gti

Partial Oxidation Gas Turbine for Power and Hydrogen/Syngas Co-Production

Presented to ICEPAG 2006 by

J. Rabovitser, S. Nester, S. Wohadlo, M.Tartan, GTI D. White, Tritek Energy K. Smith, W. Nazeer, Solar Turbines

September 06, 2006 Newport Beach, CA

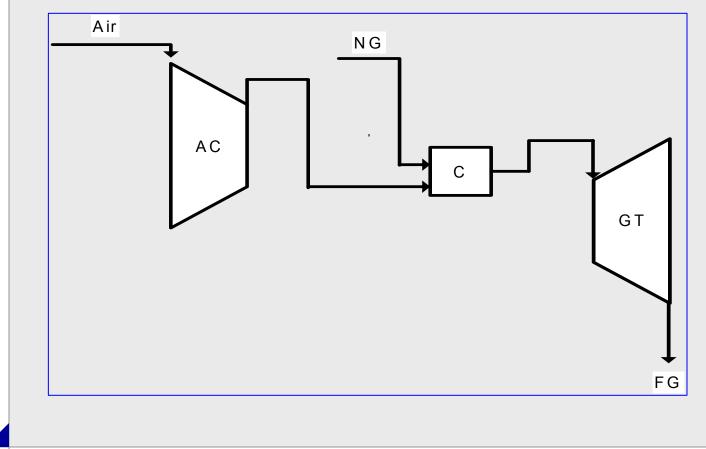
Outline

- > POGT development
- > POGT for power generation
- > POGT for hydrogen/syngas and electricity generation
- > POGT for high-temperature industrial furnaces
- > POGT-based CCHP

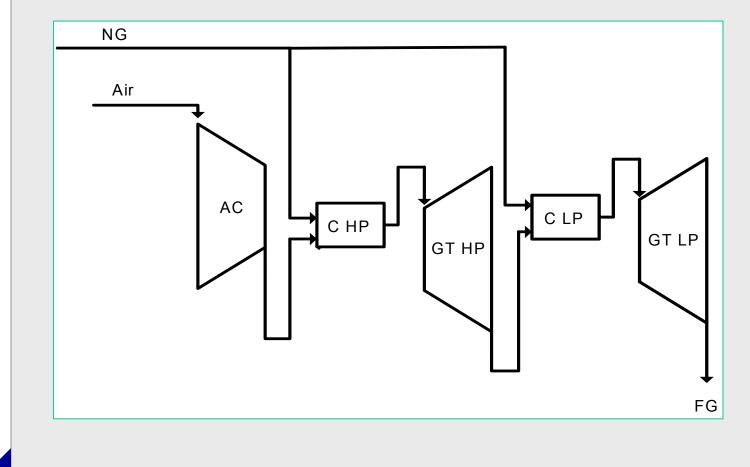
gti₅

Project Sponsors and Partners

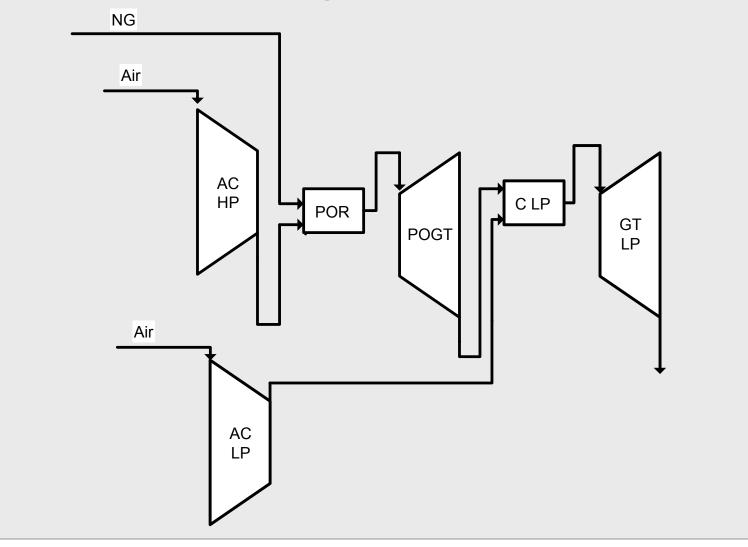
- > California Energy Commission
- > DOE NETL and DOE EERE
- > SoCalGas
- > Solar Turbines
- > Siemens
- > Elliott Microturbine
- > Alturdyne


