not perform any one of its 

designed functions. 

Failure mode The specific function that a component fails to perform.  Some 

examples, which may or may not apply to the equipment under 

consideration, are failure to start, failure to run, failure of a valve to 

open or close, and spurious operation (i.e. failure to remain in the 

desired state). 

Failure on demand  Failure when a standby system is demanded.  Modeled as a random 

event, having some probability, but unpredictable on any one specific 

demand.  

Failure probability (on 

demand)  

Probability of an entity (component, system, etc.) not responding when 

demanded to act (start, stop, open, close, etc.).  Estimated as the 

number of failures divided by the number of times that the action was 

demanded.   

Failure rate  Number of failures per unit time in a given time interval.  The failure 

rate is such that the rate times some time interval is approximately the 

expected (or mean) number of failures in that period.   

Failure to load and run A failure mode for emergency diesel generators.  Failure to load and 

run for the first hour. 

Failure to open or 

close (FTOC)  

A failure of the component to open, close, or operate.  This failure 

mode is assigned to valves.  The specification of either open, close, or 

operate acknowledges the uncertainty in failure data coding on what 

precise effect the failure had on that component.   

Failure to run (FTR)  Used for normally running equipment.  A failure of the component 

after the component has successfully started.   

Failure to run < 1 hour 

(FTR≤1H)  

Used for normally standby equipment.  A failure to run within the first 

hour of operation, given a successful start. 

Failure to run > 1 hour 

(FTR>1H)  

Used for normally standby equipment.  A failure of the component 

after the component has run for 1 hour.   

Failure to start (FTS)  A failure of the component to reach 90% of rated flow, speed, or 

position. 

Industry-wide  This term means that the data were collected or pooled across all plants 

that have the component and/or system of interest.  By doing so, it is 

recognized that components of varying types, sizes, manufacture, etc 

are included in the data set. 



 

Overview and Reference 7 February 2012 

Least squares fit  Also known as ordinary least squares analysis, this is a method for 

fitting a function (such as a straight line) to data.  It determines the 

values of the unknown quantities in the fitted model by minimizing the 

sum of the squares of the residuals (the differences between the fitted 

and observed values). 

Linear model  The linear model uses the standard equation of the point-slope formula 

Y=a+bt where Y is the random variable and t is a known quantity.  In 

many applications, Y is a failure rate or failure probability and t is the 

year.  A least squares fit is sought for the coefficients of the equation. 

Logit model  The logit model uses the equation of the point-slope formula 

ln[P/(1−P)] = a+bt where P is the random variable and t is the year.  

This model is useful when P is between 0 and 1, such as when P is a 

failure probability.  If the P is a small probability, then the logit(P) is 

close to ln(P), and the logit model could be approximated by 

ln(P)=a+bt. 

Loglinear model  The loglinear model fits ln(R) = a + bt.  This model is useful when R is 

greater than 0, such as when R is a failure rate.   

Mean  The mean of a distribution is the weighted average of the outcomes, 

where the weights are the probabilities of the outcomes. 

p-value  The probability that the data set would be as extreme as it is, if the 

assumed model is correct.  It is the significance level at which the 

assumed model would barely be rejected by a statistical test.  A small 

p-value indicates strong evidence against the assumed model. 

Reliability The reliability of a component or a system is the probability that it will 

perform its required functions under stated conditions for a stated 

period of time. 

SAPHIRE API An advanced programming interface to the SAPHIRE code.  The API 

allows the user to analyze SPAR models using a programmatic 

interface.  In this manner, the analysis takes place without opening and 

closing each SPAR model and the output is directed to text files, which 

facilitate further analysis. 

Spurious operation 

(SO) 

Any pre-defined change of state, such as a valve opening or closing, 

when this is action is not demanded. 

Statistically significant  A trend or other departure from an assumed model is statistically 

significant if the test of the assumed model gives a p-value of 0.05 or 

smaller. 
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Trend  A line fitted though the data using any of several techniques that shows 

a slope.  The slope of the line can be used to interpret increasing, 

decreasing, or stable data.  The slope of the line is tempered with the 

p-value, which indicates whether there is a statistical basis for the 

interpretation of increasing, decreasing, or stable data.  When the 

p-value is not small, the assumed model or “null” hypothesis that the 

slope is zero is not rejected. 

