

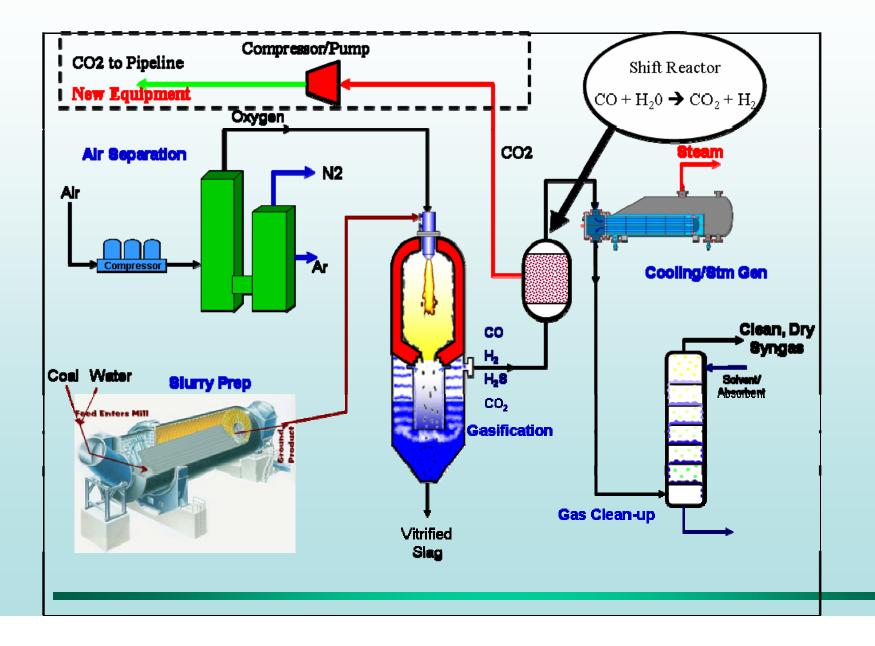
Novel Concepts for the Compression of Large Volumes of CO₂

Dr. Jeffrey Moore Dr. Klaus Brun Ms. Marybeth Nored Mr. Ryan Gernentz Southwest Research Institute

2007 ASME Turbo Expo Montreal, Canada

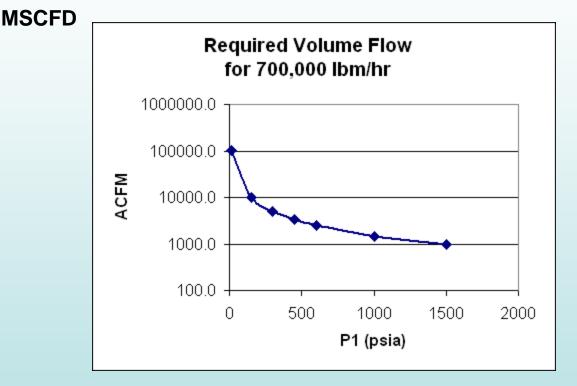
May 12, 2007

The authors would like to thank the NETL of the U.S. Dept. of Energy and Dresser-Rand Co. for sponsoring this work.


- CO₂ capture has significant compression penalty
 - As high as 8-12%
- Final pressure around 1500-2200 psi for pipeline transport or re-injection
- Typical flow rate 600,000 700,000 lbm/hr
 - Based on 400 MW IGCC plant
- Goal of this project is to minimize compression power penalty
- Many thermodynamic processes studied
- Several challenges with application discussed

- Type of compressor highly dependent on starting pressure (15 or 300 psia)
 - Approx 20-500 psia for CO₂ scrubbing of fuel stream (IGCC)
 - Approx 15 psia from CT or boiler exhaust scrubber
- High pressure ratio results in significant heat of compression
- Various compressor types considered
- Isothermal compression one concept considered to reduce power of compression
- Liquefaction of CO₂ also studied

