Enhanced Prediction Techniques Based on Time-Accurate Simulations for Turbine Blade Internal Cooling

Danesh Tafti SCIES Project 02- 01- SR100 DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES Project Awarded (5/1/02, 36 Month Duration) \$ 331,430 Total Contract Value (\$331,430 DOE)

Gas Turbine Need

- Need for higher thermal efficiencies result in higher gas temperatures
- Cooling technologies critical for increased durability
- Reliable prediction tools for design – reduce costs

Project Objectives

- Develop reliable prediction tools for internal heat transfer in turbine blades.
 - Heat transfer in rotating blades is difficult to measure experimentally.
 - Numerical or computer simulations are very costeffective and attractive.
 - Increase the reliability and repeatability of computer simulations by using novel techniques based on timeaccurate methods.

Approach

Large-Eddy Simulations Fully-developed regime • Stationary ribbed duct • Rotating ribbed duct with Coriolis Forces • Rotating ribbed duct with Coriolis forces and centrifugal buoyancy Developing Flow regime • Stationary ribbed duct • Rotating ribbed duct with Coriolis forces • Rotating ribbed duct with Coriolis and centrifugal buoyancy U-bend • Stationary U-bend	 Detached-Eddy Simulations Implement RANS models under DES framework Test models at different mesh resolution and evaluate accuracy against LES and experiments. Stationary duct Rotating duct with Coriolis forces Rotating duct with Coriolis and centrifugal buoyancy Two-Pass duct
 Rotating U-bend with Coriolis forces Rotating U-bend with Coriolis and centrifugal buoyancy Virginia 	Experiments Velocity and turbulence measurements in developing, fully- developed, and 180 bend.

Accomplishments

- Established that LES can be used to produce robust, repeatable, and accurate predictions of heat transfer in ribbed ducts
 - Established accuracy at Reynolds numbers up to 50,000, in normal as well as angled ribs, and at large rotation numbers with centrifugal buoyancy.
 - Applied for the first time to obtain a detailed description of developing flow and heat transfer at entrance and in 180 degree bend with rotation and buoyancy
- Detached Eddy-Simulations for the first time applied to predict heat transfer in ribbed duct shows favorable comparisons with LES at much lower cost. Model extensions for centrifugal buoyancy.

Computational Methodology

- GenIDLEST multi-block structuredunstructured Navier-Stokes and energy equation solver in generalized coordinate systems.
- Can be used in RANS, URANS, LES and DES or hybrid mode.
- Parallel and scalable for fast turnaround.
- Equipped with pre- and post-processing utilities.
- Over a decade of application to various problems

Experimental Method

Summary of LES Results

Summary of LES Results

- Tafti, D. K., Evaluating the Role of Subgrid Stress Modeling in a Ribbed Duct for the Internal Cooling of Turbine Blades, *Int. J Heat and Fluid Flow 26(1)*, pp. 92-104, 2005.
- Abdel-Wahab, S. and Tafti, D. K., Large Eddy Simulations of Flow and Heat Transfer in a 90° Ribbed Duct with Rotation -Effect of Coriolis and Centrifugal Buoyancy Forces, *J. Turbomachinery* 126(4), pp. 627-636, 2004.
- Sewall, E.A., Tafti, D.K., Thole, K.A., Graham, A., Experimental Validation of Large Eddy Simulations of Flow and Heat Transfer in a Stationary Ribbed Duct, Int. J. Heat and Fluid Flow, accepted for publication.
- Sewall, E.A., Tafti, D.K., Large Eddy Simulation of Flow and Heat Transfer in the 180° Bend Region of a Stationary Ribed Gas Turbine Blade Internal Cooling Duct, accepted for publication, *ASME J. Turbomachinery*, March 2005. (ASME Paper No. GT2005-68518)
- Sewall, E.A., Tafti, D.K., Large Eddy Simulation of Flow and Heat Transfer in the Developing Flow Region of a Rotating Gas Turbine Blade Internal Cooling Duct with Coriolis and Buoyancy Forces, *ASME J. Turbomachinery*, submitted July 2005. (ASME Paper No. GT2005-68519)
- Abdel-Wahab, S. and Tafti, D. K., Large Eddy Simulation of Flow and Heat Transfer in a Staggered 45° Ribbed Duct, GT2004-53800, <u>ASME Turbo Expo: 2004</u>, Vienna, Austria.
- Abdel-Wahab, S. and Tafti, D. K., Large Eddy Simulations of Flow and Heat Transfer in a 90° Ribbed Duct with Rotation – Effect of Coriolis Forces, GT2004-53796, <u>ASME Turbo Expo: 2004</u>, Vienna, Austria.
- Sewall, E, and Tafti, D. K., Large Eddy Simulation of the Developing Region of a Stationary Ribbed Internal Turbine Blade Cooling Channel, GT2004-53832, <u>ASME Turbo Expo: 2004</u>, Vienna, Austria.
- Sewall, E, and Tafti, D. K., Large Eddy Simulation of the Developing Region of a Rotating Ribbed Internal Turbine Blade Cooling Channel, GT2004-53833, <u>ASME Turbo Expo: 2004</u>, Vienna, Austria.
- Viswanathan, A.K., Tafti. D.K., Abdel-Wahab, S., Large Eddy Simulation of Flow and Heat Transfer in an Internal Coolingg Duct with High Blockage Ratio 45o staggered Ribs, GT 2005-68086, Proceedings of <u>ASME Turbo Expo</u> <u>2005</u>, June 6-9, Reno-Tahoe,USA.
- Viswanathan, A.K., Tafti. D.K., Large Eddy Simulation of Flow and Heat Transfer in a Ribbed Duct With Skewed Ribs of Rounded Cross-section, GT 2005-68117, Proceedings of <u>ASME Turbo Expo 2005</u>, June 6-9, Reno-Tahoe,USA.
- Viswanathan, A. K. and Tafti D. K., Large Eddy Simulation of the fully developed flow and heat transfer in a rotating duct with 45° ribs, GT 2006-90229, <u>ASME Turbo Expo 2006</u>, 8- 11 May 2006, Barcelona, Spain.

