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 Perform detailed CFD simulations to generate
understanding of flow and heat transfer
phenomena over rough surfaces.

 Use understanding generated to develop
engineering models to predict heat transfer
and friction on rough surfaces.

Accomplishments

 Performed 2-D and 3-D CFD simulations.
 Generated a preliminary engineering model.
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3-D CFD: Z.J. Wang

 1/6 -1/3 of the span (from Jeffrey Bons’ experiment)
selected for the computational domain;

e 2mm, 1 mm and 0.5 mm resolutions for coarse, medium and
fine grids at the roughness panels;

« Minimum distance in the wall normal direction about 0.025
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Flow Solver:

In-House FV Code for Arbitrary Elements

e Second-order accurate Godunov-type finite
volume method using linear least squares
reconstruction for arbitrary grids;

e Backward Euler or backward difference formula
for 1st or 2nd order time integration;

o Efficient block lower-upper symmetric Gauss-
Seidel (BLU-SGS) implicit equation solver;

e RANS S-A turbulence model (DES dropped
because the grid still too coarse).
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Results for Fuel Deposit Roughness (#4)

0.36 M 1.26 M 4.00 M Experiment
cells cells cells
2 mm 1 mm 0.5 mm

C; 0.0128 0.00970 | 0.00873 0.00937

St | 0.00260 0.00268 | 0.00275 0.00308

» Coarse grid too coarse

e 3.5-7% and 11-13% difference in c.and St between
computation and experiment.
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Results for Erosion Roughness (#6)

0.87 M cells| 1.60 M cells | Experiment
1.0 mm 0.5 mm
Cs 0.0113 0.0100 0.0103
St 0.0268 0.00304 0.00308

» 3.0% and 1.2% difference in c.and St between
computation and experiment.
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Flow Field Characteristics

Velocity Vector Plot Pressure Distribution
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Streamlines Near a Roughness Element

Front View
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Conclusions from 3-D CFD Study

* Viscous adaptive Cartesian grid method can
very efficiently and easily grid the detailed
geometry of rough surfaces and the flow

iInduced by the surfaces without user
Interference,;

* For real rough surfaces, S-A model predicted
c: within 2-7% of experimental data, 1-11%
difference Iin St;

* Finer grids are needed to demonstrate grid
Independent solutions.
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2-D CFD: Shih & Yoon

Objectives

« Since 3-D roughness Is expensive to compute,
want to explore usefulness of 2-D simulations,
where grids can be extremely fine to resolve
all features of the roughness and the flow that
they induce.

« Develop engineering correlations based on
the detailed CFD data.
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Roughness Parameters

Ymean - @verage value of magnitude of roughness
N
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One 2-D Slice of a 3-D Rough Surface
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One 2-D Slice of a 3-D Rough Surface

symmetry symmetry

|nfl>ow H=40cm outflow >

inviscidwall :© A

S-A turbulence model
2"d-order differencing
Fluent 6.2
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Velocity and Pressure Contour

Part 1 Part 2
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Part 1: Streamlines
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Part 1. Velocity Vectors
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Part 2: Streamlines
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Models for Rough Surfaces

> Prandtl/ Nikuradse

i:iln uTy+C—{l In uTk+D}
u x 1% K 1%

T

C, = {2.87 +1.58|og£ki

-2.5
H D = f( geometry, ... )

S

» Variations by Bettermann (1966), Dvorak (1969), Dirling
(1973), Simpson (1973), Sigal and Danberg (1990), ....

12.25log A, —17.35 1<A,<4.68
—2.85logA, +595 A, >4.68
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A New Model for C;

2.5
C, = £4.2+2.7 |og[k1B +0.005(A, +[A[)

S

% = log(-1.5l0g(A )+0.5)
3 S: reference area

-15
A = Af Af S;: frontal aream w/o roughness
* S| A N A

Y N4

AI _ yi+l - yi
Xiza — X

(Xi42:Yis2)

Positive slope increases friction.
Negative slopes contain
recirculating regions.

i(Xi+1 Yis1)
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Prediction by New Method
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Prediction by New Method for Another Surface
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Summary of 2-D Studies

e Generated CFD simulations of 2-D slices of
surface roughness.

 Developed a new model to predict C..
 Preliminary results show promise.

« Will apply to 3-D roughness geometry data
and evaluate usefulness.
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