Aerothermal Effects of Interfacial Leakage and Film Cooling Schemes with Endwall and Leading Edge Contouring

🚧 University of Minnesota

T.W. Simon and R. J. Goldstein Principal Investigators

SCIES Project U/02-01-SR096/DOE PR DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Tom J. George, Program Manger, DOE/NETL Richard Wenglarz, Manager of Research, SCIES Project Awarded (5/1/2002, 36 months) \$459,007 Total Contract Value (\$430,619 DOE)

Gas Turbine Technology Needs and Project Objectives

- Improved performance and reliability
 - More effective cooling of turbine first stage passage
 - Improve schemes for injection of endwall coolant
 - Realize cooling benefits of leakage flows
 - Understand effects of component misalignment
 - Reduced secondary flows
 - Improve with endwall axial contouring and airfoil/endwall fillets
 - Realize benefits of reduced secondary flows on film cooling effectiveness
 - Record the effects of film cooling on secondary flow
- Less engineering time/cost to produce designs
 - Enhance closure model for the heat/mass transfer analogy
 - Experimental support of CFD model development

Approach – Measurement of the following (by year) y1 y2 y3

Qualifying data for test facilities	X		
Aerodynamic losses		X	
Effects of leading edge/corner fillets on mass transfer		X	
Aerodynamic losses with steps on a contoured endwall			X
Heat transfer with steps and gaps on the contoured endwall		X	X
Mass transfer coeffs. with a step ahead of the blade row			X
Film cooling effectiveness with steps and gaps - contoured			X
Film cooling effectiveness in the straight endwall rotor			X
Documentation of results in conference and journal papers		X	X

Accomplishments

The program has been completed

- Measurements of endwall and airfoil surface heat and mass transfer coefficients, film cooling effectiveness values and net heat transfer change
- Heat and mass transfer analogy improved
- Misalignment and leakage study
 - Some endwall visualization
 - Strong effect of leakage flow through the slashface
 - 2ⁿ factorial study of aerodynamic loss
 - Quantified the various leakage and misalignment effects
 - Heat transfer coefficients

UNIVERSITY OF MINNESOTA

- Documented the leakage, step and gap influences on heat transfer
- Film cooling effectiveness values
 - In some cases, the steps improved effectiveness
- Documentation of results (IGTC05 and 06, NHTC05, IMECE05, IHTC06, ASME/ATI06, journals)

🌜 University of Minnesota

Technical Results – Vane Cascade Geometry

Transition section geometry showing leakage path and steps sizes (ε)

Slashface gap showing steps sizes (ε), and passage insulation

Technical Results – Vane Cascade Total Pressure Loss

•Pressure loss (right) is typical for a contoured passage

•Cases with component misalignment and leakage; 2ⁿ factorial study (below)

Parameter(s)	Effect	% Effect on loss
TS step	-0.00302	-3.7
TS MFR	-0.00060	-0.7
SF MFR	0.01711	21.1
TS step & TS MFR	0.00115	1.4
TS step & SF MFR	-0.00071	-0.9
TS MFR & SF MFR	0.00102	1.3
TS step & TS MFR & SF MFR	-0.00158	-1.9
Min Significant Effect	0.00283	3.5
Curvature	-0.00923	
Min. Significant Curv.	0.00233	

Passage pressure loss contours (contoured endwall-left edge, flat endwall-right edge, suction side-top, pressure side-bottom)

AGTSR Workshop, 10/18-20/2005, TWS/RJG

Technical Results – Vane Passage Total Pressure Loss

Passage pressure loss contours-

(contoured endwall-left edge of each fig., flat endwall-right edge, suction side-top edge, pressure side-bottom edge)

Technical Results – Vane Cascade Description of the Slashface Gap

•In-passage static pressures ______ taken along the slashface gap (compared to suction and pressure surface pressure profiles)

Ingression of flow into slashface gap for upstream 42% of axial chord – computed from pressures
Substantial momentum flux into passage from gap for downstream portion of passage.
This flow is likely to affect passage secondary flows

ersity of Minn

Technical Results – Vane Passage Total Pressure Loss

UNIVERSITY OF MINNESOTA

Technical Results – Endwall Heat Transfer

Smooth case vs Nominal case

Left- Smooth passage without leakage

Right –no steps but nominal blowing through transition section and slashface gaps

Plotted: Stanton Number x 1000

UNIVERSITY OF MINNESOTA

🌜 University of Minnesota

<u>n 9</u>

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Technical Results Rotor cascade – Sherwood number Distributions in the rotor cascade– low FSTI

Results show the effects of fillets on the endwall heat transfer (on the secondary flows) when the FSTI is low

Re=5.77×10⁵, Tu=0.2%

Re= 5.65×10^5 , Tu=0.2% and fillets

Technical Results – Sherwood number Distributions in the rotor cascade – high FSTI

Results show the effects of fillets on the endwall heat ______ transfer (on the secondary flows) when the FSTI is high

Re=5.67×10⁵, Tu=8.5%

Re= 4.97×10^5 , Tu=8.5% and fillets

Technical Results –

Rotor Cascade Injection Geometry

Step up (forward facing) No step

(flat endwall)

Step down (backward facing) Technical Results – Adiabatic cooling effectiveness on endwall and suction surface wall

Rotor Cascade

JNIVERSITY OF MINNESOTA

Summary

- The work has provided detailed documentation of passage losses
 - Performance with contouring is described
 - Effects of gaps and steps are documented
 - Effects of injection are documented
- The work has provided detailed documentation of heat and mass transfer coefficients on the endwall
 - Effects of fillets are documented
 - Effects of freestream turbulence intensity are documented
- Results provide an improvement in the application of the heat/mass transfer analogy for turbine design

Publications

- •Han, S., Goldstein, R. J., GT2005-68590, Int'l Gas Turbine Conference, Reno, NV.
- Piggush, J., Simon, T.W., GT2005-68340, Int'l Gas Turbine Conference, Reno, NV, rec. for J.
 Piggush, J. D., Simon, T. W., 2005 National Heat Transfer Conference, San Francisco, CA.
- •Piggush, J. D., Simon, T. W., IMECE2005-83032, Orlando, FL.
- Piggush, J. D., Simon, T. W., GT2006-90575, Int'I Gas Turbine Conference, Barcelona, SP
 Piggush, J. D., Simon, T. W., GT2006-90576,
- Int'l Gas Turbine Conference, Barcelona, SP
 Simon, T. W., Piggush, J. D., 2006, Special
- Section on Turbine Reliability in the AIAA Journal of Propulsion and Power
- Papa, M., Goldstein, R.J., Gori, F., GT2006-90576, Int'l Gas Turbine Conf., Barcelona, SP
 Papa, M., Goldstein, R.J., Gori, F., 13th Int'l
- Heat Transfer Conf., Sydney Australia 2006.
- •Papa, M., Goldstein, R.J., Gori, F, ASME-ATI Conference, Milan, Italy, May 14-17, 2006 prep.
- •Papa, M., Goldstein, R.J., Gori, , International Journal of Heat and Mass Transfer. In prep.

