Combustion Instability and Blowout Characteristics of Fuel Flexible Gas Turbine Combustors

Georgia Institute of Technology

Tim Lieuwen, Ben Zinn Bobby Noble, Qingguo Zhang

DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES SCIES Project 03-01-SR111 Project Awarded (07/01/03, 36 Month Duration) Total Contract Value \$376,722

Gas Turbine Need

- Need: Gas turbines with sufficient flexibility to cleanly and efficiently combust a wide range of fuels, particularly coal-derived gases
 - Problem: Inherent variability in composition and heating value of coal-derived and other alternative fuels provides significant barriers towards their usage
- Need: Combustion systems that can stably operate over a wide turndown range
 - Problem: Combustion instabilities and blowout have been key problems encountered by gas turbines, severely limiting their turndown, restricting maximum power output, increasing unplanned outages, and increasing maintenance costs.

Example: Fuel Composition Effects on Flame Speed (at Fixed Flame Temperature)

H₂ 90 60 45 35 25 30 15 CH₄

S_L (cm/s) at T_{ad}=2000 K

chool of Aerospace Engineering

Georgia

Project Objectives

Analyze Static Stability Characteristics

- Objective: Reducing blowout events, thereby increasing turbine availability
- Determine key variables that represent effects of fuel compositions and mechanisms that describe lean blowout
 - i.e., develop methodology such that for a given a combustor stability map for one fuel, results for arbitrary fuel compositions can be predicted

Project Approach

- Task 1:
 - Determine fuel compositions in various IGCC, landfill, process gas plants
 - Determine test conditions of other ongoing efforts
 - Statistical design of experiments
 - Obtain input from industry

Tasks 2 and 3

Georgia

- Characterize fuel composition, dynamics effects upon blowout (Task 2) and pulsations amplitude (Task 3) conditions
- Correlate results with chemical kinetics calculations
- Communication with industrial partners

Combustor Testbed

Project Schedule

Month	1	6	12	18	24	30	36
Task 1 Devop Test Matrix							
1. Literature review							
2. Determine test conditions of other ongoing efforts							
3. Populate matrix using design of experiments							
4. Obtain feedback on tentative matrix from industrial partners							
Task 2 Analyze Static Stability Characteristics							
Subtask 2.1 - Experimental Static stability studies							
1. Baseline blowout tests in "quiet" combustor environment							
2. Test effects of amplitude and frequency of external oscillations							
Sub-task 2.2 Correlations and Modeling of Static Stability							
Task 3 Analyze Dynamic Stability Characteristics							•
Subtask 3.1 - Experimental dynamic stability studies							
1. Map self-excited oscillatory behavior							
2.Measure pressure/velocity/heat release relationship during forced oscillations							
Sub-task 2.2 Modeling of Dynamic Stability Characteristics							
Write Final Report							

Accomplishments

- High impact accomplishments to date:
 - Determined key variables that capture fuel composition effects on lean blowout

Results are improving understanding of blowout in fuel flexible combustors

Blowout Studies

Well-Stirred Reactor Approaches

• Blowoff occurs when chemical time is certain fraction of residence time

Georgial in Stillute of Technology School of Aerospace Engineering

Chemical time

- Fuel composition
- Flame temperature

Residence time

- Length scale?
- Reference flow speed
- U₀ or U_b are independent variables

Flamelet Propagation Model

 Blowoff occurs when flame speed is every where less than flow speed

• Turbulent Flame speed

- Fuel composition
- Equivalence ratio, flame temperature
- Turbulence intensity
- Reference Velocity
 - U₀ or U_b?