IGCC Process with Carbon Capture



Mass Flow

Required Inlet Volume Flow for C0₂ Compressor

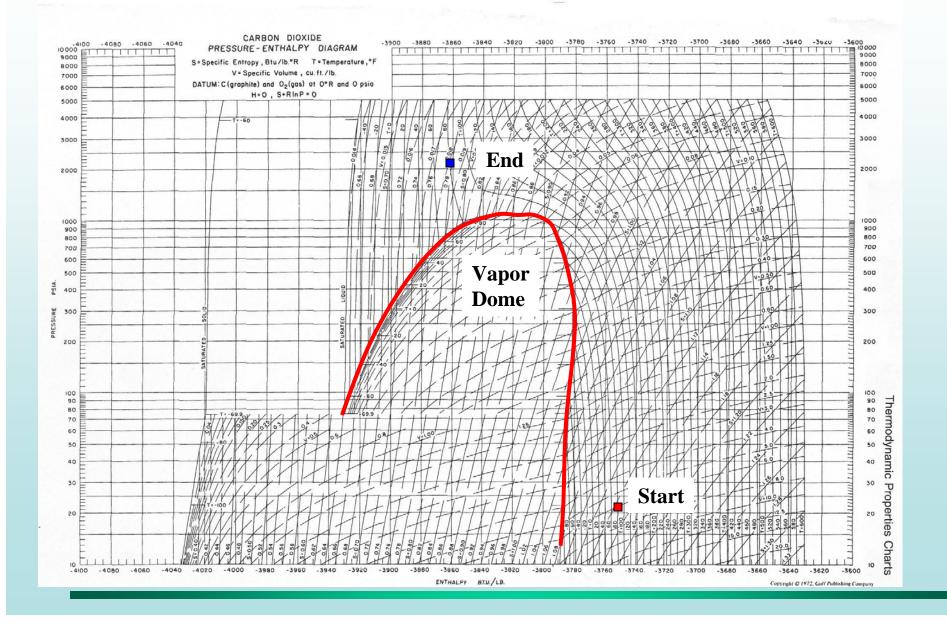
	=144.89	M
Pressure	Volume Flow	
(psia)	ACFM	
14.7	100595.2	
150	9858.3	
300	4929.2	
450	3286.1	
600	2464.6	
1000	1478.8	
1500	985.8	

= 700,000 lbm/hr

• High volume reduction adds to challenge in compressor selection

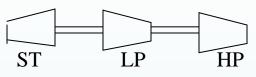
T=60 F

Example IGCC CO₂ Separator Conditions

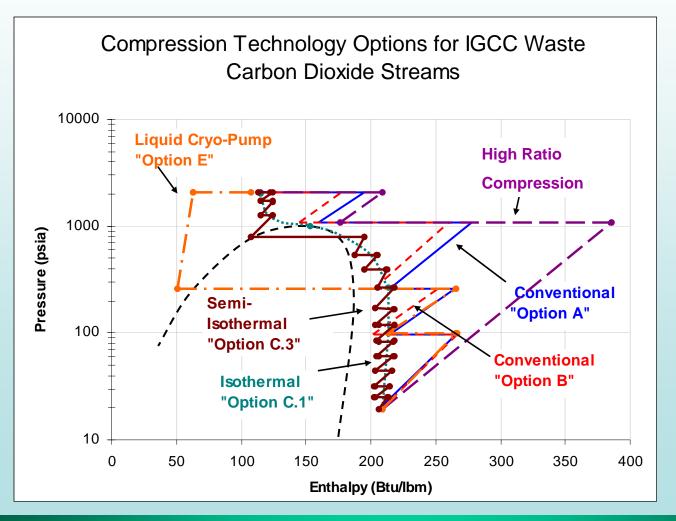

Uncompressed CO₂ Streams in typical IGCC plant with physical absorption separation method using Selexol solvent.

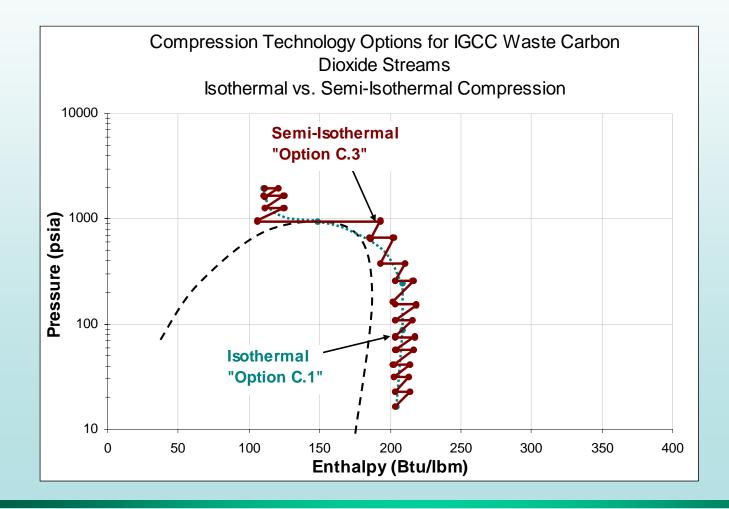
CO2 Gas Streams	LP	MP	HP 1	HP 2
Pressure (psia)	21.9	160.0	250.0	299.0
Temperature (°F)	51.0	68.0	90.0	75.0
Density (lbm/ft ³)	0.177	1.3	1.87	2.088
Flow Rate (acfm)	33,257	2,158	3,374	1,073