LES Data Sets used at GE Global Research for validating RANS calculations

Detached Eddy Simulations

- LES grid resolution increases approximately as Re² for wall bounded turbulence to capture all the near wall scales of turbulence
- Initial DES formulation with Spalart-Allmaras model:
 - modeled near wall turbulence with RANS such that grid resolution could be relaxed considerably in wall parallel directions
 - Switch to LES based on distance from wall and mesh resolution acted like wall model for LES
 - Initial development for separated boundary layer flows
 - Applications in external flow only one wall normal direction.
- Extended to more general two-equation model formulation by Strelets
 - Use of turbulent length scale derived from turbulence model instead of distance from wall

DES – Switch in length scale based on the turbulent physics

Detached Eddy Simulation (DES) is a three-dimensional unsteady numerical solution using a single turbulence model, which functions as a sub-grid scale model in regions where it is fine enough for a LES and as a RANS model in regions where it is not. (Strelets et al. 2001)

This is the first study to apply DES to flow and heat transfer in internal flows

DES in internal cooling ducts

In all computations DES of k- ω and/or SST are carried out, with appropriate modifications to the underlying RANS models

- Fully Developed duct Normal ribs
 - Stationary
 - Rotating Effect of Coriolis forces
 - Rotating Effect of Coriolis forces and Centrifugal Buoyancy
- Fully Developed duct Skewed ribs
 - Stationary
 - Rotating
- Complete 2 pass duct Normal ribs
 - Stationary
 - Rotating

Tech

Virginia

Computational details of the configurations in which DES is applied

Summary of results - Normal Ribs : Stationary case, fully developed calculations

- Transfer/Fluids Engineering Summer Conference, July 11-15, Charlotte.
- Viswanathan A.K., Tafti, D. K., 2005, Detached Eddy Simulation of Turbulent Flow and Heat Transfer in a Duct, J. Fluids Engineering, 127, pp 888-896

High Performance Computational Fluid-Thermal Science & Engineering Lab

Virginia

2.

èch

Summary of results - Normal Ribs : Effect of Coriolis forces on fully developed ducts undergoing rotation

Results - Normal Ribs : Effect of Coriolis forces and Centrifugal Buoyancy on fully developed ducts

- Additional production term in RANS model for centrifugal buoyancy effects.
- Enhanced model gives better results than baseline RANS model

Virginia III Tech

Summary of results - Normal Ribs : Stationary case, complete 2 pass duct calculations

Summary of results - Skewed Ribs : Stationary case, fully developed calculations

Viswanathan A.K., Tafti, D. K., 2004, Detached Eddy Simulation of Turbulent Flow and Heat Transfer in a Stationary Internal Cooling Duct with Skewed Ribs, *GT2005-68118*, 2005 ASME Turbo Expo, June 6-9, Reno, Nevada..

High Performance Computational Fluid-Thermal Science & Engineering Lab

Virgi<u>nia</u>

ech

To conclude, DES was successfully extended to the effects of Coriolis forces and Centrifugal buoyancy

- DES predicts the flow features and the heat transfer accurately in the 90° and the 45° ribbed ducts
- The DES computation is <u>an order</u> of magnitude more economical than the LES computation for 90° case
- Extension of DES to the capture Coriolis forces was successful
- DES was successfully extended to capture the effects of centrifugal buoyancy to flows in ducts with normal ribs

Virginia

lèch

DES - Future Work

 Further DES model development and validation for Coriolis and centrifugal buoyancy effects in skewed ribs and 2 pass ducts

SUMMARY

- The research project has enabled new advances in prediction technology for internal cooling flows.
- DES shows promise of being a good compromise between LES and URANS
- The project has resulted in:
 - Providing data to industry for benchmarking RANS calculations
 - 15 conference papers (IGTI, ASME HT)
 - 6 journal publications (ASME-JOT,IJHFF,ASME-FE)
 - 2 journal papers under review
 - 2 outreach articles in non-technical publications (VT-Research, NCSA-Access)
 - Invited presentation in NCSA booth at Supercomputing 04.
 - Trained 3 graduate students and 10 undergraduates
 - Samer Abdel-Wahab, MS, Florida Turbine Technologies (Dec 03)
 - Evan Sewall, Ph.D, GE Global Research (Dec 05)
 - Aroon Viswanathan, Ph.D, (Summer 06)

High Performance Computational Fluid-Thermal Science & Engineering Lab

Virginia

Tech

Thank You! Questions?

Transition at first rib

Developing Flow in a Rotating Ribbed Duct, Re = 20,000, Ro = 0.3

High Performance Computational Fluid-Thermal Sciences & Engineering Lab

Unsteady effects of secondary flow at rib-wall junction

