

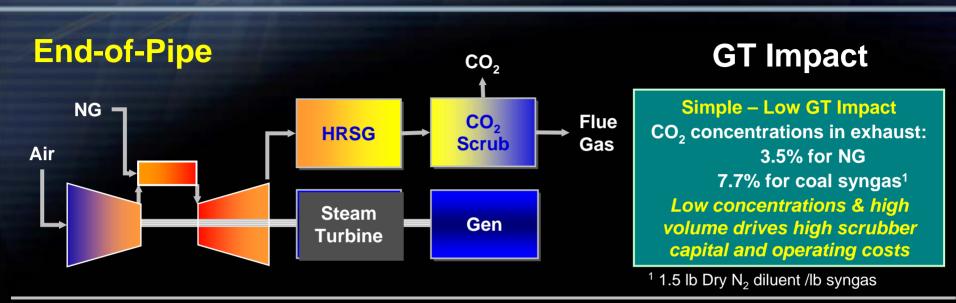
The Response of Gas Turbines to a CO₂ Constrained Environment

Gasification Technology Conference October 13-14, 2003

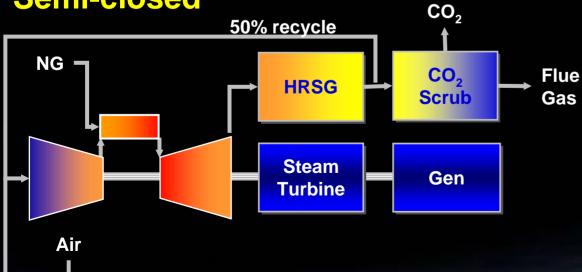
Norm Shilling Robert M. Jones Process Power Plants GE Power Systems

Presentation Outline

Topics to be discussed


- Options for CO₂ Abatement
- H₂ GT performance implications
- Hydrogen combustion
- Total plant considerations
- Key tradeoffs and development needs
- Hydrogen experience in the process industry
- IGCC GT developments
- Summary

Low CO₂ options for GTs

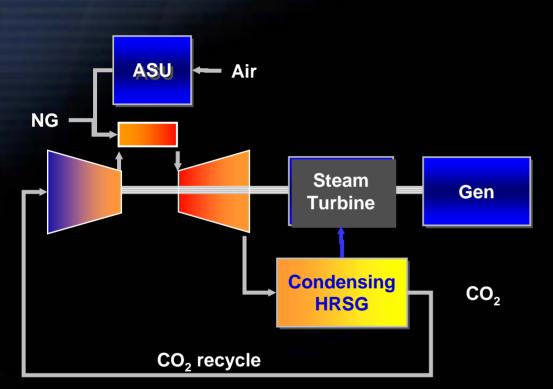

Process	Description	GT Fuel	Oxidant	Characteristics
"End-of-Pipe" Capture	Open-cycle with Chemical or physical (adsorption) of CO ₂	NG	Air	Simple process Large CO ₂ plant Poor economics for syngas
"Semi-closed"	Partial-recycle with Chemical or Physical CO ₂ removal process	NG	Air	Simple process Impact on GT performance Smaller CO ₂ plant
Pre-combustion Decarbonization	High hydrogen fuel from SG or NG Reform/Shift	H ₂	Air	Requires diffusion combustion Steam or N_2 diluent to control T_{fire} and NOx
Closed Post- Combustion "Oxy-Fuel"	Condensing heat exchanger to remove H ₂ O Slip stream CO ₂ removal CO ₂ recirculated as working fluid	NG/SG	O 2	Smallest CO ₂ plant No NOx Profound changes to GT with CO ₂ working fluid

