COMBUSTION CHARACTERIZATION AND MODELLING OF FUEL BLENDS FOR POWER GENERATION GAS TURBINES

University of Central Florida

Eric L. Petersen

SCIES Project 04-01-SR114

DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431

Tom J. George, Program Manager, DOE/NETL

Richard Wenglarz, Manager of Research, SCIES

Project Awarded (05/01/2004, 36-Month Duration)

\$556,937 Total Contract Value (\$405,990 DOE)

Gas Turbine Need

Fuel Composition Variation is a Concern

Natural Gas:

 $CH_4 + C_2H_6 + C_3H_8 + \dots$

94% < CH₄ < 99%

Exotic Fuel Blends:

$$\mathbf{CH_4} + \mathbf{H_2} + \mathbf{C_2H_6} + \mathbf{C_3H_8} + \mathbf{C_4H_x} + \mathbf{C_5H_x} \qquad \mathbf{40\% < CH_4 < 99\%}$$

Syngas:

$$H_2$$
 :9 - 45%CO:20 - 55% H_2 O:0 - 40%

Fuel Variation Impacts Chemistry & Engine Performance !

Project Objectives

There are Several Major Objectives...

- 1. Measure Ignition Delay Times of Fuel Blends at Engine Pressures
- 2. Develop Efficient **Test Matrices** to Cover Wide Range of Blends
- 3. Identify Appropriate Chemical Kinetics Mechanisms
- 4. Assemble **Reduced Kinetics** Mechanism(s) for CFD
- 5. Apply **Reacting-Flow CFD** Model to Explore Fuel Flex Issues
- 6. Measure Flame Speeds for Varying Fuel Blends
- 7. Acquire **Detailed Kinetics Data** for Model Improvement

Approach

Project is Divided into 7 Tasks

Task 1 – Test Matrix and Literature Search (Yr 1)

Task 2 – Autoignition Measurements (Yr 1, 2, 3)

Task 3 – Flame Speed Measurements (Yr 2, 3)

Task 4 – Chemical Kinetics Modeling (Yr 1, 2, 3)

Task 5 – CFD Modeling Effort (Yr 1, 2, 3)

Task 6 – NOx Measurements (Yr 3)

Task 7 – Mechanism Validation Measurements (Yr 2, 3)

Results

We Have Had Several Major Results the 1st 17 Months

- Ignition Times for Several Binary CH_4 Blends (ϕ = 0.5) Measured - H₂, C₂H₆, C₃H₈, C₄H₁₀, C₅H₁₂ - 1100 - 1500 K, 1 - 25 atm
- Autoignition and Other Test Matrices Developed
- Ignition Delay Times of Several CO/H₂ Blends ($\phi = 0.5$) Measured
- Preburner Autoignition Study Completed
- Gas Turbine CFD Model Identified and Tested
- Flame Speed Rig Designed
- Detailed Kinetics Measurements for Syngas Mixtures Performed

Background and Experimental Setup

Background

Ignition Times Are Important for Two Reasons:

1. Autoignition of Premixed Fuel/Air Mixtures

2. Characteristic Times for Calibrating Chemical Kinetics

Background

Autoignition for Premixer and Characteristic Times for Burner

Experiment

Shock-Tube Facility is Capable of **Elevated Pressures**

Specifications

- Driver: 7.6 cm Dia, 3.5 m
- Driven: 16.2 cm Dia, 10.7 m
- Digital DAQ (5 MHz, 12 bit)
- Optical Diagnostics
- Pressure (1 100 atm)

Aerospace Shock Tube Facility

Experiments

Chemiluminescence (OH* or CH*) Detected at Endwall and Sidewall

Experiment

Sample **Sidewall Emission and Pressure** Show Highly Exothermic Reaction

Technical Results

Many **Syngas Blends** Have been Studied Over a Wide Range of Temperature and Pressure

- 1. CO/H_2 Blends: from 95% CO to 5% CO
- 2. T = 890 1300 K
- 3. P = **1 15 atm**
- 4. Fuel-Lean: **φ** = **0.5**
- 5. Comparison with Kinetics Models

Kinetics Models Capture Basic Trends, Particularly at High T

Task 2 – Ignition (CO/H₂)

Models Show Good Agreement at Highest Pressures

Task 2 – Ignition (CO/H₂)

Hydrogen Oxidation Kinetics Dominate Ignition at Higher Temp.