> GTI

1 Development of a Partial Oxidation Gas Turbine for Electricity and H₂-Enriched Fuel Production



Conventional Gas Turbine



Reheat Gas Turbine

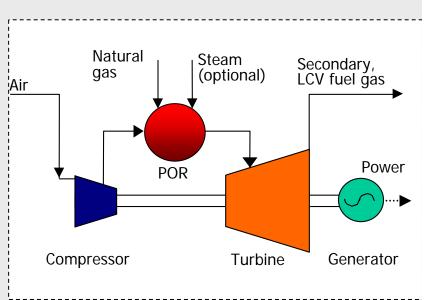
Partial Oxidation Gas Turbine in a Two-Stage Gas Turbine

IVTAN System Test Results

> Power output, MWe	60		
Inlet pressure, atm	4.8		
> Outlet pressure, atm	1.2		
> Inlet rotor temperature, °C	550		
> Flow rate, kg/s	62.0		
> Composition of working fluids, vol.%			
H ₂	14		
CO	21		
CO ₂	21		
H ₂ O	2		
N ₂	59		
Other	1		
	100		

Goals for Natural Gas Fired Partial Oxidation Gas Turbine Systems

- > System Efficiencies (%LHV) up to:
 - 55% electrical efficiency for steam injection simple cycles
 - 75% electrical efficiency for POGT/FC hybrid
 - 88% fuel to electricity efficiency in cogeneration
 - 90% thermal efficiency for distributed multi-power generation
- > Ultra-low emissions:
 - NOx < 2 vppm @ 15% O₂, no catalytic treatment


Major Characteristics and Issues of POGT System

- > Operation on sub stoichiometric combustion products
- > Production of H₂-enriched fuel / syngas
- > Low air compressor power required
- > Utilization of non-oxidizing media (steam, flue gases, etc.) for combustor and turbine cooling
- > Soot formation
- > Hydrogen embrittlement

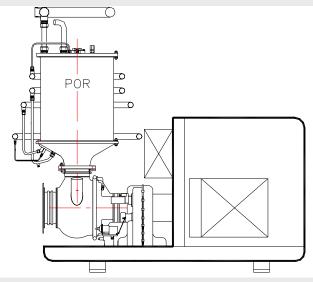
POGT Overview

> An advanced gas turbinebased systems for on-site co-production of:

- Power
- A hydrogen-rich fuel gas, syngas
- Compressed air
- Hydrogen (where needed, after additional downstream processing and purification of the exhausted fuel gas)
- > Platform provides a flexible ratio of generated power and fuel gas production in highly efficient and cost effective manner for different applications

POGT Development Status

- > Construction of POGT Test Cell at GTI's Energy Campus - completed
- > Design, Fabrication & Installation of a 7 MWth Prototype POR Unit - completed
- > Design & Conversion of a Prototype 200 kW Spartan Generator Unit for POGT Operation – completed



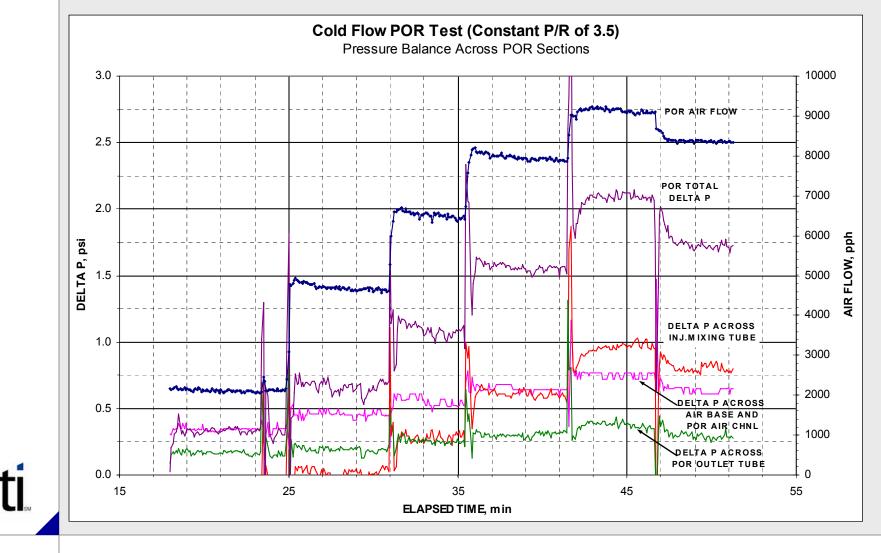
(continued)