Many Other Variations

Gas Turbine Considerations

Semi-closed

Doubles CO₂ concentration but impacts GT performance: *Theoretical impact of working*


fluid on GT performance

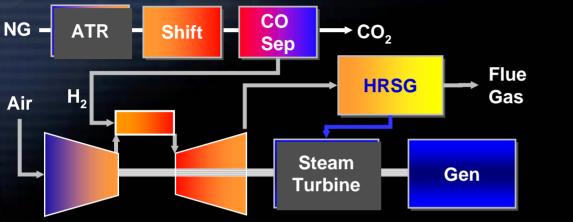
	Cp	Cv	k	η_{Max}^{1}
N ₂	0.27	0.19	1.38	53%
Air	0.27	0.20	1.34	50%
CO ₂	0.28	0.24	1.19	35%

 ² Isentropic expansion efficiency at 15.5 PR with 100% working fluid

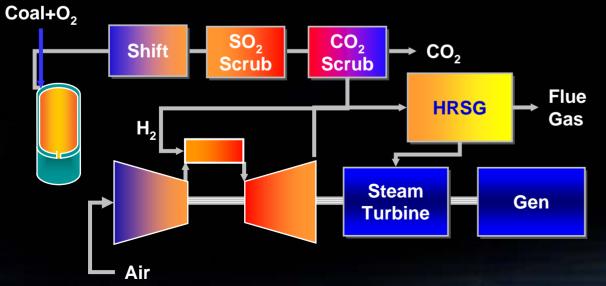
Gas Turbine Considerations

Oxy-Fuel

Impact on current GTs


Operation at normal synchronous speed will choke compressor CO₂ Speed of sound of 80% of air CO₂ Density 50% higher than air Challenging compressor design problem Significant combustor

development needed Significant aerodynamic change with operating fluid Acoustic feedback potential with lower Mach number Hot gas path Mach number limitations in back end Modified heat and mass transfer No experience database for large industrial turbines


Completely New Turbine

Basic Gas Turbine Considerations

NG Pre-combustion De-carbonisation

IGCC Pre-Combustion De-carbonisation

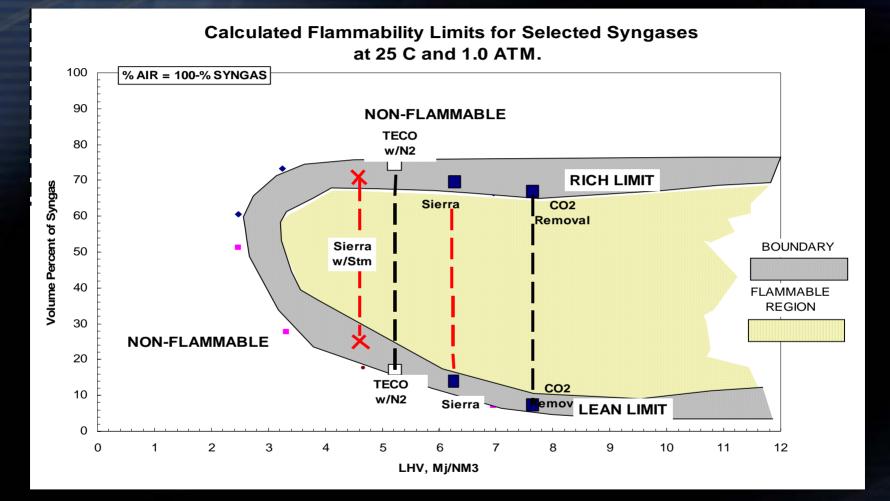
GT Impact

Requires gas turbines to use 90%+ hydrogen fuel E-class GTs already in service with 65%-95% H₂ **Demonstrated acceptable** combustion at F-class conditions **Requires diffusion** combustor with diluent injection DLN limited to 10% H₂ IGCC combustors suitable at 45%-50% net H₂ N₂ diluent preferred vs. steam

Heat transfer increase from steam:

