

Shock Compression Technology Applied to CCS Applications

Ramgen Power Systems, Inc. Bellevue, WA

- IGCC & PC retrofits (geologic carbon sequestration)
 - PR ~ 100:1 (suction pressure ~ 15 psia)
 - Two comparably loaded stages
 - Stage efficiency ~ 85%
 - Mass flow range ~ 30%

Prop	erty Summary by Station – 3,000 hp
	Otation

Property	Station					
	1	2	3	4	5	
P (psia)	14.6	150.7	144.6	1,489.7	1,460.8	
Τ (F) ρ (pcf)	100.0 0.1082	480.8 0.6613	91.8 1.1277	489.8 6.7633	194.7 12.7410	
a (fps) V (fps)	898.3 179.2	1138.7 113.9	873.2 174.2	1144.5 114.5	855.7 50.0	
Р _t (psia) Т (Б)	15.0 100 0	151.7 181 0	148.3 95.0	1,499.3	1,465.7 195.0	
Mass (pps)	12.4	401.9	33.0	431.0	12.4	

PT Diagram & Supercritical Phase

Separate Phases Visible-Meniscus Clearly Observed

Increase in

Diminished

Meniscus

Similar

Avoids liquid (sub-cooled) phase

At Critical P & T-**Distinct Gas & Liquid** Phases no Longer Visible "Supercritical Fluid" with **Properties of Both** Liquids & Gases

0900-01217

Ramgen Proprietary Material

•

Performance - Shock Waves to Supersonic Inlets

Schlieren Photo of Projectile with Shocks

Schlieren Photo of Inlet Center-body and Cowl with Shocks

2-D Mixed Compression Inlet Model

- Initial External Shock System Followed
 by Internal Shock System
- Throat Bleed Slot For Inlet Starting
- Side Window For Schlieren Photography

Typical Supersonic Inlet Performance

Supersonic Inlets Are Efficient Compressors

Range / Turndown Strong Function of PR

• Rampressor achieves high stage PR & efficiency with improved range compared to centrifugal stages

Ramgen Proprietary Material

Development of Rim Compression Concept

Rampressor 3-D Geometry & Flowfield

- Compressive flowpaths integrated onto rim of rotor at shallow helix angle
- Strakes form sidewalls for shock compression ducts & separate high pressure discharge from low pressure suction

Ideal-Inviscid 2-D Inlet Design

• 2-D Inviscid Used To Determine Starting Geometry for 3-D Viscous Simulations

0900-01217

Ramgen Proprietary Material

PSN – Rotor Flow Visualization

Loss Modeling - Stage Components

• Design point PR assumes conventional static components & supersonic shock compression with on-rotor active BL control

Design Point Pressure Ratio & Efficiency

- Design point PR assumes conventional static components & supersonic shock compression with on-rotor active BL control
- Efficiency projections include all key loss mechanisms & cycle charges
- RPS 1D design tool (CADRE) integrates component performance inputs & uses real gas properties (NIST) to determine station by station property variation & integrated system performance

	CO2 Demo Unit Performance Metrics		Industry Standard Rasis for	Future
	Stage 1	Stage 2	Ramgen's Metrics	Potenial
PSN Total Pressure Recovery	97.0%	95.4%	97%	97%
Rotor	82.6%	82.5%		87%
Pre-Inlet Pt Recovery	96.0%	96.0%		94%
Tip Leakage Pt Recovery	97.0%	97.0%		97%
Shock Compression Pt Recovery	89.2%	89.3%	95.50%	95.50%
Boundary Layer Control Power Loss	2.0%	2.0%	1%	1%
DDS Total Pressure Recovery	95.8%	96.7%	96%	96%
Rotor Only Pressure Ratio (total/total)	10.92	10.87		
Rotor Only Adiabatic Efficiency	88.7%	88.7%		93%
Stage Pressure Ratio (total/total)	10.11	10.11		
Stage Adiabatic Efficiency	85.4%	85.4%		89%

Critical Background Activities

- Rampressor 1
 - Began Q2 2002 / completed Q1 2004
 - Designed for inlet $M_{rel} \sim 1.6$, achieved PR ~ 2.3
 - Validated design tools with PR, mass flow & efficiency
 - Demonstrated multi-flowpath starting & stable operation
 - Operated in controlled supply & self aspirated modes
 - Illustrated wide turndown potential & benign surge characteristics
- Rampressor 2
 - Began Q1 2004 / completed Q2 2007
 - Test schedule required release of rotor aero design prior to completion of design optimization – result: low PR & efficiency compared to potential
 - Designed for inlet $M_{rel} \sim 2.4$ -2.7, achieved significant rotor PR data analysis ongoing
 - Validated design tools & techniques for Mach no's traceable to proposed CO₂ product
- Rotor Flowpath Performance Improvement Program
 - Identified & demonstrated techniques to achieve target product rotor performance levels using 3D viscous CFD validated by RP-1 & RP-2

Notional Family of Frame Sizes

- Highly scalable design supports wide range of system sizes and capacities
- Decreased stage count results in dramatic reduction in size compared to conventional multistage axial

Frame	Nominal Power (hp)	Nominal Capacity (Ib/hr)	Pressure Ratio	Stages	LP Dia. (in)	HP Dia. (in)
1	3,000	44 280	100	2	13.7	7.8
2	6.000	88.560	100	2	18.9	7.8
3	10,000	147,600	100	2	24.4	7.8
4	15,000	221,400	100	2	29.9	9.2
5	20,000	295,200	100	2	34.5	10.6
6	30,000	442,800	100	2	42.3	13.0

 Comparative size illustration – Ramgen 2 stage 10,000 hp system vs. conventional multi-Stage geared cetrif. 8 stage 10,000 hp system

Ramgen: PR=100 / 10,000 hp / 2 Stage

Multi-Stage Centrif: PR=200 / 6,200 hp / 10 Stage

Ramgen Proprietary Material

QUESTIONS?