gt

POGT Development Status

- > POR Unit Parametric and Start-up Testing – *finishing*
- > Design and Integrate POR with converted Spartan Turbine Unit – ongoing

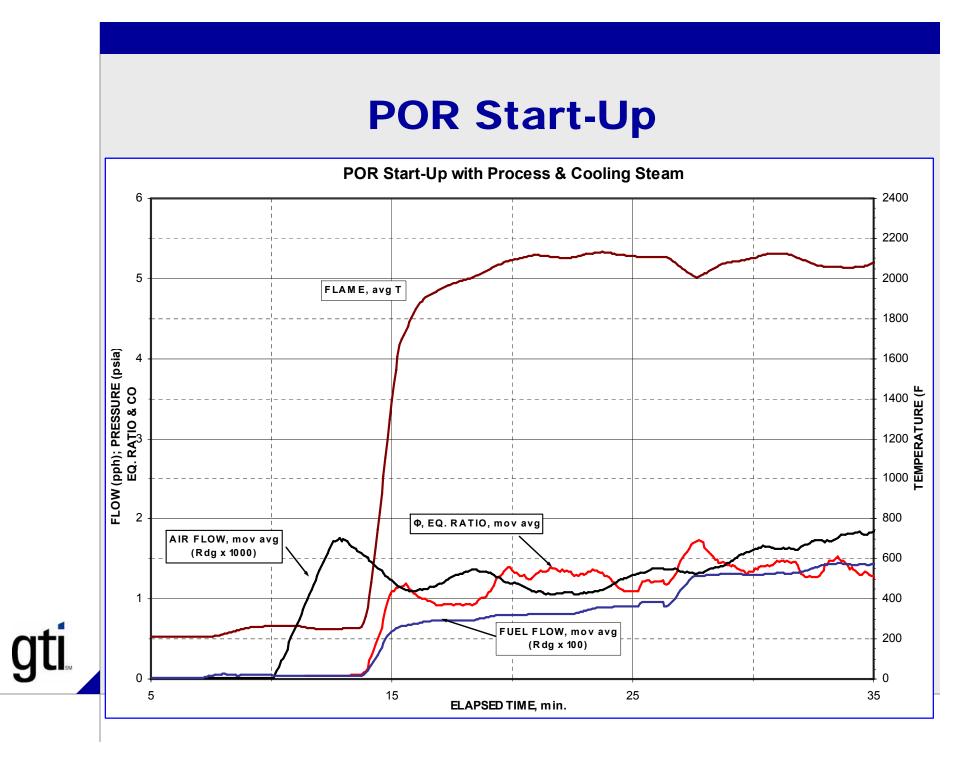
- > POGT-Spartan unit installation, shakedown and parametric testing – 1st Qtr of 2007
- > Feasibility Design Study of retrofit an existing gas turbine to POGT duty – ongoing


gti₅

POR Testing Outline

- > Cold tests
- > Torch ignition
- > Light-off
- > Lean operation up to 6 MMBtu/h
- > Conversion from lean to rich
- > Rich operation up to 16 MMBtu/h

