
FE Turbine Program

R&D Opportunities for UTSR Program

Presented to:
UTSR Peer Review Workshop
Dinner Talk

October 18, 2005 Clemson, SC

Richard A. Dennis; Technology Manager National Energy Technology Laboratory

Outline

- Goals (1)
- Approach / Contribution (2)
- Cycles (3)
- New Projects (1)
- Technical issues (2)
- Discussion (1)

DOE Fossil Energy Coal Program Goals

Advanced Power Systems –

By 2010 develop advanced coal based power systems capable of 45 – 50 % efficiency at < \$1000 / kW.

Near Zero Emissions Energy from Coal –

By 2015 demonstrate future coal based energy plants that offer zero emissions (including CO₂) w/ multi product production (electricity and H₂).

FE Turbine Program Contribution to Goals 2010 Advanced Power Systems Goal

- **Efficiency:** Demonstrate 2 3 % pts. improvement in combined cycle (CC) performance (above base line)
- Cost: Demonstrate a 20 30 % reduction in CC capital cost plus enhanced value for lower COE
- Emissions: Demonstrate combustor emissions with 2 ppm NO_x (@15 % O₂) in simple cycle exhaust

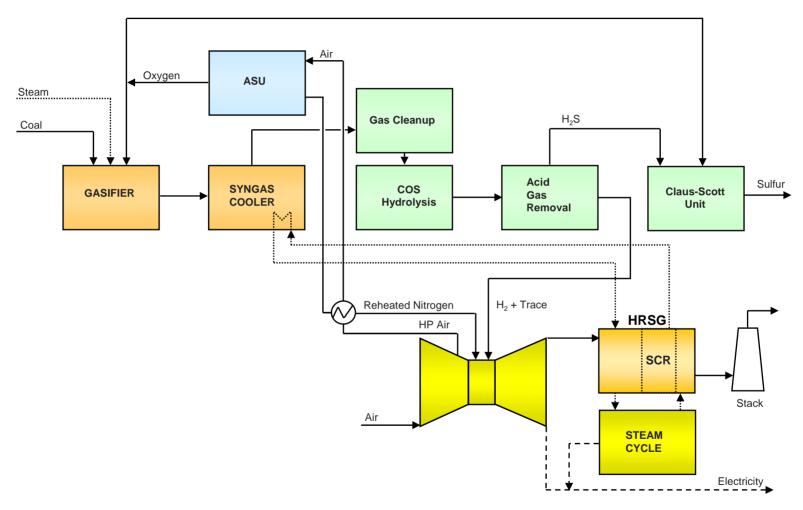
FE Turbine Contribution to Goals 2015 Near Zero Emissions Energy From Coal

Efficiency

- Hydrogen turbine CC with 3 − 5 % pts. improvement above base line
- Oxy-fuel turbine based IGCC system > 50 % eff. (HHV)
- -Cost: Competitive COE for zero emission systems

-Emissions

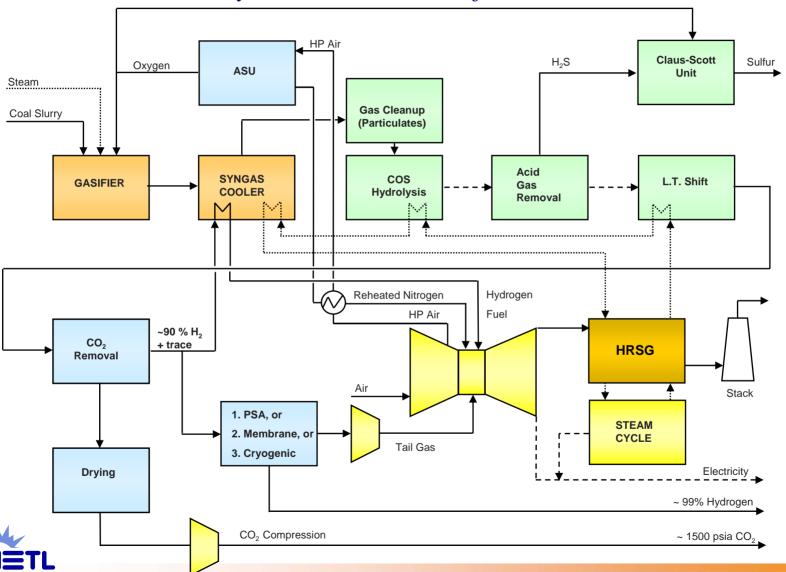
- H₂ Turbine based IGCC demonstrate w/ 2 ppm NO_x (@15 % O₂)
- Oxy-fuel turbine based IGCC with zero emissions (100 % turbine exhaust captured and sequestered- zero criteria pollutants and CO₂)