Higher pressure streams help reduce volume reduction allowing more uniform frame size in compressor selection


$\mathbf{P}_{\mathbf{P}}$ Pressure-Enthalpy Chart for $\mathbf{C}_{\mathbf{O}_2}$

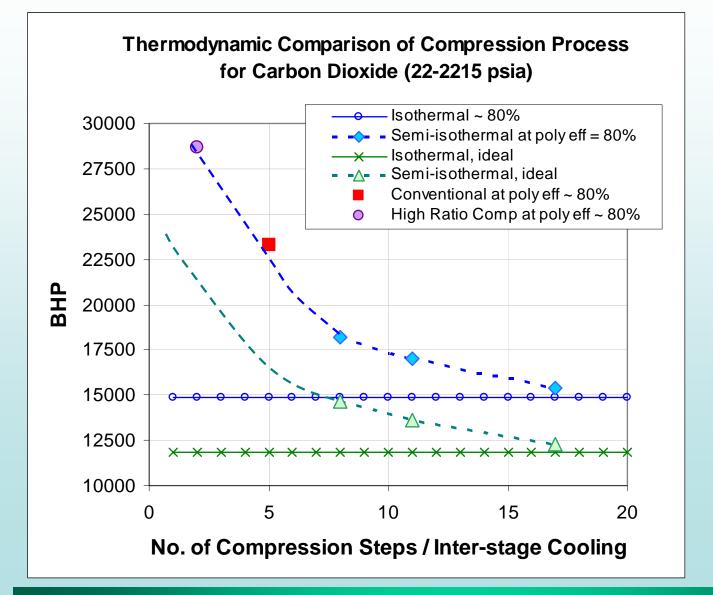
D-R Selection Using Conventional Centrifugal Compressors (Baseline)


- Requires 2 Parallel Trains
- Intercooling Between Each Section

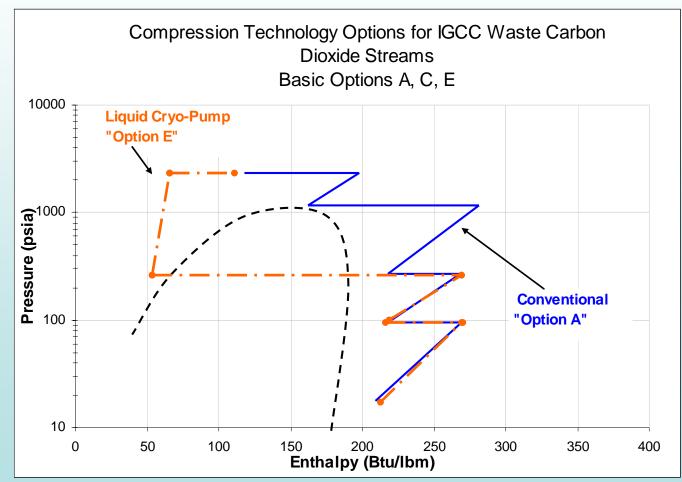

9	OPERATING CONDITIONS					
10						
11	(ALL DATA ON PER UNIT BASIS)			Base		
12		D18R7B D16R9B				R9B
13		SEC #1	SS In	SEC #2	SEC #1	SEC #2
14	 GAS HANDLED (ALSO SEE PAGE) 	LP	MP		Ble	end
17	● WEIGHT FLOW, (Lb/Hr) (WET)	176,649	168,445	260,872	517,475	517,475
18						
19	PRESSURE (PSIA)	21.90	170.0	96.58	248.0	1,087
20	TEMPERATURE (°F)	51.00	68.00	90.21	100.00	100.0
22	MOLECULAR WEIGHT	43.88	43.13	43.63	41.61	41.61
25	■ INLET VOLUME, (ACFM)(WET)	16,634		5,908	4,694	745.0
26	DISCHARGE CONDITI					
27	PRESSURE (PSIA)	106.6		258.0	1,097	2,215
28	■ TEMPERATURE (°F)	299.3		258.1	369.8	231.4
29	Cp/Cv(Kavg)	1.271		1.272	1.274	1.230
30	COMPRESSIBILITY (ZAvg)	0.9910		0.9685	0.9334	0.6919
36						
37	GHP REQUIRED (HP)	3,684		3,656	12,126	5,180
40	SPEED (RPM)			5,166		