Experiment results

Test Matrix

- Three Fuels Used In Various Compositions:
 - CH₄, H₂, and CO
- Test Conditions:
 - Premixer exit velocity~ 40-200 m/s (combustor unburned flow velocity: 4 - 20 m/s)
 - Pressure: 1 4.4 atm
 - Inlet Temperature: 70-390 °F (300 -390 K)

Test Procedure

Georgia

- For each fuel composition, reduce mixture equivalence ratio (at constant $U_{0,}$ T_i,and P) until the mixture blows off
- Limited testing where T_{ad} or U_{b} were held constant

Color scheme

Blowoff Phenomenology

- Well defined blowoff events occur at low H₂ mixtures
- At high H₂ mixtures, the flame would gradually liftoff and weaken; difficult to define specific "blowoff" point
 - Blowoff defined in these cases as point where flame no longer visible in 4 inches test section

Daniel Guggenheim

pace Engineering

Georgia

H₂ Addition Dominates Blowout Characteristics

- Test conditions:
 - U₀=6 m/s
 - T=300K
 - P=1.7atm
- Monotonic reduction in blowoff equivalence ratio with increasing H₂ levels.

H₂ Addition Dominates Blowout Characteristics

Georgia

- Conditions:
 - U₀=6 m/s
 - T=460K
 - P=4.4atm,
- In the same way, as H₂ levels increase, mixtures can be stabilized with lower
 - Equivalence ratios
 - Flame temperatures
 - Flame speeds

Need to be Careful in Correlating Data

 Good correlations may not provide additional physics into blowout; e.g.,

 $-T_{ad}$ vs 2*T_{ad}

 Many meaningful parameters strongly correlated with H2 levels

 $-Le_{mix}$ at blowout vs %H₂

Flow Velocity Effects

Daniel Guggenheim

pace Engineering

Georgia

 With a higher flow speed, flame blows off at higher equivalence ratio

 Different sensitivities to for speed

CLEMSON presentation, T.L., B.Z., B.N., Q.Z.

Reference Flow speed, U₀ or U_b?

• For each fuel, trends are reasonable

- Chemical time decreases with increasing flow speed
- **U**_b provides a better correlation

Damkohler # Correlation of LBO Data

- U₀=6 m/s, T=300K, P=1.7atm
- Blowoff occurs near Da=0.82.

Accuracy of Blowout Prediction assuming Constant Damkohler # at LBO

niel Guagenheim

pace Engineering

Georgia

Damkohler # Correlation of all Data

el Guagenheim

ce Engineerin

Georgia

CLEMSON presentation, T.L., B.Z., B.N., Q.Z.

Accuracy of Blowout Prediction assuming Constant Damkohler # at LBO

$$Da = Da(\phi_{predict}) = 0.52$$

- All data
- Assume blowoff at Da=0.52

Correlation of "Error" with Damkohler #

$$\Delta \phi = \phi_{actual} - \phi_{prediction}$$

$$\Delta \phi = f(Da)$$

All Data

• Is there physics in this correlation?

Answer: Yes, there is but we're still trying to understand it

$$Da = Da(\phi_{predict}) = 0.52$$

$$\Delta \phi_{RMS} = 0.059$$

$$Da\left[\phi + \Delta\phi(Da)\right] = 0.52$$

$$\Delta \phi_{RMS} = 0.026$$

Conclusions

• H₂ percentage dominates lean blowout characteristics

- Higher H₂ level mixtures can be stabilized with lower equivalence ratios, flame temperatures, and flame speeds.
- Simplest correlation of lean blowout data is just to use % H₂
- Better correlation obtained with U_b than U₀
 - Not significant point for narrow range of fuel compositions, but important effect for wide fuel range
- Damkohler # scaling captures variability in blowout with fuel composition to within Δφ=±0.05
- Future work:

Georgia

 Detailed visualizations of dynamic blowoff process with several fuel compositions

• Program benefits the gas turbine and energy industry by:

- removing barriers toward the usage of coal derived gaseous fuels through improved understanding of their combustion characteristics
- improving modeling tools needed by OEM's to design fuel-flexible combustion systems.
- Benefits will improve air quality and increase the energy security of the USA, by allowing power plants to operate:
 - efficiently
 - with minimal pollution
 - using a variety of domestic fuel sources

Questions?

Georgia Tech Aerospace Combustion Lab Group

