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Gas Turbine Needs

• Account for the effects of roughness from 
particle deposition and corrosion resulting from 
the use of synfuels

• Account for the effects of blocked holes and 
gap leakages on predicting airfoil temperatures



Overall Project Objectives

• Determine effects of flow leakages at component 
interfaces occurring due to expansions/contractions

• Determine effects of surface distortions on vane and 
endwall film-cooling 

• Determine effects of coolant hole blockages on vane 
and endwall film-cooling



Problem Approach

1. Determine roughness effect on the pressure and suction surfaces of a turbine vane
2. Measure thermal and velocity fields to determine surface roughness effects on the 

vane
3. Test the effects of various categories of hole blockage on film cooling performance 

for smooth and rough surfaces on the vane
4. Design and test transverse slots for enhanced film cooling performance with clean 

and blocked film-cooling holes
5. Test the performance of the transverse slot with simulated blockage of the slot by 

Virginia Tech Tasks
1. Determine the effect of a leakage slot between the component interfaces on the 

performance of endwall film-cooling
2. Determine the effect of roughness on the performance of endwall film-cooling
3. Measure thermal and velocity fields to determine surface roughness effects
4. Determine whether film-cooling holes in slots at component interfaces can aid in 

directing the coolant leakage flow
5. Determine whether the performance of clean and blocked cooling holes will be 

improved by being placed in slots along the endwall

surface contaminants

University of Texas Tasks



Accomplishments

• By decreasing the upstream slot width between the combustor and turbine, 
improved spreading of the coolant from the slot occurs

• Modeled and evaluated the effects on endwall film-cooling performance 
from depositions, spallation, and hole blockages

• Found that small hole depositions can improve effectiveness in the leading 
edge region while hole blockages can severely reduce cooling 
effectiveness

• Showed a significant increase (doubling) of the heat load to the turbine 
vane with rough surfaces compared to smooth surfaces

• Found that roughness on the pressure side had less of an effect on 
adiabatic effectiveness than roughness on the suction side

• Measured degradation of film cooling performance due to obstructions 
upstream and downstream of the holes

• Measured a significant increase in film cooling effectiveness with a 
transverse slot present on the suction side of the vane
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Tests were carried out in a low speed wind tunnel 
with measurements made using an IR camera



Tests were carried out on a scaled up vane 
simulating a realistic endwall geometry

36 Grit sand paper 
ks= 0.42mm at 
engine scale
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Parameter Dimensions
C – scaled up chord length 59.4 cm

W – upstream slot width 0.024C

g – passage gap width 0.01C
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Smaller slots can lead to improved lateral spreading 
of vane-combustor leakage flows

0.85% Upstream slot; 0.5% Film-cooling hole; 0% Mid-passage gap
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Height, H
0.5D
0.8D
1.2D

D – Diameter of film-
cooling hole

Blocked Hole Area 
Ratio, A2/A1 – 0.75

Surface deposition, hole blockage, and  TBC 
spallation were simulated on the endwall surface

TBC spallationHole blockageDeposition



Adiabatic effectiveness was enhanced for small 
downstream deposits
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Degradation in adiabatic effectiveness was seen for 
deposits along the pressure side 

0.75% Upstream Slot; 0.5% Film-cooling hole; 0.2% Mid-passage gap; Deposit height – 0.8D
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Blockage decreased  cooling effectiveness in the 
stagnation region where blockage tends to occur
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Spallation at higher blowing ratios had a greater 
degrading effect on effectiveness levels
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Film-cooling hole blockage resulted in the maximum 
reduction in area-averaged effectiveness 

LE – leading edge 
PS – pressure side



Test Facility
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• Simulated Three Vane –Two Passage 
Linear Cascade

• Liquid nitrogen cooled secondary flow 
for DR

• Mainstream turbulence levels of Tu∞
= 3.5% and 20%, Λf /d = 10



Test Section
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Effects of Obstruction Shapes on Film 
Effectiveness
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Effects of Obstruction Position and Size on Film 
Effectiveness
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Trench Lip Configurations
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Laterally Averaged Adiabatic Effectiveness of 
Lip Configurations, M = 1.0
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Comparison of Narrow Slot to Baseline Axial 
Holes
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Comparison of Narrow Slot to Baseline Axial Holes 
(Spatially Averaged Adiabatic Effectiveness)
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Comparison of Spatial Adiabatic Effectiveness 
of Axial Holes and Narrow Slot
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Summary

• Expansion and contraction of upstream slot widths showed 
varying coverage on endwall effectiveness

• Small depositions in the leading edge region of the endwall can 
improve cooling effectiveness while both hole blockages and 
spallation can reduce cooling effectiveness

• Testing of effects of obstructions to coolant holes have been 
completed and show significant degradation of film cooling 
performance, particularly for upstream obstructions  

• An increase in adiabatic effectiveness due to an optimized 
transverse slot has been found.  Testing the slot with a rough 
vane surface and obstructions will commence.  The slot may help 
mitigate the negative effects of the roughness and obstructions.

Questions ?
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