## Heat Transfer from Rotating Blade Platforms with and without Film Cooling

### **Texas A&M University**



### J.C. Han and M.T. Schobeiri

### SCIES Project 03-01-SR113

### **DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431**

Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES

Project Awarded 07/01/2003 (36 Month Duration)

\$461,024 Total Contract Value (\$361,024 DOE)

## **Gas Turbine Needs**

### Improved Turbine Power Efficiency by Increasing Turbine Blade Cooling Performance

- Increase Turbine Inlet Temperature while Minimizing Coolant Flow
- Need Detailed Heat Transfer
  Data on Rotating Blade
  Platforms
  - Improve Current Rotor Blade Cooling Schemes
  - Provide Options for New Rotor Blade Cooling Designs
- Need Accurate and Efficient CFD Codes to Improve Flow and Heat Transfer Predictions and Guide Rotor Blade Cooling Designs





## **Project Objectives**

### Provide Designers with New Rotating Blade Platform Heat Transfer and Film Cooling Data and Numerical Predictions

- Improve Cooling Performance and Thermal Efficiency of Gas Turbine Engines
- Part I: Experimental Rotating Heat Transfer
  - Pressure, Heat Transfer Coefficient, and Film Cooling Effectiveness Distributions on Rotating Blade Platforms with Stator-Rotor Seal Ejection and Film Cooling
- Part II: Flow Measurements and Numerical Predictions
  - Detailed Flow Measurements and Surface Heat Transfer Predictions on Rotating Blade Platforms under Rotating Conditions





### **Project Approach**

### This Project Contains Three Tasks for Rotating Blade Platforms Using Experimental and Computational Methods

Task 1: Rotor Platform Modification and Measurement Technique Development

- Design, Fabrication, Installation, and Instrumentation of Modified Rotor with Coolant Ejection from Stator-Rotor Seal and Film Cooling for Platform
- Design and Calibration of Several Miniature Five-Hole Probes and Preliminary Flow Measurements
- Development of Pressure Sensitive Paint (PSP) and Temperature Sensitive Paint (TSP) Techniques
- Preliminary Flow and Heat Transfer Predictions using FLUENT Code (secondary effort)





## **Project Approach**

- This Project Contains Three Tasks for Rotating Blade Platforms Using Experimental and Computational Methods
- Task 2: Rotor Blade Platforms with Stator-Rotor Seal Ejection
  - Detailed Flow Measurements Using Miniature Five-Hole Probes
  - Detailed Pressure and Film Effectiveness Distributions using Pressure Sensitive Paint (PSP)
  - Detailed Heat Transfer Coefficient Distributions using Temperature Sensitive Paint (TSP)
  - Predicted Flow and Heat Transfer
    Distributions using FLUENT code



(a secondary effort)



## **Project Approach**

- This Project Contains Three Tasks for Rotating Blade Platforms Using Experimental and Computational Methods
- Task 3: Rotor Blade Platforms with Stator-Rotor Seal Ejection and Film Cooling Holes
  - Detailed Flow Measurements Using Miniature Five-Hole Probes
  - Detailed Pressure and Film Effectiveness Distributions using PSP
  - Detailed Heat Transfer Coefficient Distributions using TSP
  - Predicted Flow and Heat Transfer
    Distributions using FLUENT code

(a secondary effort)





## **Project Accomplishments**

#### Task 1 (Year 1) – Rotor Platform Modification

- Rotor Fabrication, Installation, & Instrumentation is Complete
- PSP and TSP Measurement Techniques have been Successfully Developed
- Task 2 (Year 2) Film Cooling Effectiveness and Heat Transfer Measurement on the Rotating Platform with Seal Leakage
  - Film Cooling Effectiveness has been Measured on the Rotating Platform with Seal Ejection
  - Numerical Predictions for both the Film Effectiveness and Heat Transfer Coefficients have been Obtained







