UTSR Peer Review Workshop III 18-20 October 2005

Turbine Surface Degradation with Service and Its Effects on Performance – 2-D/3-D CFD Simulations of Rough Surfaces–

Z.J. Wang (3-D) Tom Shih (2-D) Iowa State University **Jeffrey Bons** BYU

IOWA STATE UNIVERSITY

Objectives

- Perform detailed CFD simulations to generate understanding of flow and heat transfer phenomena over rough surfaces.
- Use understanding generated to develop engineering models to predict heat transfer and friction on rough surfaces.

Accomplishments

- Performed 2-D and 3-D CFD simulations.
- Generated a preliminary engineering model.

IOWA STATE UNIVERSITY

3-D CFD: Z.J. Wang

- 1/6 -1/3 of the span (from Jeffrey Bons' experiment) selected for the computational domain;
- 2 mm, 1 mm and 0.5 mm resolutions for coarse, medium and fine grids at the roughness panels;
- Minimum distance in the wall normal direction about 0.025 mm for a y+ around 1

IOWA STATE UNIVERSITY

Flow Solver: In-House FV Code for Arbitrary Elements

- Second-order accurate Godunov-type finite volume method using linear least squares reconstruction for arbitrary grids;
- Backward Euler or backward difference formula for 1st or 2nd order time integration;
- Efficient block lower-upper symmetric Gauss-Seidel (BLU-SGS) implicit equation solver;
- RANS S-A turbulence model (DES dropped because the grid still too coarse).

Results for Fuel Deposit Roughness (#4)

	0.36 M	1.26 M	4.00 M	Experiment
	cells	cells	cells	
	2 mm	1 mm	0.5 mm	
C_{f}	0.0128	0.00970	0.00873	0.00937
St	0.00260	0.00268	0.00275	0.00308

- Coarse grid too coarse
- 3.5-7% and 11-13% difference in c_f and St between computation and experiment.

IOWA STATE UNIVERSITY

Results for Erosion Roughness (#6)

	0.87 M cells	1.60 M cells	Experiment
	1.0 mm	0.5 mm	
C_{f}	0.0113	0.0100	0.0103
St	0.0268	0.00304	0.00308

• 3.0% and 1.2% difference in c_f and St between computation and experiment.

IOWA STATE UNIVERSITY

Flow Field Characteristics

Velocity Vector Plot

Pressure Distribution

IOWA STATE UNIVERSITY

Streamlines Near a Roughness Element

Top View

Front View

IOWA STATE UNIVERSITY

Conclusions from 3-D CFD Study

- Viscous adaptive Cartesian grid method can very efficiently and easily grid the detailed geometry of rough surfaces and the flow induced by the surfaces without user interference;
- For real rough surfaces, S-A model predicted c_f within 2-7% of experimental data, 1-11% difference in St;
- Finer grids are needed to demonstrate grid independent solutions.

2-D CFD: Shih & Yoon

Objectives

- Since 3-D roughness is expensive to compute, want to explore usefulness of 2-D simulations, where grids can be extremely fine to resolve all features of the roughness and the flow that they induce.
- Develop engineering correlations based on the detailed CFD data.

IOWA STATE UNIVERSITY

Roughness Parameters

y_{mean} : average value of magnitude of roughness

$$y_{mean} = \frac{1}{N} \sum_{i=1}^{N} \left| y_{surface_i} \right|$$

 R_a : arithmetic mean of magnitude of roughness

$$R_{a} = \frac{1}{N} \sum_{i=1}^{N} |y_{i}| \quad \left(y_{i} = y_{surface_{i}} - y_{mean}\right)$$

R_q : Root Mean Square (rms)

$$R_q = \sqrt{\frac{1}{N} \sum_{i=1}^{N} y_i^2}$$

R_{sk}: Skewness

$$R_{sk} = \left\{ \frac{1}{N} \sum_{i=1}^{N} y_i^3 \right\} \frac{1}{R_q^3}$$

 K_u : Kurtosis

$$K_{u} = \left\{\frac{1}{N} \sum_{i=1}^{N} y_{i}^{4}\right\} \frac{1}{R_{q}^{4}}$$

IOWA STATE UNIVERSITY

One 2-D Slice of a 3-D Rough Surface

IOWA STATE UNIVERSITY

One 2-D Slice of a 3-D Rough Surface

S-A turbulence model 2nd-order differencing Fluent 6.2

IOWA STATE UNIVERSITY

Velocity and Pressure Contour

Part 1: Streamlines

IOWA STATE UNIVERSITY

Part 1: Velocity Vectors

IOWA STATE UNIVERSITY

Part 2: Streamlines

IOWA STATE UNIVERSITY

Models for Rough Surfaces

Prandtl/ Nikuradse

$$\frac{u}{u_{\tau}} = \frac{1}{\kappa} \ln \frac{u_{\tau} y}{v} + C - \left\{ \frac{1}{\kappa} \ln \frac{u_{\tau} k}{v} + D \right\}$$
$$C_{f} = \left[2.87 + 1.58 \log \left(\frac{x}{k_{s}} \right) \right]^{-2.5} \quad \underline{D} = f(\text{ geometry, } \dots)$$

Variations by Bettermann (1966), Dvorak (1969), Dirling (1973), Simpson (1973), Sigal and Danberg (1990),

IOWA STATE UNIVERSITY

A New Model for C_f

$$C_{f} = \left(4.2 + 2.7 \log\left(\frac{x}{k_{s}}\right)\right)^{-2.5} + 0.005 \left(\Delta_{i} + |\Delta_{i}|\right)$$

$$\frac{k_s}{R_a} = \log(-1.5\log(\Lambda_s) + 0.5)$$

 $(\mathbf{x}_i, \mathbf{y}_i)$

Negative slope increases friction Negative slopes contain recirculating regions.

Aerospace Engineering

IOWA STATE UNIVERSITY

Prediction by New Method

IOWA STATE UNIVERSITY

Prediction by New Method for Another Surface

IOWA STATE UNIVERSITY

- Generated CFD simulations of 2-D slices of surface roughness.
- Developed a new model to predict C_f.
- Preliminary results show promise.
- Will apply to 3-D roughness geometry data and evaluate usefulness.