POR Testing Cold Tests

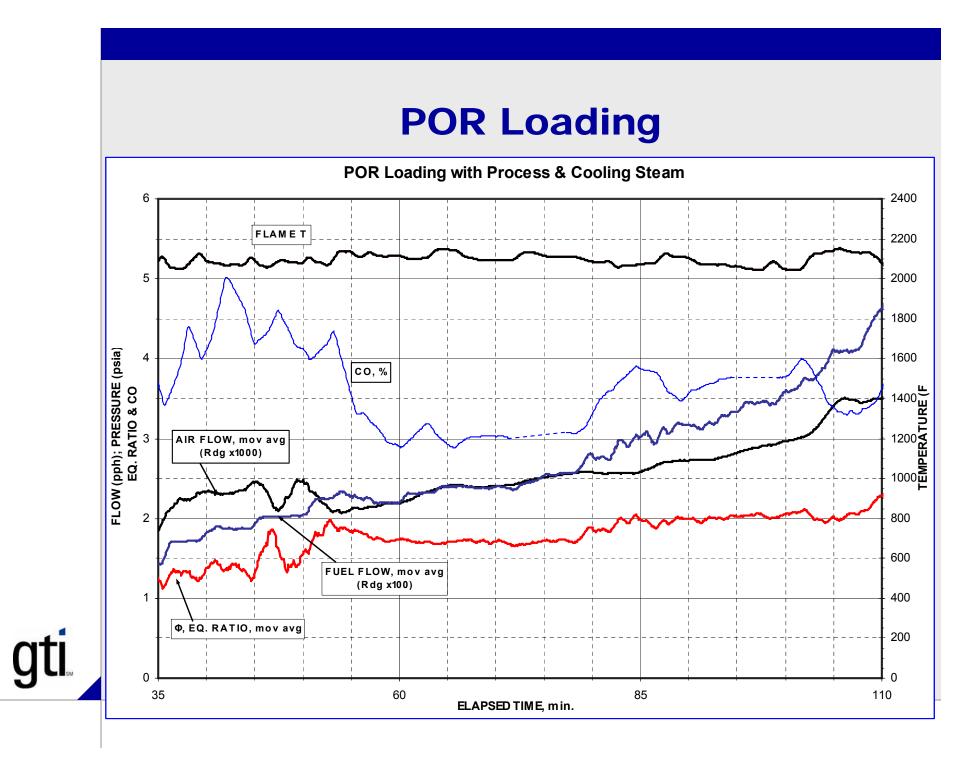

POR Testing Torch Ignition

- > Torch ignition was tested at the following conditions:
 - With and w/o air flow through POR
 - Air/inert gas (N2 and/or steam) mixture in the POR
 - Inert gas only(N₂ and/or steam, and no air) in the POR
- Stable ignition and operation was achieved at all above conditions
- > Torch flame heat input ~120 kBtu/h at selected air and NG parameters

POR Testing Light-Off

- > Stable light-off was achieved at the following conditions:
 - Air flow rate 15 40 ppm
 - NG flow rate 0.8 1.5 ppm
 - Fuel/air ER 0.4 0.9
 - Inert gas (N2 and/or steam) flow rate
 - 2 10 ppm

POR Testing Lean Operation


- > Lean operation was tested at the following conditions:
 - Air flow rate 20 70 ppm
 - NG flow rate 1.0 4.5 ppm
 - Fuel/air ER 0.4 0.9
 - Inert gas (N2 and/or steam) flow rate 3 30 ppm
- > Lean operation before conversion to rich :
 - Air 35 ppm; NG 1.5 ppm; Steam 25 ppm;

ER 0.95

POR Testing Rich Operation

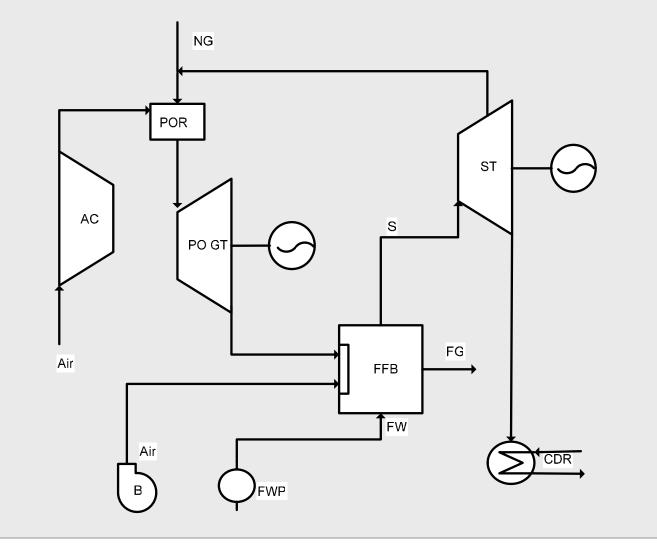
- > Rich operation was tested at the following conditions:
 - Air flow rate 30 85 ppm
 - NG flow rate 2.0 12 ppm
 - Fuel/air ER 1.5 4.3
 - Inert gas (N2 and/or steam) flow rate 5 40 ppm