Part I – Measurement Techniques – Pressure Sensitive Paint (PSP) Technique Used to Measure the Pressure Distribution and Film Cooling Effectiveness



#### Part I – Measurement Techniques – Pressure Sensitive Paint (PSP) Technique Used to Measure the Film Cooling Effectiveness



Texas A&M University

Part I – Measurement Techniques – Temperature Sensitive Paint (TSP) Technique Used to Measure the Heat Transfer Coefficient Distribution



Part I – Measurement Techniques – Temperature Sensitive Paint (TSP) Technique Used to Measure the Heat Transfer Coefficient Distribution



$$h = \frac{q''_{in} - q''_{loss}}{T_w - T_m}$$



Part I – Supplement for Rotating Heat Transfer – 5-Blade, Linear Cascade Used to Demonstrate Measurement Techniques & Investigate Multiple Seal and Discrete Film Hole Configurations





- Re = 5.6\*10<sup>5</sup> (axial chord length & exit velocity)
- Inlet Velocity = 20 m/s, Exit Velocity = 50 m/s
- Stator-Rotor Ejection: Cooling Flow = 0.5% ~ 2% of Mainstream
- □ Platform Film Cooling: Blowing Ratio  $(M = \rho_c V_c / \rho_{2\infty} V_{2\infty}) = 0.5 \sim 2$



```
Density Ratio (DR=\rho_c / \rho_{\infty}) = 1 (N<sub>2</sub> Injection)
```



Part I – Supplement for Rotating Heat Transfer – Measured Film Cooling Effectiveness on the Endwall of a 5-Blade, Linear Cascade by PSP





Turbine Heat Transfer Laboratory Texas A&M University

SR 113 - 10-2005 - JCHen

Part II – Supplement for Rotating Heat Transfer – Predicted Film Cooling Effectiveness on the Endwall of a 5-Blade, Linear Cascade



## Part II – Supplement for Rotating Heat Transfer – Predicted Heat Transfer Coefficients on the Endwall of a 5-Blade, Linear Cascade





Texas A&M University

Part I – Supplement for Rotating Heat Transfer – Measured Film Cooling Effectiveness on the Endwall of a 5-Blade, Linear Cascade by PSP



Part I – Supplement for Rotating Heat Transfer – Measured Film Cooling Effectiveness on the Endwall of a 5-Blade, Linear Cascade by PSP



SR 113 - 10-2005 - JCHen

Part I – Supplement for Rotating Heat Transfer – Measured Film Cooling Effectiveness on the Endwall of a 5-Blade, Linear Cascade by PSP



#### Part II - Flow Measurements - Existing Research Turbine Facility



#### A Schematic Cross Section of the TPFL-Research Turbine with its Major Components



Part II - Flow Measurements - Existing Research Turbine Facility



#### Fully Sealed Traversing Slots and Angular Positions of the Five-Hole Probes at Stations 3, 4, and 5



#### Part II - Flow Measurements - Existing Research Turbine Facility



#### Interstage Traversing Schedule and Angle Definitions at Stations 3, 4, and 5



#### Part II - Flow Measurements - Existing Research Turbine Facility



**Cylindrical Blades** 

3-D Bowed Blades

#### Absolute Total Pressure Contour Plots at Station 4 for Cylindrical and 3-D Bowed Blades



Part I – Rotating Heat Transfer – Turbine Stage Operating Conditions

### □ 1<sup>st</sup> Rotor

- Inlet Velocity = 35.8 m/s
- Inlet Mach Number = 0.1
- Inlet Temperature = 46°C

- Exit Velocity = 107 m/s
- Exit Mach Number = 0.3
- Exit Temperature = 43°C
- Re = 2.0\*10<sup>5</sup> (axial chord length and exit velocity)
- Inlet Total to Exit Pressure Ratio = 1.4
- Angular Velocity = 2550 rpm, 2000 rpm (off-design)
- □ Stator-Rotor Ejection: Cooling Flow ~ 0.5% ~ 2% of Mainstream
- □ Platform Film Cooling: Blowing Ratio  $(M = \rho_c V_c / \rho_\infty V_\infty) \sim 0.5 \sim 2$
- **Density Ratio (DR=\rho\_c/\rho\_{\infty}) = 1 (N<sub>2</sub> Injection)**



