Measurement of Three Critical Parameters As A Basis for A Simple Thermal Barrier Coating Life Prediction Methodology University of Connecticut

Eric Jordan and Maurice Gell SCIES Project 02- 01- SR 097 DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES Project Awarded (05/01/02, <u>36</u> Month Duration) \$ 478,495 Total Contract Value (\$ 478,495 DOE)

Gas Turbine Need

- Industrial Gas Turbine Performance & Durability Depend Strongly On Use Of Thermal Barrier Coatings
- Aggressive Application of TBCs Limited By Lack of NDI And Lifing Methods

Gas Turbine Need

Non-Destructive Assessment of Remaining Life Strongly Impacts Operating Cost

- Reduce occurrence of unplanned shut down
- Reduce wasteful precautionary part replacement for parts that don't need it, increasing part utilization
- Increase understanding of failure mechanisms leading to coating with improved durability and provide a physical basis for NDI

Project Objectives

To develop and experimentally validate a method for the nondestructive prediction of remaining life of by measurement of :

- Initial Surface Geometry
- Thermally Grown Oxide (TGO) Stress
- **TGO Thickness**

ACOMPLISHMENTS

- An accurate remain life NDI based on TGO Stress measurement
 - Showed a direct relation to damage and failure
- A new surface metric more related to damage than RMS etc.
- Transferred Technology to Industry

ACOMPLISHMENTS

- Two Ph D and two masters ³/₄ female
 - Swetha Sridharan
 - Mei Wen
 - Jessica Shen
 - Manish Madhwal

Surface Geometry Determined by Interferometer Surface Profiler

Photoluminescence Piezospectroscopy (PLPS) for Measuring TGO Stress

University of Connecticut

Bimodal Spectra

Top of MCrAlY Bond Coat Surface 1432014360144001444014480After Spallation of 7YSZWavenumber (cm⁻¹)

Automated Deconvolution of PLPS Spectra

- Solution- Optimized fit to R1-R2 peak pairs with enforced spacing
- Benefit- 100X reduced user effort and reduced user training level

TGO Thickness Measured by Advanced AC Potential Drop

- Beta depletion zone thickness determined from electrical resistivity vs. depth inferred from AC Potential Drop.
- JENTEK measurement system deemed best in Round-Robin Test

JENTEK[®] Sensors Inc.

Different Type of Specimens Used In The Program

Туре	Superalloy Substrate	Bond Co	Ceramic (7YSZ)		
		Туре	Thickness (µm)	Туре	Thickness (µm)
Ι	Single Crystal CMSX-4	Ni-20Co-18Cr- 12.5Al-0.6 Y-0.4 Si-0.25 Hf wt.%	100	EB-PVD	145
II	Single Crystal CMSX-4	Grit Blasted- [(Ni,Pt) Al]-Ni-21 Al-20 Pt wt.%	50	EB-PVD	140
III a,b	Single Crystal CMSX-4	Grit Blasted- [(Ni,Pt) Al]-Ni-21 Al-20 Pt wt.%	75	EB-PVD	150

Type I. Specimen Life Prediction Use all 3 Parameters

Failure Occurs at Constant Value of Out of Plane Interface Stress

$$\sigma_n = \sigma t (1/r_x + 1/r_y) = \sigma t (1/r_{mean})$$

 $t = TGO \ thickness$ $r_{y}, r_{x} = Principal \ radii \ of \ curvature$ $\sigma_{n} = Normal \ tensile \ stress \ at \ asperity$ $\sigma_{y}, \ \sigma_{x} = in-plane \ compressive \ stress$ $If \ \sigma_{y} = \sigma_{x} = \sigma$

Development of Geometry Feature Extraction Software

- Smooth the Raw Data by Filtering
- Cubic Splines Are Used to Fit the Data
- Compute Mean Curvature from Derivatives

Curvature Map Superior to RMS in Characterizing Surface Geometry

Evolution of TGO Stress throughout Thermal Cycling

University of Connecticut

TGO Thickness Measured by AC Impedance Method

Oxide growth rate $h = 0.3859 t^{1/2} + 0.742$

Life Prediction Methodology

Determine Determine the minimum the **Predict life** Compute continuous TGO based on debond thickness to curvature **TGO growth** of surface region size spallation rate from fracture based on σ , mechanics $\mathbf{r}, \boldsymbol{\sigma}_{n}$

University of Connecticut

Summary of Surface Roughness, Real Life and Predicted Life

As-Received

Barrel Finish

Type II & III a,b Specimen Use TGO Stress Only

Type I TBC – TGO Stress Versus Cycles 1-hour Tests

Type I TBC – TGO Stress Versus Cyclic Life Fraction

1-hour Tests

Type I TBC – TGO Stress Versus Cyclic Life Fraction 24-hour Tests

Cyclic Life Fraction For 1-hour and 24-hour Tests at 1121°C

RESULTS _1-hour Versus 24-hour Tests

Failed after 33 24-hour Cycles @ 1121°C

<u>1-hour Tests:</u> Failure Predominantly In The YSZ At or Near the TBC/TGO Interface