POR Exhaust Gas Composition

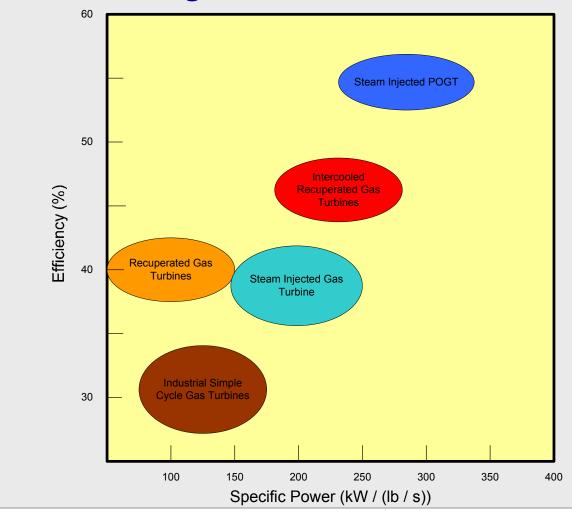
	Mol%	Mol%	Mol%
Hydrogen (H ₂₎	5.70	8.18	11.14
Oxygen/Argon	2.15	2.49	0.99
Nitrogen (N ₂)	77.30	73.98	69.30
Carbon Monoxide (CO)	4.76	6.86	8.81
Methane (CH ₄)	2.21	2.23	6.06
Carbon Dioxide (CO ₂)	7.64	5.98	2.71
Ethylene (C ₂ H ₄)	0.141	0.058	0.161
Ethane (C ₂ H ₆)	0.024	0.043	0.011
Propane (C ₃ H ₈)			0.125
Acetylene (C ₂ H ₂ , ethyne)	0.119	0.178	0.672
i-pentane (C ₅ H ₁₀)			0.009
hexane (C ₆ +)	0.004		
Total	100.0	100.0	100.0
HHV, Btu/cf (calc)	60.9	75.7	142.5
EQ. RATIO (Φ)	1.34	2.62	3.45
PR	2.5	3.20	3.01
Flame Temperature, °F	1901	1998	2009
Firing Rate, MMBtu/h	5.14	8.84	8.40

POR Testing Findings

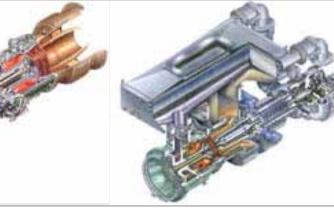
- > Confirmed POR test rig mechanical integrity and operation readiness for required air, fuel, steam and N2 flow rates
- > Determined process conditions and protocol for reliable light-off at different air, fuel, steam and/or N2 flow rates
- > Achieved stable lean operation up to 6 MMBtu/h firing rate
- Transitioned from lean to rich combustion mode in POR and achieved stable operation at ER of 1.5 – 4.3
- > Achieved stable rich operation up to 16 MMBtu/h


Areas of POGT Applications

- > Power generation, cogeneration, multi-power generation utilizing
 - -Gas turbines
 - —Internal combustion engines
 - —Fuel cells: POGT/SOFC Hybrid
- > Co-Production of Power and Hydrogen/Syngas
 - -Remote self-powered units
 - —Distributed Hydrogen and Power generation
- > Industrial cogeneration
 - —High temperature (glass, cement, chemicals, pyrometallurgy, incineration, etc.)
 - —Medium temperature (aluminum, direct ore reduction, heat treatment, etc.)
 - —Boilers, process heaters, chillers