Total Power = 49,292 hp (37 MW, 5.2% of 700MW Output)

All Processes



Semi-Isothermal Process

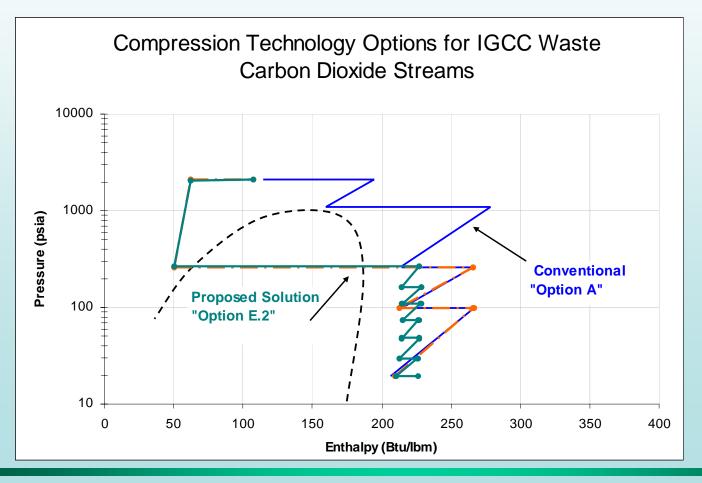

SR.

Summary of Thermodynamic Analysis

• 17 intercooled stages provide near isothermal performance

Liquefaction Process

SR .


Summary of Thermodynamic Analysis

Liquefaction Process

- Utilize a refrigeration system to condense CO₂ at about 250 psia and -20F
- Liquid then pumped from 250 to 2215 psia
- Requires significantly less power to pump liquid than compress a gas
- Cost of refrigeration system must be accounted for

Proposed Optimal Solution

Combines interstage cooling and liquefaction approach

Option	Compression Technology	Power Requirements	% Diff from Option A	Cooling Technology
A	Conventional Dresser-Rand Centrifugal 10-stage Compression	23,251 BHP	0.00%	Air-cool streams between separate stages
В	Conventional Dresser-Rand Centrifugal 10-stage Compression with additional cooling	21,522 BHP	-7.44%	Air-cool streams between separate stages using ASU cool N2 stream
C.1	Isothermal compression at 70 degF and 80% efficiency	14,840 BHP	-36.17%	Tc = 70 degF inlet temp throughout
C.4	Semi-isothermal compression at 70 degF, Pressure Ratio ~ 1.55	17,025 BHP (Required Cooling Power TBD)	-26.78%	Tc = 70degF in between each stage.
C.7	Semi-isothermal compression at 100 degF, Pressure Ratio ~ 1.55	17,979 BHP (Required Cooling Power TBD)	-22.67%	Tc = 100degF in between each stage.

Option	Compression Technology	Power Requirements	% Diff from Option A	Cooling Technology
D.3	High ratio compression at 90% efficiency - no inter-stage cooling	34,192 BHP	47.06%	Air cool at 2215 psia only
D.4	High ratio compression at 90% efficiency - intercooling on final compression stage	24,730 BHP	6.36%	Air cool at 220 and 2215 psia
E.1	Centrifugal compression to 250 psia, Liquid cryo-pump from 250- 2215 psia	16,198 BHP (Includes 7,814 BHP for Refrigeration) ¹	-30.33%	Air cool up to 250 psia, Refrigeration to reduce CO2 to -25degF to liquify
E.2	Centrifugal compression to 250 psia with semi-isothermal cooling at 100 degF, Liquid cryo-pump from 250- 2215 psia	15,145 BHP (Includes 7,814 BHP for Refrigeration) ¹	-34.86%	Air cool up to 250 psia between centrifugal stages, Refrigeration to reduce CO2 to -25degF to liquify

- Provide enabling technology to compress CO₂ from a coal fed IGCC power plant cost effectively minimizing the financial impact of CO₂ sequestration
- Supports carbon capture to eliminate green-house gas emissions from power plants, which make up 35% of total CO₂ emissions
- Minimize financial impact to US industry and consumers of electricity
- This program identified up to 35% power savings over a conventional CO₂ compression solution
- Thermodynamic process more important than compressor efficiency
- Program proceeding into Phase 2 to perform validation testing

Questions???

www.swri.org

Dr. J. Jeffrey Moore Southwest Research Institute (210) 522-5812 Jeff.Moore@swri.org