Fundamental Studies in Syngas Premixed Combustion Dynamics

Ahmed F. Ghoniem, Anuradha M. Annaswamy, Raymond L. Speth, H. Murat Altay

Massachusetts Institute of Technology

SCIES Project 05-01-SR121 Project Awarded (08/01/2005, 36 Month Duration)

Needs & Objectives

Gas Turbine Needs

- Flexibility to operate with variable syngas compositions
- Ensure stable operation over a wide range of conditions
- Reduce emissions of CO and NO_x
- Project Objectives
 - Study experimentally lean premixed syngas combustion over a range of gas compositions and thermodynamic and dynamic conditions
 - Quantify syngas combustion lean stability limits over a range of turbulence conditions and flame anchoring configurations
 - Examine combustion dynamics near and around these limits in configurations that are similar to gas turbine combustors
 - Use passive methods to extend syngas lean stability limits

Project Approach: Flame Anchoring Configurations

- Backward-facing step combustor
 - Flame is anchored by recirculation below step
 - Low-intensity, large-scale turbulence

Swirl stabilized combustor

- Recirculation established by swirl and sudden expansion
- High-intensity, small-scale turbulence

Project Approach: Step Combustor & Swirl Combustor

- Conduct initial experiments on backward facing step combustor
 - Simplified setting with easy measurement opportunities
 - Dynamics and instabilities
 - Flame-vortex interaction
 - Equivalence ratio oscillations
- Design and construct an axisymmetric swirl stabilized combustor
 - Interchangeable swirler section
 - Radial air injection slot
 - Optical access for CCD camera, photodiode array

Project Approach: Experimental Setup

Measurement Capabilities

CCD Camera Linear Photodiode Array

Experimental Approach: Controlling Flame Instability

- Flame Instability in step combustor
 - Eliminating equivalence ratio oscillations does not stabilize the flame
 - Basic instability mechanism is flamevortex interaction
- Passive Control Mechanisms
 - Goals
 - Control combustion instability
 - Reduce emissions
 - Control Mechanisms
 - Changing fuel composition
 - Passive air injection

Numerical Approach: Flame-Vortex Interaction

Use numerical tools to understand the interaction between flame dynamics and combustor dynamics

Vortex shedding in a step combustor

Vortex breakdown in a swirling flow establishes the recirculation zone downstream from the swirl vanes.

Numerical Approach: Unsteady Curved Strained Flame

- Fully unsteady model of curved, strained flames with detailed chemistry and transport
- Obtain results for CO/H₂ flames
- Examine effects of changing fuel composition, equivalence ratio
- Find mechanisms and determine parameters to achieve desired operating goals

Effect of curvature and strain on radical concentrations

- Study syngas combustion dynamics in a stepstabilized combustor over a range of operating conditions
- Design and construct a swirl-stabilized combustor
- Use existing diagnostic techniques and numerical modeling to understand combustor dynamics
- Apply passive control techniques to extend stability limits and reduce emissions