#2 POGT for Power Generation

Single Stage POGT in a Combined Cycle with a FFB


Performance Comparison of Steam Injected POGT and Other Advanced Cycles

Solar's Product Line Turbines to be Operated in POGT Mode

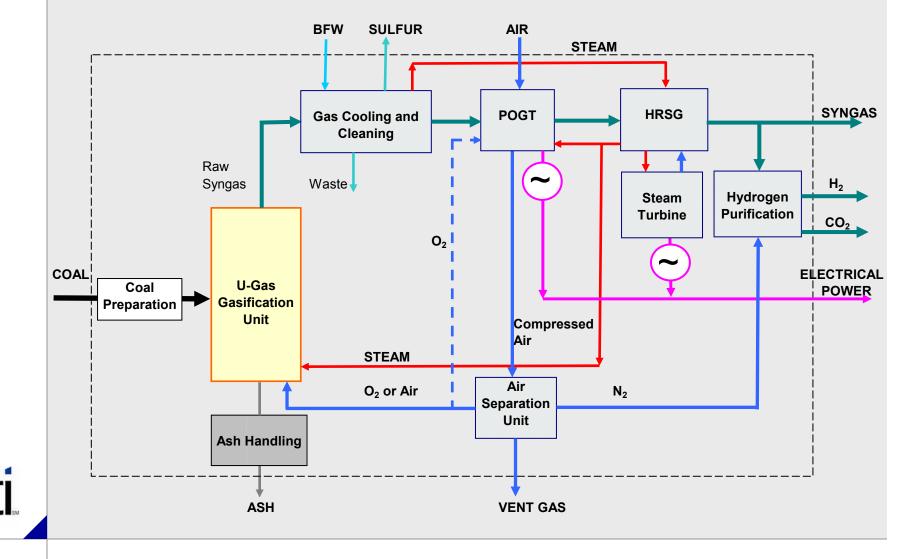
Engine Model	Power kW _e	Compr-r Work, kW	Turbine Power kW	Exh. Flow, lb/h	Exh. T,°F	Eff., %
Spartan 350	200	518	734	20,860	1,165	15.5
Centaur 40	3,520	5,960	9,750	147,720	820	27.9
Mercury 50	4,600	4,980	10,100	139,710	725	38.0

Efficiency Comparison of Solar's Turbines Operated in Design Condition and POGT Mode

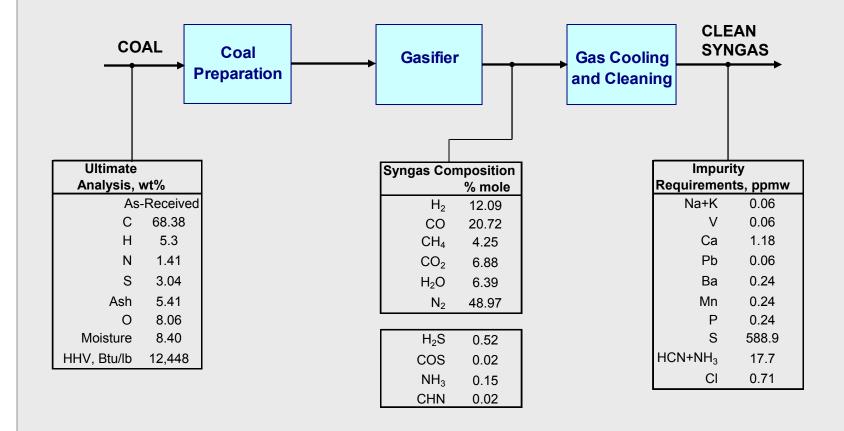
Engine Model	Eff., %	Eff. POGT, %
Spartan 350	15.5	25.0
Centaur 40	27.9	42.9
Mercury 50	38.0	52.0

