Effects of Partial Blockage of Film Cooling Holes and Deposits on Film Cooling Effectiveness and Heat Transfer

University of Pittsburgh – Minking K. Chyu Iowa State University – Tom I-P. Shih

SCIES Project 04-01-SR115

Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES

Project Awarded 08/01/04, 36 Months Duration \$445,306 Total Contract Value (\$399,706 DOE)

Turbine Need: TBC Coat Down & Blockage

Figure 3. Baseline film holes formed by EDM (segment of 4 holes shown).

Figure 6. Round and diffusion shaped film holes after coatings have been applied.

Bunker (2000)

Figure 9. Micrograph of diffusion shaped film hole with blockage.

Mechanical Engineering

UNIVERSITY OF PITTSBURGH

Aerospace Engineering

Project Objectives

- Investigate the effects of TBC coating and deposit partial blockage on film cooling performance both adiabatic effectiveness and heat transfer coefficient
- Collaborative exploration of experiment and computation essential for this type of study
- Assessment usefulness of CFD in design and analysis by comparing CFD with EFD/HT
- Explore innovative design concepts for film cooling

Mechanical Engineering

Aerospace Engineering

UNIVERSITY OF PITTSBURGH

Scheduling: Experiment & Computation

YEAR 1	YEAR 1
Refine film cooling 3-temperature experimental systems	Validation and benchmarking
Fabrication of test section	Procure geometry and flow conditions
$ \begin{array}{l} {\rm Effectiveness} \left(\eta \right) \text{ and heat transfer (h) measurements} \\ {\rm - baseline \ single \ hole, \ round \ and \ shaped} \end{array} $	RANS simulation for baseline round hole w/o surface roughness
Effects of partial blockage in a film cooling hole – single round hole, η and h measurements	RANS simulation for baseline round hole with surface roughness
Effects of partial blockage in a film cooling hole – shaped holes, η and h measurementsYEAR 2Simulate U Pitt Experiment	YEAR 2
	Simulate U Pitt Experiments
YEAR 2	PANS simulation for baseling shaped halo w/o surface
Effects of discrete deposits on film cooling rows	roughness
Effectiveness (η) and heat transfer (h) measurements – round hole and shaped holes with deposits,	RANS simulation for baseline shaped with surface roughness
various flow conditions	Develop Design Recommendations
Near-hole deposits roughness model development	YEAR 3
YEAR 3	
Down select most influencing factors for combined test	Complete detached eddy simulation
	RANS simulation for multiple-row film holes
Integrated effects of passage blockage and deposits	Recommend guidelines on best grids and turbulence models
Improved Film Cooling Design guidelines	

Mechanical Engineering

UNIVERSITY OF PITTSBURGH

Aerospace Engineering

Accomplishments

- Studied effects of TBC blockage & surface roughness on film cooling in 2-D
- Studied effects of TBC blockage in 3D
- Developed IR based film cooling measurement on simultaneous determination of film effectiveness and heat transfer coefficient
- Studied partial blockage effects on FC performance with round and shaped holes
- Developed and studied 3 new design concepts for film cooling to increase adiabatic effectiveness

Mechanical Engineering

Aerospace Engineering

UNIVERSITY OF PITTSBURGH

Experiment Component: Deposit Blockage

Micrograph of typical deposits in a film cooling hole (Bogard et. al, 1998)

Mechanical Engineering

UNIVERSITY OF PITTSBURGH

Aerospace Engineering

Film Hole Configurations

Mechanical Engineering

UNIVERSITY OF PITTSBURGH

Aerospace Engineering

Film Cooling: Three-Temperature Convection

- Heat Transfer Coefficient:
- Film Effectiveness:

$$q = h(T_{aw} - T_{w})$$
$$\eta = \frac{T_{aw} - T_{m}}{T_{c} - T_{m}}$$

-Both h and η are unknown and can be determined simultaneously using a transient method

$$\frac{T_w - T_i}{T_{aw} - T_i} = 1 - \exp\left[\frac{h^2 \alpha \tau}{k^2}\right] \operatorname{erfc}\left[\frac{h\sqrt{\alpha \tau}}{k}\right]$$

Heat Flux Ratio – Film Protected vs. Unprotected:

$$q / q_o = (h / h_o)(1 - \eta / \varphi),$$

$$\varphi = \frac{T_w - T_m}{T_c - T_m} \approx 0.6$$

Mechanical Engineering

Aerospace Engineering

UNIVERSITY OF PITTSBURGH

Test Section and Conditions

M = 0.48, 0.95, 1.69 Density ratio ~1 Re_{Dh} = 29,200, Re_{D} = 992, 1980, 3740 Freestream turbulence ~ 2%