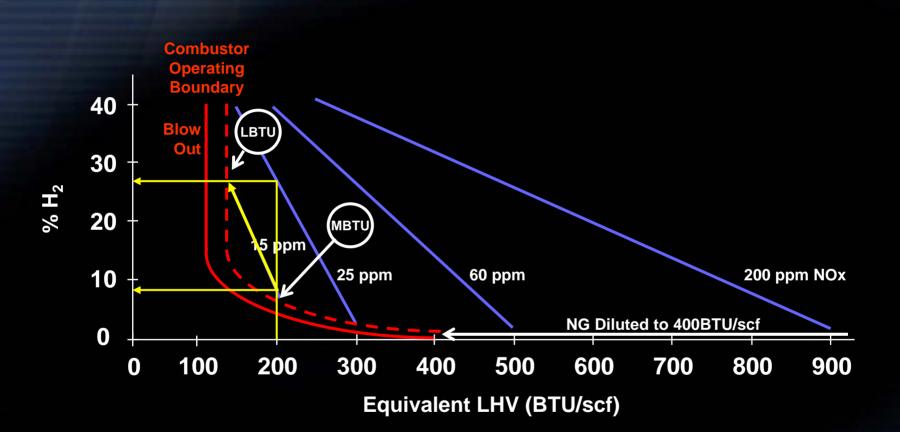
	Cp	μ	k	${\cal D}^1$
N_2	0.28	2.80	0.04	0.06
H₂O	0.56	2.47	0.06	0.09
CO ₂	0.30	2.86	0.04	0.06

¹ Fluid property heat transfer factor for turbulent flow over a tube


Experience with H₂ in Process Plants

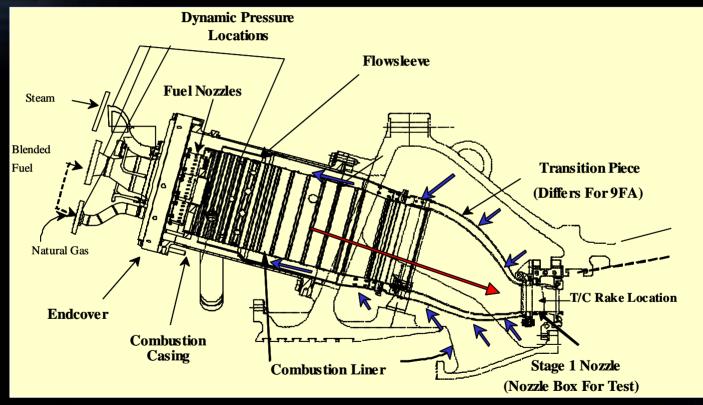
Site	Country	G.T. Model	No.	Commission Year	Gas Type	LHV (kJ/Nm3)	Main Design Features
Geismar	US	MS 6000B	1	1998	PG	11,138	Up to 80% H ₂
Daesan 2	Korea	MS 6000B	1	1997	RG	16,500	Up to 95% H_2
Schwarze Pumpe	Germany	MS 6000B	1	1996	SG	12,492	65% H ₂
Cartagena	Spain	MS 6000B	1	1993	RG	25,100	66% H ₂
Tenerife	Spain	MS 6000B	1	1994	RG	29,000	70% H ₂
San Roque	Spain	MS 6000B	2	1993	RG	24,000	70% H ₂
Antwerpen	Belgium	MS 6000B	1	1993	RG	20,700	78% H ₂
Puertollano	Spain	MS 6000B	2	1994-1994	RG	16,700	Up to 60% H ₂
La Coruna	Spain	MS 6000B	1	1991	RG	25,000	Up to 52% H_2
Rotterdam	Holland	MS 6000B	1	1990	RG	28,000	59% H ₂
Zarqa Refinery	Jordan	PGT10	1	1997	RG	15,258	82% H ₂
Donges	France	GE10	1	2001	RG	16,788	76% H ₂