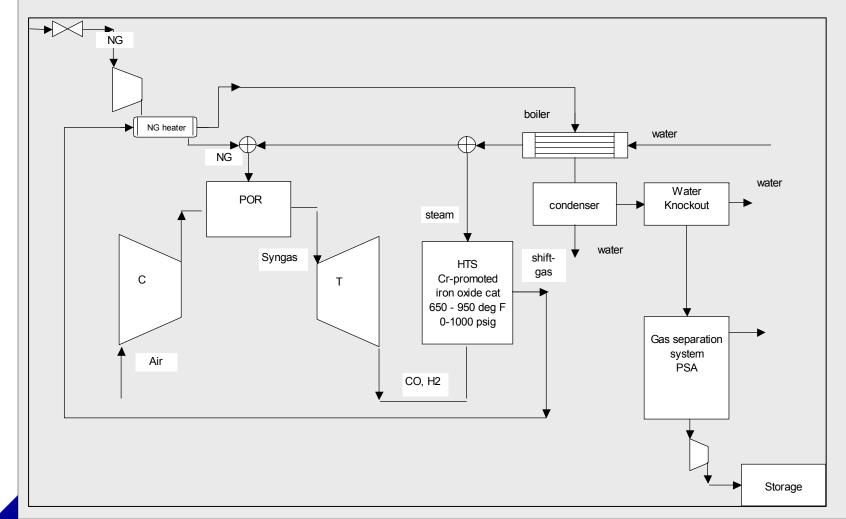
POGT /SOFC Hybrid Application, Combined Cycle

Performance Summary for Conceptual POGT-SOFC System


	Competitive GT-FC	POGT-SOFC
System electrical efficiency, % LHV	70	78
NO_x emissions, @15% O_2 , vppm	<9	<2
Excess air, %	260	15
Lean premixed combustion	required	not required
GT and FC size for comparable power output	1.00	0.83
Power output split between GT and FC	30/70	45/55
Pre-reformer required for FC stack	Yes	No
Production of H ₂ -enriched gas	No	Yes

gti.


#3 POGT for Combined Hydrogen and Electricity Generation



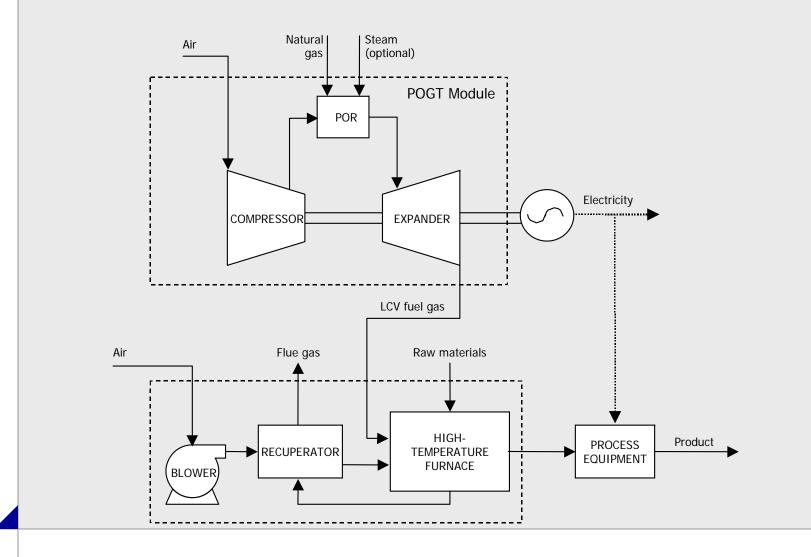
IGCC-POGT Coal and Syngas Gas Composition

POGT Based Hydrogen and Electricity Generation

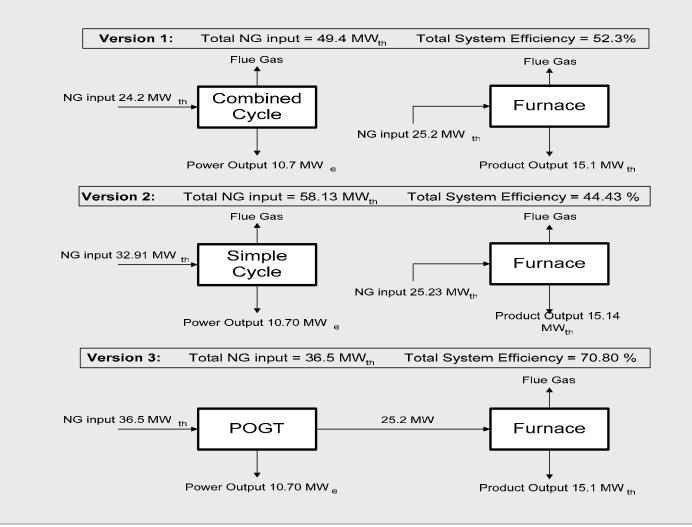
POGT Based Hydrogen and Electricity Generation

