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Gas Turbine Need

e Need: Gas turbines with sufficient flexibility to
cleanly and efficiently combust a wide range of
fuels, particularly coal-derived gases

— Problem: Inherent variability in composition and heating

value of coal-derived and other alternative fuels provides
significant barriers towards their usage

e Need: Combustion systems that can stably

operate over a wide turndown range

— Problem: Combustion instabilities and blowout have been key
problems encountered by gas turbines, severely limiting their
turndown, restricting maximum power output, increasing
unplanned outages, and increasing maintenance costs.
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Example: Fuel Composition Effects on
Flame Speed

(at Fixed Flame Temperature)




Project Objectives

e Analyze Static Stability Characteristics

— Objective: Reducing blowout events, thereby increasing turbine
availability

— Determine key variables that represent effects of fuel compositions
and mechanisms that describe lean blowout

. I.e., develop methodology such that for a given a combustor stability
map for one fuel, results for arbitrary fuel compositions can be
predicted
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Project Approach

e Task 1:

— Determine fuel compositions in various
IGCC, landfill, process gas plants Combustor Testbed

— Determine test conditions of other ongoing
efforts

— Statistical design of experiments
— Obtain input from industry

e Tasks 2and 3

— Characterize fuel composition, dynamics
effects upon blowout (Task 2) and
pulsations amplitude (Task 3) conditions

— Correlate results with chemical kinetics
calculations

— Communication with industrial partners
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Project Schedule

Task 1 Devop Test Matrix

. Literature review

2. Determine test conditions of ather ongoing gfforts

3. Populate matrix using design of experiments

4. Obtain feedback on tentative matrix from industrial partners

Task 2 Analyze Static Stability Characteristics

Subtask 2.1 - Experimental Static stability studies
[, Baseline blowout tests in "quiet"” combustor environment
2. Test effects af amplitude and frequency of external asciflations

Sub-task 2.2 Correlations and Modeling of Static Stability
Task 3 Analyze Dynamic Stability Characteristics

Subtask 3.1 - Experimental dynamic stability studies
[ Map self~excited oscillatory behavior

2 Measure pressure/valocitytheat release relationship during forced
oscillations
Sub-task 2.2 Modeling of Dynamic Stability Characteristics
Write Final Report
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Accomplishments

e High Impact accomplishments to

date:

— Determined key variables that capture fuel composition
effects on lean blowout

e Results are improving understanding
of blowout in fuel flexible combustors
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Blowout Studies



Well-Stirred Reactor Approaches

e Blowoff occurs when
chemical time is certain _ _
fraction of residence time e Chemical time

— Fuel composition

Tre _ D/U _ Da — Flame temperature
Fonem ~ Tchem e Residence time
— Length scale?
WSR ‘ — Reference flow speed
x/ — U, or U, are independent
7 ( variables

Flame Front
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Flamelet Propagation Model

. ﬁ;?n""eognggui;sev\‘llgfyn e Turbulent Flar_n_e speed
where less than flow — Fuel composition
Speed — Equivalence ratio, flame

S K temperature
U — N2 — Turbulence intensity
ref « Reference Velocity
— Uyoru,?
ﬂb

Flame Propagation
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Experiment results



Test Matrix

e Three Fuels Used In Various
Compositions:

— CH,4, H,, and CO Color scheme
H-
o Test Conditions: gt
— Premixer exit velocity~ 40-200 m/s oo
(combustor unburned flow velocity: 4 - 20 e e
m/s) oo e e
— Pressure: 1 - 4.4 atm e e ee e e
— Inlet Temperature: 70-390 °F (300 -390 e eeese
K) e " B F 89
ole CHa

e Test Procedure

— For each fuel composition, reduce
mixture equivalence ratio (at constant U,
T.,and P) until the mixture blows off

— Limited testing where T4 or U, were held
constant
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Blowoff Phenomenology

e Well defined blowoff events
occur at low H, mixtures

o At high H, mixtures, the
flame would gradually liftoff
and weaken; difficult to
define specific “blowoff”
point

— Blowoff defined in these
cases as point where flame
no longer visible in 4 inches
test section
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H, Addition Dominates Blowout Characteristics
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Test conditions:
— Uy=6 m/s
— T=300K
— P=1.7atm

Monotonic reduction in
blowoff equivalence ratio
with increasing H, levels.

CLEMSON presentation, T.L., B.Z., B.N., Q.Z.



H, Addition Dominates Blowout Characteristics

06 e Conditions:
0.5 Flame : — Uy,=6 m/s
o 04 , — T=460K
D 2 e "800, | — P=4.4atm,
E | 3&"‘0’&“ e Inthe same way, as H,
2 L AT IR levels increase, mixtures
01  NoFlame | can be stabilized with
lower
% 20 400/ . 60 80 100 — Equivalence ratios
k — Flame temperatures
— Flame speeds
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Need to be Careful in Correlating Data

e Good correlations may not

. A . 1.2
provide additional physics
. _ ]
Into blowout; e.qg., o,
_Tad VS 2*Tad x 08 '“ﬁ |
CDE 'A@
_ ~ 0.6 & X
e Many meaningful “%e o .
parameters strongly 04 © oy,
correlated with H2 levels 02 0 o4 06 o8 1
% of H

—Le,,;, at blowout vs %H,
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Flow Velocity Effects
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With a higher flow
speed, flame blows off
at higher equivalence
ratio

Different sensitivities to
for speed
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Reference Flow speed, U, or U, ?
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Damkohler # Correlation of LBO Data
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Accuracy of Blowout Prediction assuming
Constant Damkohler # at LBO

Da = Da(@,eic; ) = 0.82
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(@]

S P=1.7atm

S

=

0.2 0.3 0.4 0.5 0.6 0.7
¢ from experiment

|{|||1G ﬁgc.-‘la '..-:\'-q'b- vk
U T st e T S R T B A O, ©



Damkohler # Correlation of all Data
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Accuracy of Blowout Prediction assuming
Constant Damkohler # at LBO
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Correlation of “Error” with Damkohler #
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Answer: Yes, there is but we’re still trying to
understand it
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Conclusions

H, percentage dominates lean blowout characteristics

— Higher H, level mixtures can be stabilized with lower
equivalence ratios, flame temperatures, and flame speeds.

— Simplest correlation of lean blowout data is just to use % H,

Better correlation obtained with U, than U,

— Not significant point for narrow range of fuel compositions, but
important effect for wide fuel range

Damkohler # scaling captures variability in blowout with fuel
composition to within A¢=20.05

Future work:

— Detailed visualizations of dynamic blowoff process with several
fuel compositions
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Project Summary

e Program benefits the gas turbine and energy industry by:

— removing barriers toward the usage of coal derived gaseous fuels through
iImproved understanding of their combustion characteristics

— improving modeling tools needed by OEM'’s to design fuel-flexible combustion
systems.

o Benefits will improve air quality and increase the energy
security of the USA, by allowing power plants to operate:
— efficiently
— with minimal pollution
— using a variety of domestic fuel sources
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Questions?
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