Gas types: RG=refinery gas; PG=process gas; SG=syngas


450,000 Hours on High Hydrogen Gases

Flammability Characteristics

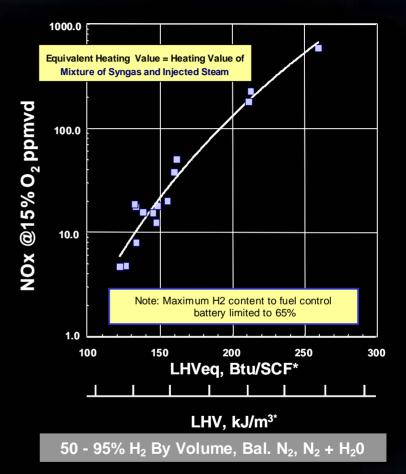
Low Lean Limit with Low CO₂ Fuel


Hydrogen Effect

H₂ Extends Lower LHV Capability

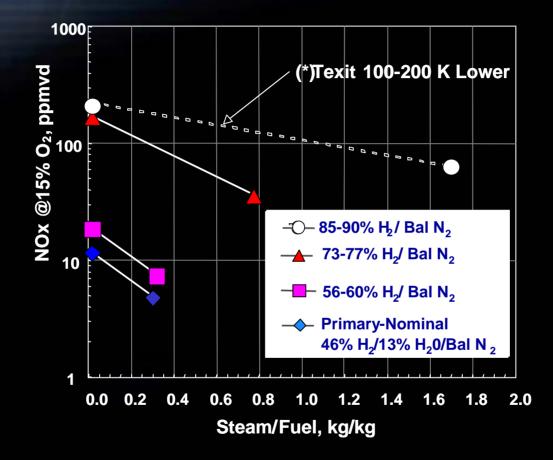
H₂ Combustion for Advanced Machines

Modified Diffusion Combustor for Low Heating Value Fuels with High Hydrogen Content



Shared for 6FA, 7FA & 9FA

6FA H₂ Combustion Testing


Video Capture of Flame Structure - 85-90% H₂

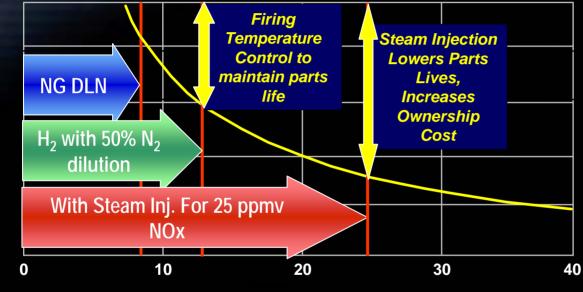
Combustion Capability for Low CO₂

Emissions Characteristics of H₂

45%-50% Net H₂ Best for GT Emissions

Comparative H₂ Properties

	Typical	Combustion Products				
Fuel	LHV Btu/lb	LHV Btu/scf	Density Ib/scf	Specifc Volume (scf/lb)	Mass Ratio N ₂ / Fuel	H₂O % Vol
100% H ₂ ^[1]	51,495	273.5	0.0053	188.68		16.94
50% H ₂ / 50% N ₂	3,457	137.0	0.0396	25.25	13.90	12.30
Medium BTU Syngas (Neet)	4,671	249.3	0.0534	18.73		
Syngas Post-Dilution (N ₂ to 15ppm NOx)	1,776	114.6	0.0645	15.50	1.63	6.01
NG DLN	18,507	873.0	0.0472	21.19		8.30