<u>24-hour Tests:</u> Failure

Predominantly At

TGO/Bond Coat Interface

Remaining Life Prediction Based on PLPS Data without knowledge of temperature I. Regression Method For Type III

Type I TBC - Quadratic Curve Fit For Multiple History Data

Remaining Life Predictions Versus TBC Life Scatter

1-hour Tests

24-hour Tests

Remaining Life Prediction Based on PLPS Data without knowledge of temperature II. Neural Network Method For Type II

Type III Had Bimodal

• Bimodal can be mapped and used as a indication that failure is near

Claim: Rumpling Primary Causes of Stress Drop

Microstructural Evolution

0 cycles

125 cycles

60 cycles

190 cycles

Interface Rumpling

 TGO Thickening

• β -(Ni,Pt)Al $\rightarrow \gamma$ '-Ni₃Al

Cracking

Relationships Among Life, Rumpling And TGO Stress

• Life Prediction Is Possible Based on TGO Stress

Stress Based NDI has Physical Basis

- Rumpling Causes Stress Drop
- Rumpling causes failure
- Rumpling is important

Roughness vs. thermal cycling: Type II

Single Valued Relation Between Rumpling Amplitudes And TGO Thickness Type II

Rumpling Dependence On TGO Growth Type III

• TGO Growth Controls Rumpling

We have Proved Bimodal Spectra Come from Cracking

Bimodal Luminescence Related To TGO Cracking

Fraction of Bimodal Spectra and Crack Density

• Fraction of Bimodal Spectra and Crack Density Change in a Similar Manner with Thermal Cycles

Area Mapping – Damage Accumulation

27 cycle

470 cycle

Damage (Bi-modal) Intact

University of Connecticut

Non-Constant Amplitude Tests

Two Temperature Cyclic Tests

Non-Constant Amplitude Tests Two Hold Time Cyclic Tests

Linear Damage Example 1121° C followed by 1151° C

- Failure life at $1121^{\circ}C N_{f1}=677$
- Cycles run $n_1 = 335$
- Life fraction =335/677=0.49
- $N_1/N_{f1}+n_2/N_{f2}=1$
- At $1151^{\circ}C N_{f2} = 358$
- Predicted life=0.51*358=

First Ever Sequence Effect Tests

Portable PLPS NDI Instrument Available

ACOMPLISHMENTS

- An accurate remain life NDI based on TGO Stress measurement
 - Showed a direct relation to damage and failure
- A new surface metric more related to damage than RMS etc.
- Tested the linear damage rule for TBC life prediction for the fist time
- Revealed failure mechanisms

ACOMPLISHMENTS

• Transferred technology to industry

- Two Ph D and two masters ³/₄ female
 - Swetha Sridharan
 - Mei Wen
 - Jessica Shen
 - Manish Madhwal

Goal Was to Develop Practical Tool

• We are one year into an industrial contract to apply Stress Measurement Method developed under HEET/AGTSR funding to blade retirement for cause.

Thank You

Approach

1881

University of Connecticut

Mapping of Curvature by MATLAB

Original Surface

Curvature

University of Connecticut

Project Objectives

To develop and experimentally validate a method for the nondestructive prediction of remaining life of by measurement of :

- Initial Surface Geometry
- Thermally Grown Oxide (TGO) Stress
- **TGO Thickness**

Results of Automated Analyzing PLPS Spectra

	L _{R2}	V _{R2}	W _{R2}	H _{R2}	L _{R1}	H _{R1}
Grams	0.7581	14432	9.6300	1.4690e5	0.9898	2.3452e5
Matlab	0.7290	14432	9.7534	1.4617e5	0.9990	2.3492e5

Results of Multi-Temperature Cyclic Tests – 1-hour @ 1121°C Followed By 1-hour @ 1151°C

Exposure Condition	Cycle	ed To	d To Ave Failu		Linear Damage Fraction	
	# Cycles	Hot Time (Hours)	# Cycles	Hot Time (Hours)	Based on Cycles	Based On Hot Time (Hours)
1-hour @ 1121°C	335	251	677 ± 55	508	0.49	0.49
	335	251	-		0.49	0.49
1-hour @ 1151°C	205 (Failed)	154	358 ± 65	269	0.57	0.57
	225 (Failed)	169			0.63	0.63
	Total = 356 Cycles	Total = 520 Hours			Total = 1.06	Total = 1.12