Aerodynamic Losses and Heat Transfer in a Blade Cascade with 3-D Endwall Contouring

Principal Investigator Sumanta Acharya, Professor Louisiana State University, Baton Rouge, Louisiana

> <u>Collaborators</u> Gazi Mahmood, Ph.D., Research Asqociate Arun Saha, Ph.D., Research Associate Ross Gustafson, M.S. student

SCIES Project 02-01-SR098 DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES

Project Awarded (5/1/2002, 36 Month Duration) \$302,373 Total Contract Value (\$302,373: DOE)

Gas Turbine Need

- Effect of passage vortex structure in vane/blade passages:
 - > enhanced thermal loading on passage walls
 - enhanced aerodynamic losses across passage
 - reduced film cooling effectiveness
- Weakening of secondary vortex flows will reduce:
 - thermal loading on passage walls
 - aerodynamic losses
 - usage of coolant flows

leading to lower component maintenance and higher turbine efficiency.

- Uniform pressure distributions at blade passage exit will reduce:
 - hub-coolant leakage flow
 - non-uniformity in exit-flow angle

Friedrichs et al, 1996

Project Approach									
	May '02	Nov '02	May '03	Nov '03	May '04	Nov '04	May '05	Nov. '05	May '06
Atmospheric blade cascade facility: Calibration				-	-	-	·		
Baseline measurements w/flat end wall: Surface pressure, 5-hole, IR, end wall heat transfer & Viz.									
Leading edge fillet selection & fabrication									
Measurements w/LE fillets									
Computations (optimization, grid refinement): Baseline, Fillets									
Computations: 2-D vane passage endwall									
Computations (optimization, grid refinement): 3-D blade passage endwall									
3-D blade passage endwall construction									
Measurements w/3-D endwall: uncooled									
Measurements w/3-D endwall: film-cooled									
Compressible flow vane cascade test: Meas. w/2D-contouring & film cooling									
Hot Cascade Vane Facility: Calibration & measurements-2D contouring w/film cooling									
									tie

Accomplishments in 2005

Measurements (cascade)

□ Flow field, pressure and end-wall heat transfer for

- baseline flat endwall blade passage
- with & without LE fillets
- with 3-D contoured endwall without and with endwall film cooling**
- With 2-D contoured endwall w/film cooling (vane)

□ Film cooling effectiveness & flow field with 3-D contoured endwall.

Numerical simulations (RANS)

- Linear vane passage with and without endwall axi-symmetric contouring (compressible and incompressible flows).
- Linear blade passage with and without leading edge fillets (incompressible flow).
- Linear blade passage with 2-D axi-symmetric and 3-D endwall contouring** (incompressible flow).
- ** Focus of today's presentation

Key Results

- Optimum 3-D contour endwall profile obtained from numerical simulations. Average Nusselt number measured w/3-D endwall profile reduces endwall heat transfer by ~10%.
- 3-D endwall reduces heat transfer coefficient associated with the PS vortex by ~15% pitchaveraged, and ~24% locally.
- 3-D endwall profile reduces strength and size of passage vortex significantly (factor of 1.5 at TE).
- 3-D endwall profile reduces overall total pressure loss by 39%
- Insignificant effects of 3-D endwall on blade surface pressure distributions in free-stream region.
- Film cooling flow at 3-D endwall at high blowing ratios (>1.6) reduces total exit pressure coefficient (higher exit total pressure) relative to the uncooled case. At M_{in}=2.4 reduction is ~25%
- Adiabatic film cooling effectiveness at 3-D endwall increases by ~10% as blowing ratio doubles from M_{in}=1.0.

Test Facility & Optimum Contour Profile

Computational Optimization: Non-Axisymmetric Contour Endwall Profile

(Rotor Passage) S=457mm, C=304 mm

Case No.	Axial dist. (X _u ,X _d) meter	Profile ht. (Z _{max} , Z _{min}) meter	Average Nu & C _{pt,loss} (exit)
1	Flat endwall (baseline)	(0.0, 0.0)	736 0.2592
2	X _u = 0.21	Z _{max} = 0.039	710
	X _d = 0.15	Z _{min} = -0.047	0.2674
3	X _u = 0.18	Z _{max} = 0.039	709
	X _d = 0.18	Z _{min} = -0.046	0.2641
4	X _u = 0.16	Z _{max} = 0.039	704
	X _d = 0.20	Z _{min} = -0.045	0.2599
5	X _u = 0.13	Z _{max} = 0.039	697
	X _d = 0.23	Z _{min} = -0.045	0.2603
6	X _u = 0.16	Z _{max} = 0.019	691
	X _d = 0.16	Z _{min} = -0.023	0.2585
7	X _u = 0.16	Z _{max} = 0.029	678
	X _d = 0.16	Z _{min} = -0.035	0.2589
8	$X_u = 0.15$	Z _{max} = 0.039	689
	$X_d = 0.21$	Z _{min} = -0.046	0.2596
9	$X_{u} = 0.10$	Z _{max} = 0.039	678 _
	$X_{d} = 0.34$	Z _{min} = -0.046	0.2548 _
			Ontin

Profile ht. (Z) at (x,y)= z1 * z2

Optimum profile

Flow Visualization with Smoke (U_o=1.0 m/s)

Endwall static pressure coefficient

Surface streamlines from friction velocities

Velocity Vectors in Pitchwise Planes (Measurements)

Axial Vorticity in Pitchwise Planes (Measurements)

Total Pressure Loss Coeff., C_{pt,loss} in Pitchwise Planes (Measurements)

Yaw Angle (Pitchwise Flow Deviation) in Pitchwise Planes (Measurements)

Endwall Nusselt Number (Measurements)

Pitchwise Mass-Averaged Pressure Loss & Flow Angles Near Passage Exit

3D Non-Axisymmetric Contour Endwall with Film Cooling Holes

Film cooling hole locations in 3D endwall

Local Blowing Ratio from Coolant Holes in 3D Endwall

Velocity Vector with and without Film Cooling Flow Near Exit

Axial Vorticity, $\Omega_x C/U_o$ with and without Film Cooling Flow

Streamwise Turbulence Intensity(%) with and without Film Cooling Flow

Total Pressure Loss (Diff) Coeff., C_{pt.loss} with & without Film Cooling

Non-dimensional Flow Temperature, θ_{f} with Film cooling Flow

Adiabatic Film Cooling Effectiveness, ε_f with 3D Endwall (Measurements)

Project Summary

- Goal of the project- explore strategies for reducing secondary flows and heat transfer in blade/vane passages through the use of endwall contouring, and leading edge fillets with and without coolant injection.
- Performance metrics of interests are endwall heat transfer and aerodynamic losses.
- CFD codes used to predict several profiles of 3-D endwall and to make recommendations for experimental measurements.
- Flow field and heat transfer measured in atmospheric blade cascade facility with 3D non-axisymmetric endwall
 - o Passage vortex clearly reduced by contouring
 - Nusselt numbers are reduced upstream of throat region and pitchwised averaged reduction can be as much as 15%.
 - Total pressure losses are reduced significantly across the passage (~40%).
 - Higher blowing ratio (~2) is advantageous in terms of smaller pressure coeff at exit (higher total pressure) and higher adiabatic film cooling effectiveness.

Questions??

Hot Cascade

Hot Cascade Components

3