^[1] Hypothetical only -- would not be fired at 100% H₂

Recommended Split of N₂ Injection and Blend

Hydrogen RAM

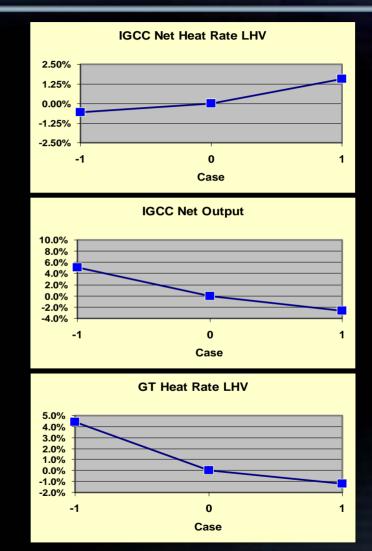
Relative Life Fraction

Control Response to moisture to maintain HGP life

Vol % H₂O in Exhaust

 Alternative to Lower Life: Reduced Firing Temp to Maintain Design Metal Temp/ 100% Life

Total Cost Tradeoff


Example: Diluent Impact from IGCC

Net impact of NOx control and ASU integration

Configuration: PG7241 IGCC Syngas expander ISO operation at torque limit ChevronTexaco Quench GT Integration with Elevated Pressure ASU 3PRH - 1815psia/1000 - 1050F/1000 - 1050F; 1x40" LSB Diluent injection to 15 ppm NOx

Main effects chart:

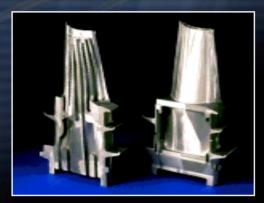
Complex GT-IGCC System Interactions

Fuel Management Challenges

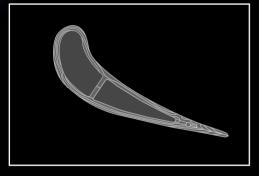
H₂ vs. Natural Gas

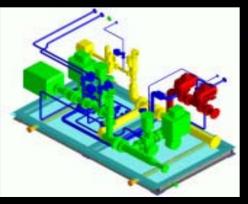
- Very Low Ignition Energy
- ~3 x More Volume Per BTU
- Non-luminous Flame
- Material Compatibility
- Buoyant + Rapid Dissipation

Fuel Control


- H₂ Free Start-up Fuel
- Ignition-Free Purge & Transfer

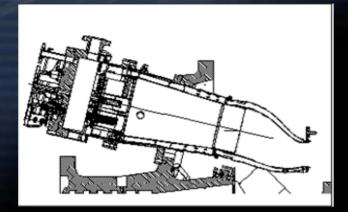
Safety

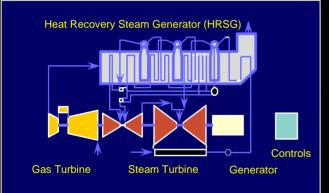

- Codes & Standards Compliance
 - Sealing
 - Explosion Proofing
 - Ventilation
 - Leak Detection
 - Protection Algorithms


Operability and Safety Require Development

Development Needs

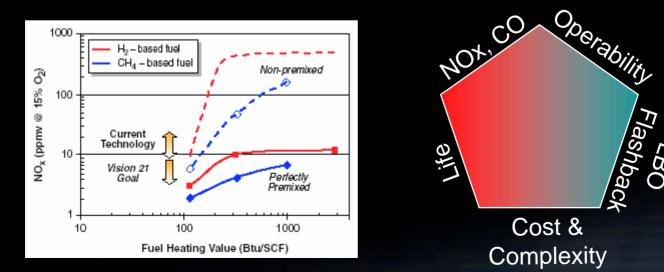
Understanding of advanced materials & TBC interactions with high moisture/high temp gas




Aero-thermal studies and experimental validation to optimize tradeoffs between efficiency and RAM

Assessment and definition of fuel control and balance-of-plant safety requirements

Development Needs (Continued)