Mechanical Engineering

Aerospace Engineering

UNIVERSITY OF PITTSBURGH

Test Section Photos

Mechanical Engineering

UNIVERSITY OF PITTSBURGH

Aerospace Engineering

Film Cooling Effectiveness Distribution: M=1.69

Mechanical Engineering

UNIVERSITY OF PITTSBURGH

Aerospace Engineering

No Blockage

With Blockage: M = 1.69

With Blockage: M = 0.95

With Blockage: M = 0.48

Summary from Experiment

- Deposit simulated blockage consistently reduces the levels of film effectiveness, at least for the present test range and hole shapes
- Heat transfer coefficient h is a strong function of local surface condition in the near hole region; h sufficiently downstream appears to be insensitive to blockage
- Both η and h contribute significantly to the overall heat transfer reduction. q/q_o is generally low immediately downstream to film hole due to combined effect of high η and low h
- Future work will also focus on CFD-led film cooling design innovation

Mechanical Engineering

Aerospace Engineering

UNIVERSITY OF PITTSBURGH

UTSR Peer Review Workshop III 18-20 October 2005

Effects of Coating Blockage and Deposits on Film-Cooling Effectiveness and Heat Transfer

CFD Component:

Tom Shih Iowa State University

Minking Chyu U. of Pittsburgh

Mechanical Engineering

UNIVERSITY OF PITTSBURGH

Aerospace Engineering

Objectives of CFD Component

- Assess usefulness of CFD in design and analysis by comparing CFD with EFD/HT.
- Assess effects of TBC blockage and surface roughness on film cooling with EFD/HT.
- Explore FC design concepts with EFD/HT.

Mechanical Engineering

Aerospace Engineering

UNIVERSITY OF PITTSBURGH

Accomplishments

- Studied effects of TBC blockage & surface roughness on film cooling in 2-D.
- Studied effects of TBC blockage in 3-D.
- Developed & studied 3 new design concepts for film cooling to increase adiabatic effectiveness.

Mechanical Engineering

Aerospace Engineering

UNIVERSITY OF PITTSBURGH

Effects of TBC Blockage and Roughness

t = 6.35, 9.525 mmR = 6.35, 9.525 mm

TBC configurations studied (0.5D, 0.75D)

Surface roughness studied (3 cases)

Mechanical Engineering

UNIVERSITY OF PITTSBURGH

2-D cases (treat hole as slot)

- no coating, no roughness
- with coating
- with coating & roughness

3-D cases (1 row of holes)

- no coating, no roughness
- with coating

Aerospace Engineering

Effects of TBC Blockage

Mechanical Engineering

UNIVERSITY OF PITTSBURGH

Aerospace Engineering

Effects of TBC Blockage: 3-D CFD Study

Mechanical Engineering

UNIVERSITY OF PITTSBURGH

Aerospace Engineering

CFD Design Exploration

Goal:

form a film between hot gas and metal

Cooling jets always lift off

How to minimize hot gas entrainment?

Previous Design Concepts

Slots Shape Holes Tabs about Holes Trench (Bunker)

Mechanical Engineering

UNIVERSITY OF PITTSBURGH

Aerospace Engineering

Developed Three New Design Concepts Disclosures Submitted

- Flow-Aligned Blockers
- Upstream Ramp
- Momentum Preserving Shape Holes

Mechanical Engineering

Aerospace Engineering

UNIVERSITY OF PITTSBURGH

New Design Concept 1: Flow-Aligned Blockers

Shih, Na, & Chyu (2006): blocker (disclosure submitted)

IOWA STATE UNIVERSITY

Aerospace Engineering

Flow-Aligned Blockers

Shih, Na, & Chyu (2006): blocker (disclosure submitted)

Mechanical Engineering

Aerospace Engineering

UNIVERSITY OF PITTSBURGH

New Design Concept 2: Upstream Ramp

Shih & Na (2006): ramp (disclosure submitted)

baseline

ramp

Mechanical Engineering

UNIVERSITY OF PITTSBURGH

Aerospace Engineering

baseline

Pressure

Effectiveness

Mechanical Engineering

UNIVERSITY OF PITTSBURGH

Aerospace Engineering

Upstream Ramp

Shih & Na (2005, 2006): ramp (patent pending)

UNIVERSITY OF PITTSBURGH

Aerospace Engineering

New Design Concept 3: Momentum-Preserving Shaped Holes

Shih, Na, & Chyu (2006): momentum-preserving shaped holes (disclosure submitted)

long

short

Mechanical Engineering

IOWA STATE UNIVERSITY

UNIVERSITY OF PITTSBURGH

Momentum-Preserving Shaped Holes

UNIVERSITY OF PITTSBURGH

Summary of CFD Component

- Studied effects of TBC blockage and surface roughness in 2-D (slots).
- Studied effects of TBC blockage in 3-D.
- The 3 new design concepts developed for film cooling appear to be quite promising.

Future Plan

- Examine rounded vs sharp edges for the 3 new design concepts.
- Validate CFD by EFD/HT data.

Mechanical Engineering

Aerospace Engineering

UNIVERSITY OF PITTSBURGH

Questions?

Mechanical Engineering

UNIVERSITY OF PITTSBURGH

Aerospace Engineering