Unavailability (UA) 

(Maintenance) 

The probability that a component/train is unavailable, out-of-service, 

when demanded.  UA is calculated using the hours a train of 

components is unavailable due to test or maintenance over the reactor 

critical hours the plant experienced during the time period being 

evaluated. 

Unreliability  One minus the reliability.  That is, unreliability is the probability that 

the system will fail to complete its required mission (here defined to be 

8-hours) when demanded.  This includes the contributions of UA and 

any applicable failure modes, such as FTS, FTR≤1H, FTR>1H, FTR, 

FTOC, and SO. 

Variance  The variance of a random variable measures the dispersion or spread in 

the distribution of data by averaging the squared deviations from the 

mean. 
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6 Abbreviations 
AC ac power 

AFW auxiliary feedwater 

AHU air handling unit 

AOV air-operated valve 

 

BAT battery 

BUS bus (electrical) 

BWR boiling water reactor 

 

CBK circuit breaker 

CCF common-cause failure 

CCW component cooling water 

CDS condensate system 

CHL chiller 

CHW chilled water system 

CKV check valve 

CST condensate storage tank 

CTG combustion turbine generator 

CTS condensate transfer system 

CVC chemical and volume control 

 

DC dc power 

DDP diesel-driven pump 

 

EDG emergency diesel generator 

EPIX Equipment Performance and Information Exchange 

EPS emergency power system 

ESW emergency or essential service water 

 

FAN fan 

FTC fail to close 

FTFR failure to transfer 

FTLR fail to load and run 

FTO fail to open 

FTO/C fail to open or close 

FTOP fail to operate 

FTR fail to run 

FTR>1H fail to run after 1 hour of operation 

FTR≤1H fail to run for 1 hour of operation 

FTRO failure to reopen 

FTS fail to start 

FWS firewater system 
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HOV hydraulic-operated valve 

HPCI high-pressure coolant injection 

HPCS high-pressure core spray 

HPI high-pressure safety injection 

HPSI high-pressure safety injection 

HTG hydro turbine generator 

HTX heat exchanger 

HVAC heating, ventilating, and air conditioning 

 

IAS instrument air system 

INL Idaho National Laboratory 

INPO Institute of Nuclear Power Operations 

ISO isolation condenser 

 

LCI low-pressure coolant injection 

LCS low-pressure core spray 

LER licensee event report 

LLOCA large loss-of-coolant accident 

LOAC loss of ac bus 

LOCA loss-of-coolant accident 

LOCCW loss of component cooling water 

LOCHS loss of condenser heat sink 

LODC loss of dc bus 

LOIA loss of instrument air 

LOMFW loss of main feedwater 

LOOP loss of offsite power 

LOSWS loss of service water system 

LPI low-pressure injection 

 

MDC motor-driven compressor 

MDP motor-driven pump 

MFW main feedwater 

MLOCA medium loss-of-coolant accident 

MOOS maintenance-out-of-service 

MOV motor-operated valve 

MSPI Mitigating Systems Performance Index 

MSS main steam system 

 

NRC U.S. Nuclear Regulatory Commission 

NSW nuclear or normal service water 

 

PDP positive displacement pump 

PMINJ probability of multiple injections 

PMP pump volute 

POD pneumatic-operated damper 

PORV power-operated relief valve 
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PRA probabilistic risk assessment 

PWR pressurized water reactor 

 

RADS Reliability and Availability Database System 

RCIC reactor core isolation cooling  

RES Office of Nuclear Regulatory Research 

RCS reactor coolant system 

RHR residual heat removal 

RHRSW residual heat removal service water 

ROP Reactor Oversight Program 

 

SBO station blackout 

SEQ sequencer 

SGTR steam generator tube rupture 

SLOCA small loss-of-coolant accident 

SOV solenoid-operated valve 

SPAR standardized plant analysis risk 

SRV safety relief valve 

SWS service water system 

 

TBC turbine building cooling water 

TDP turbine-driven pump 

T&M test and maintenance 

TNK tank 
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