#### Part I – Rotating Heat Transfer

#### Blade Arrangement for Platform Film Cooling Measurements

A – Stator-Rotor Seal Ejection for PSP Measurement

**B** – Stator-Rotor Seal Ejection for TSP Measurement

**C** – Stator-Rotor Seal Ejection and Film Cooling for PSP Measurement

D – Stator-Rotor Seal Ejection and
 Film Cooling for TSP Measurement





Part I – Rotating Heat Transfer – Rotor Platform Modifications for Two Coolant Flow Loops



Independent Coolant Loops for Coolant Ejection from Stator-Rotor Seal and Film Cooling from Platform



#### Part I - Rotating Heat Transfer - Rotor Platform Modifications for a



Typical Stator-Rotor Seal Geometry

#### **Coolant Ejection and Film Cooling Paths**

#### SR 113 – 10-2005 – JCHan

#### Part I – Rotating Heat Transfer – Rotor Platform Modifications for Typical

Stator-Rotor Seal Geometry





#### **Coolant Ejection on the Rotor Blade Platform**

Part I - Rotating Heat Transfer - New Rotor Installed in Existing Research Facility





Part I – Rotating Heat Transfer – Measured Film Cooling Effectiveness on the Rotating (Design Point) Platform by PSP



M

**Part I – Rotating Heat Transfer –** Measured Film Cooling Effectiveness on the Rotating (Off-Design) Platform by PSP



Texas A&M University

Part II – Rotating Heat Transfer – Predicted Heat Transfer Coefficients on the Rotating (2550 RPM, Design Point) Platform





Turbine Heat Transfer Laboratory Texas A&M University 2550 RPM

### **Future Work**

Part I – Rotating Heat Transfer – Film Cooling Effectiveness and Heat Transfer Coefficients with Stator – Rotor Seal Leakage and Downstream Film Cooling





#### **Coolant Ejection and Film Cooling on the Rotor Blade Platform**



### **Future Work**

#### Part I – Supplement for Rotating Heat Transfer – Advanced Stator-Rotor Seal Configurations with Varied Downstream Film Holes





## **Project Summary**

### Experimental Rotating Platform Heat Transfer

- Design, Fabrication, Installation, and Instrumentation of New Rotating Platform is Complete
- Film Cooling Effectiveness has been Measured on the Rotating Platform with Stator-Rotor Seal Ejection by PSP
- Film Cooling Effectiveness has been Measured on the Cascade Endwall with Seal Ejection and Discrete Film Holes by PSP

### Flow Measurements and Numerical Simulations

- Several Miniature Five-Hole Probes have been Calibrated and Used for Flow Measurements in the Rotating Research Facility
- Numerical Predictions have been Completed for the Film Cooling Effectiveness and Heat Transfer Coefficients on the Rotating Platform with Stator-Rotor Seal Ejection
- Numerical Predictions have also been Completed for the Cascade Endwall with Seal Ejection



# Questions



<u>Solar Turbines:</u> Hee-Koo Moon – Provided Rotor-Stator Geometry

#### <u>Texas A&M:</u>

Trent Varvel, M.S. – Rotating Platform Modification Jaeyong Ahn, Ph.D. – PSP Measurement Arun Suryanarayana, Ph.D. Candidate – Flow Measurement Burak Ozturk, Ph.D. Candidate – PSP and TSP Measurement Shantanu Mhetras, Ph.D. Candidate – PSP Measurement Lesley Wright, Ph.D. Candidate – PSP and TSP Measurement Zhihong Gao, Ph.D. Candidate – PSP and TSP Measurement Huitao Yang, Ph.D. Candidate – CFD



0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6