Feasibility assessment and development of lean-premix hydrogen combustion

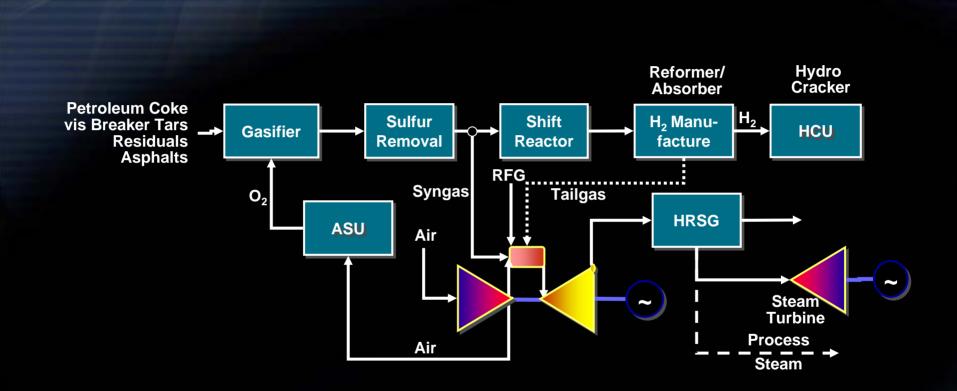
Process evaluations for optimal gas turbine integration and demonstration to validate concepts

Future Combustion Approaches

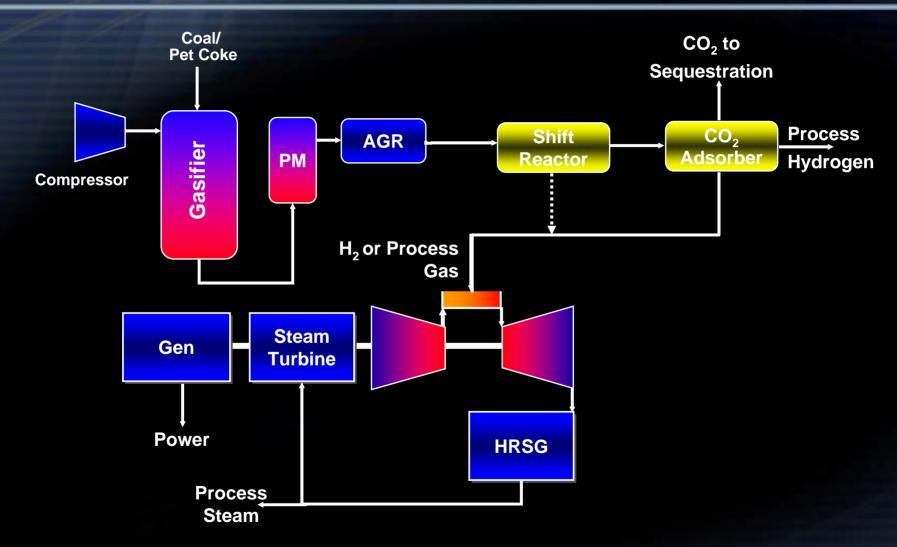
- Present combustors rely on 30 yr old diffusion flame technology
- NOx control requires significant diluent
 - Performance issue where N_2 is not available as diluent
- Modern approach: increase efficiency and decrease NO_x using advanced technology
 - Provide reliable data for hydrogen combustion
 - Design, evaluate and optimize sub-scale combustors
 - Provide technology for GT integration in hydrogen economy
 - Provide technology that can be used in various gas turbines