95% CO - 5% H₂

T= 1250 K

Task 2 – Ignition (CO/H₂)

Peroxide and CO Reactions Also Contribute at Lower Temp.

95% CO - 5% H₂

T= 900 K

Several CH₄-Based Blends Were Explored at Lean Conditions

- 1. CH₄/Other Binary Blends
 - H₂ (80/20, 60/40)
 - C₂H₆ (90/10, 70/30)
 - C₃H₈ (80/20, 60/40)
 - C₄H₁₀ (90/10, 70/30)
 - C₅H₁₂ (90/10, 70/30)
- 2. T = **1100 1500** K
- 3. P = **1 25 atm**
- 4. Fuel-Lean: **φ** = **0.5**

Task 2 – Ignition (CH₄/Other)

All Blends Accelerated Methane Ignition over Range Studied

Improved Mechanism for CH₄+H₂ at Elevated P Developed

Centra

60/40

A Separate Study was Conducted to Gauge Autoignition Tendency of a Wide Range of CH_4 -HC Blends

- 1. Fuel-Lean Mixtures: $\phi = 0.5$
- 2. T = 800 K (Upper Limit of Burner Inlet)
- 3. P = **18 atm**
- 4. $CH_4 + C_2H_6$, C_3H_8 , C_4H_{10} , C_5H_{12} , H_2
- 5. Will the Mixture Ignite within **10 ms**?

Task 2 – Autoignition

Model Predicts **16-ms Test Time** at 1000 K for He-C₃H₈ Driver

Experiments with Extended Test Time Demonstrated

Task 1 – Matrix Development

Experiment Parameter Space Constrained by GT Application

Fuel Blends:

• C_2H_6	0, 20, 40 %	
• C ₃ H ₈	0, 15, 30 %	
• C ₄ H _x	0, 10, 20 %	\rightarrow 5 factors, 3 levels \rightarrow 243 blends!
• C_5H_x	0, 5, 10 %	
• H ₂	0, 10, 20 %	

• Balance CH₄

Task 1 – Matrix Development

Statistical Mixture Theory Used To Develop **DOE Matrix**

Task 1 – Matrix Development

21-Test Matrix of Fuel Blends Designed for Autoignition Tests

mix #	X _{CH4}	X _{C2H6}	X _{C3H8}	х_{С4H10}	Х_{С5H12}	X _{H2}
1	100	0	0	0	0	0
2	75	25	0	0	0	0
3	75	0	25	0	0	0
4	75	0	0	25	0	0
5	75	0	0	0	25	0
6	75	0	0	0	0	25
7	50	50	0	0	0	0
8	50	25	25	0	0	0
9	50	25	0	25	0	0
10	50	25	0	0	25	0
11	50	25	0	0	0	25
12	50	0	50	0	0	0
13	50	0	25	25	0	0
14	50	0	25	0	25	0
15	50	0	25	0	0	25
16	50	0	0	50	0	0
17	50	0	0	25	25	0
18	50	0	0	25	0	25
19	50	0	0	0	50	0
20	50	0	0	0	25	25
21	50	0	0	0	0	50

Data Seem to Exhibit NTC Behavior Seen in Higher HC

Calculated Results and Region of Test Results

Task 5 – CFD Model

Penn State Burner Chosen as Model Geometry

- Lean Premixed, Swirl Stabilized
- Methane, $\phi = 0.6$
- Inlet: 0.46 MPa, 660 K

Task 5 – CFD Model

Flow Parametrics

Finite-Rate CH_4 Chemistry, $\phi = 0.6$

Task 5 – CFD Model

Flow Parametrics

Finite-Rate CH_4 Chemistry, $\phi = 0.6$

Task 7 – Mechanism Validation

entra

orida

OH Conc. Time Histories can be Obtained by Laser Absorption

Task 7 – Mechanism Validation

Comparison between Model and OH ppm for Dilute Mixtures

1. Lean Syngas Ignition Times Obtained.

- 2. Lean Methane Fuel Blend Ignition Times Measured.
- 3. Kinetics Models for Syngas and CH₄ Identified.
- 4. Autoignition Matrix Completed.
- 5. CFD Model and Geometry Established.
- 6. Mechanism Validation Tests Underway.

Questions?

Danielle Kalitan

Joel Hall

Jaap de Vries

Tony Amadio

Stefanie Simmons

Dr. Mark Crofton (Aerospace)