-Multi Products

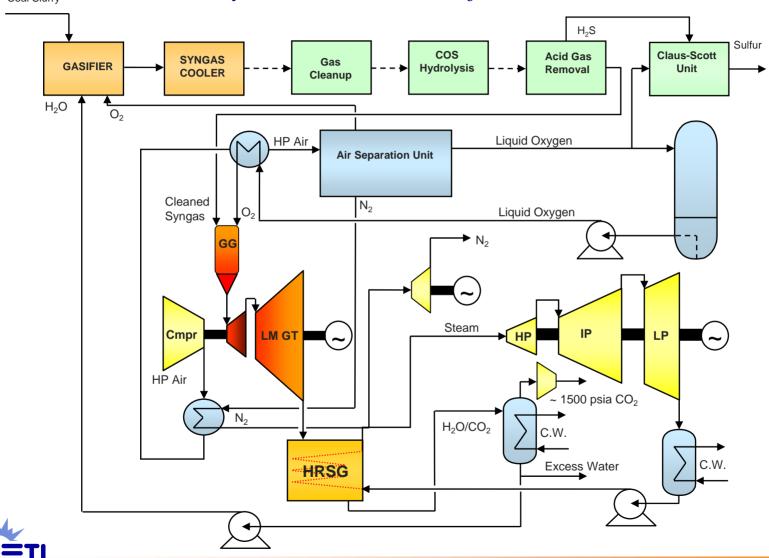
- H₂ turbine based IGCC w/ higher capacity gasification
- Oxy-fuel turbine based IGCC w/ multi-product production

Typical IGCC

Combined Cycle Power Island for the 2010 APS Goal



Note: SCR shown for completeness, achieving the 2010 goal would do away with the need for an SCR


IGCC w/H₂ Production and CO₂ Removal

Combined Cycle Power Island for the 2015 APS Goal

IGCC Oxy-Fuel Turbine Cycle

Combined Cycle Power Island for the 2015 APS Goal

Resolving Technical Issues

Advanced Power Systems 2010 Goal

Approach

- 1. Combustor for 2 ppm NO_X
- 2. More durable catalysis
- 3. H₂ Premixing
- 4. Higher TIT ($\sim \Delta$ 210 F)
- 5. Better TBC materials
- 6. Enhanced cooling
- 7. Increase rotor torque limitation
- 8. Turbine / ASU integration
- 9. Enhanced aerodynamics
- 10. Ceramic parts

Benefit

- 1. Eliminates SCR and other penalties
- 2. Reduced O&M
- 3. Enables low NO_x combustion
- 4. 1 % pt. to simple cycle per ~ 70 F
- 5. Higher TIT and less air extraction
- 6. Higher TIT and less air extraction
- 7. Higher specific power reduced capital cost (~ 20 %)
- 8. 0.5 1.0 % Pts., higher CAPX
- 9. Higher throughput & specific power
- 10. Higher TIT

New FE Turbine Program Projects

Turbine Program Key Activities	Contractor
Hydrogen Turbines For FutureGen	
Advanced IGCC/Hydrogen Gas Turbine Development	General Electric
Advanced Hydrogen Turbine for FutureGen	Siemens Power Generation
Catalytic Combustion for Ultra-Low NOx Hydrogen Turbines	Precision Combustion Inc.
Micro-mixing Lean Premix System for Hydrogen /Syngas	Parker Hannifir
Partial Oxidation GT for Power / H2 Co-Production from Coal	GTI
Advanced Oxy-Fuel Turbines for FutureGen	
Zero Emissions Coal Syngas-Oxygen Turbo Machinery	Siemens Power Generation
Coal-Based Oxy-Fuel Combustor / System Development	Clean Energy Systems
Advanced Research for FutureGen	
Analysis of Advanced Brayton Cycles for Zero Emission Plants	UC Irvine
Novel Concepts for the Compression of Large Volumes of CO2	SwRI
Super Sonic Shock Compression of CO2	Ramgen

Discussion Topics?

- UTSR Research Topics
- FE 2010, 2015 and FutureGen Goals
- New Projects
- FE Turbine Budget
- Other