₽ B C

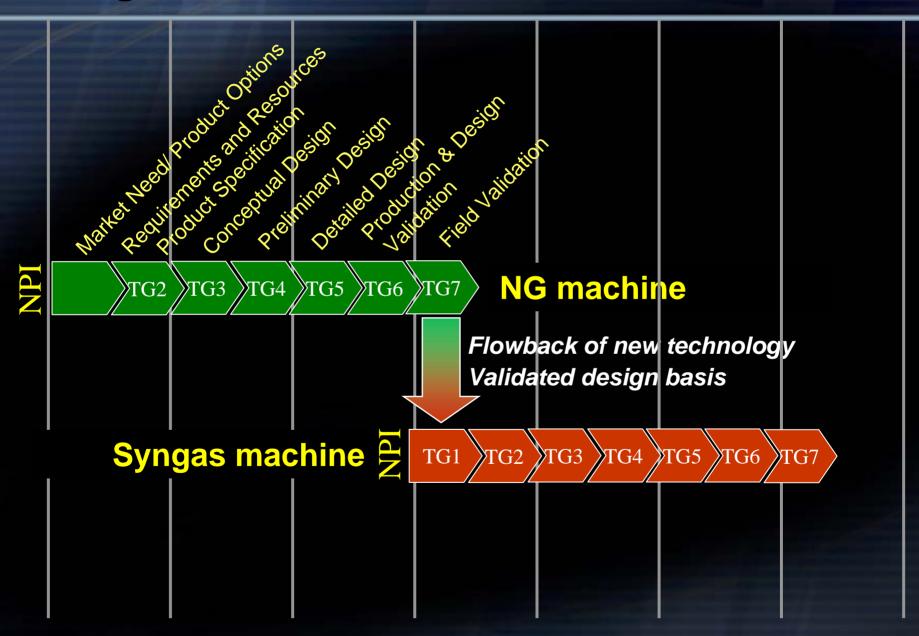
Combustion Test Capability


GE Investment in IGCC

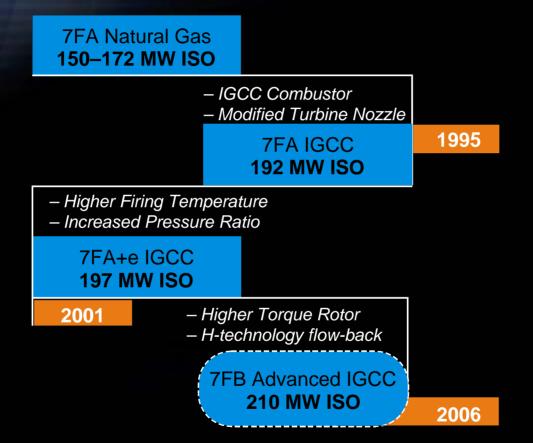
- State-of-the-art combustion development facility at Greenville, S.C.
- Standard machines for optimal integration of turbine and gasification plant
- Full scale, pressure and temperature validation of combustion performance
- At GE's Global Research Laboratory - Advanced concepts for low emissions combustion for LHV fuels


Full-Scale Performance Validation

H₂ in Refinery IGCC


H₂ for Increased Refinery Yield

Multi-Generation Process Concept



Flexibility to Meet Changing Process Demands

Design Evolution of IGCC GTs

GT IGCC Evolution

Advancements Enhancing IGCC Economics

MS7001FB – Latest Air-Cooled 60 Hz Gas Turbine

PG7211(F) PG7221(FA) PG7231(FA) PG7241(FA) PG7251(FB)

Turbine SC Output, MW	150	159	167.8	171.7	184.4
1X CC Output, MW	-	253.4	258.8	262.6	280.3
1X CC Efficiency, LHV	-	55.0	56.0	56.0	57.3
Firing Temperature, C	1260	1287	1316	1327	1370+
Pressure Ratio	13.5:1	15:1	15:1	15.5:1	18.5:1
Compressor Stages	18	18	18	18	18
Turbine Stages	3	3	3	3	3
Combustion Chambers	14	14	14	14	14
Year of First Shipment	1989	1992	1996	1999	2001

7FB – 6 Units in Commercial Operation July '03

Summary

 Hydrogen / N₂ fuel is an acceptable fuel for gas turbines using IGCC Combustors

imagination at worl

- Excellent experience record on high Hydrogen process gases
- Reliability, Availability and Maintainability can be equivalent to natural gas
- NG-based ATR as basis for H₂ power challenged to deal with steam diluent impact
- Many candidate hydrogen generation processes optimum GT process integration will be critical to economics
- Feasibility and benefits of pre-mix hydrogen combustion need to be studied