Performance for Spartan and Centaur 40

	Spartan	Centaur
NG, SCFH	32,430	349,805
Air, SCFH	106,955	1,153,658
NG, LHV, mmBtu/hr	30	319
POGT power, kW	427	6,944
Hydrogen produced, Lb/hr	452	4,879


Estimated costs for Spartan and Centaur 40

		Spartan	Centaur
Costs in \$/kg H2	ATR/PSA	POR/PSA	POR/PSA
H2 cost	3.59	2.57	2.12
Capital recovery	1.5	0.90	0.76
Natural gas	1.17	1.11	0.83
electricity	0.41	0.10	0.07
O&M	0.31	0.26	0.26
Taxes and Insurance	0.2	0.2	0.20

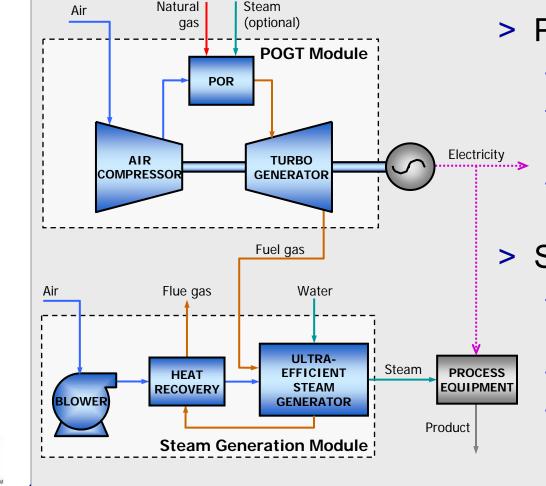

#4 POGT Cogeneration with High-Temperature Industrial Furnaces

POGT-HTF Cogeneration Cycle

Efficiency Advantage of POGT-HTF Cycle

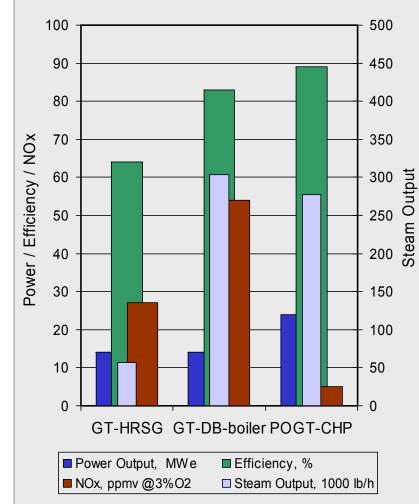
gti₅

#5 POGT Cogeneration with Steam or Hot Water Boilers, and/or Absorption Chillers



POGT-CCHP Benefits

- Partial Oxidation Gas Turbine (POGT) integrated with ultra-efficient boiler
- > Superior potential
 - Efficiency: up to 89% (HHV)
 - Emissions: less than 5 ppmv (@3% O2) NOx and CO
 - Flexibility: power/heat ratio from 0.2 to 1.2
 - Packaging: focus on pre-engineered packages in 0.4 to 15.0 MWe range



POGT-CHP Cycle with Advanced Steam Generation

- > POGT module
 - Non-catalytic POR
 - Reduced compressor demand
 - Extremely low NOx formation
- > Steam gen module
 - POR exhaust gas burned to raise steam
 - Low excess air
 - Advanced heat recovery system

POGT-CHP Comparison with Competing CHP Cycles

- > Comparison based on nominal 14-MW turbine
 - Efficiency
 - Emissions
 - Flexibility
- > Annual savings^{*}:
 - 35 trillion Btu
 - -2.0 million tons CO₂
 - 11,000 tons NOx
 - \$238 million total cost savings
- * Based on 10% penetration of predicted CHP market by 2015