Fifth Annual Conference on Carbon Capture & Sequestration

Steps Toward Deployment

CCS Economic Analyses

2006 Cost & Performance Comparison of Fossil Energy Power Plants

Jared Ciferno, NETL
Julianne Klara, NETL
Ronald Schoff, Parsons
Pamela Capicotto, Parsons

May 8-11, 2006 • Hilton Alexandria Mark Center • Alexandria, Virginia

Disclaimer

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof.

Overview

- Purpose: To compare near-term commercial offerings for IGCC, PC and NGCC cases both with and without current technology for CO₂ capture
 - Developed with consistent design requirements and up-to-date performance and capital cost estimates
 - Considered technologies that could be built now and deployed by 2010
 - Provides baseline costs and performance for which to compare advancing technologies within the FE R&D Program
- Public report available Summer 2006

Study Matrix

Case	Plant Type	ST Cond. (psig/°F/°F)	GT	Gasifier/ Boiler	Acid Gas Removal / CO ₂ Separation / Sulfur Recovery	CO ₂
1				GE	Selexol / - / Claus	
2				GE	Selexol / Selexol / Claus	90%
3	IGCC	1800/1050/1050	F	СоР	MDEA / - / Claus	
4	IGCC	1600/1050/1050	Class	E-Gas	Selexol / Selexol / Claus	90%
5				Shell	Sulfinol-M / - / Claus	
6				Shell	Selexol / Selexol / Claus	90%
7		2400/1050/1050		Subcritical	Wet FGD / - / Gypsum	
8	PC	2400/1050/1050		Subcritical	Wet FGD / Econamine / Gypsum	90%
9	PC	2500/4400/4400		Superarities	Wet FGD / - / Gypsum	
10		3500/1100/1100		Supercritical	Wet FGD / Econamine / Gypsum	90%
11	NGCC	2400/4050/050	F	HRSG		
12	NGCC	2400/1050/950	Class	пкэв	- / Econamine / -	90%

Design Basis: Coal Type

Illinois #6 Coal Ultimate Analysis (weight %)

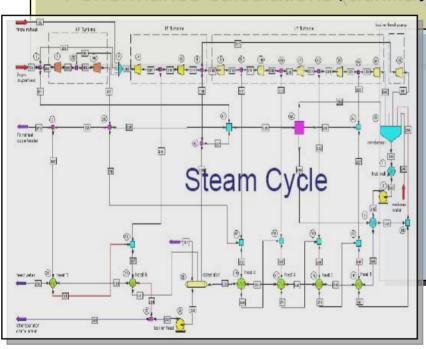
	As Rec'd	Dry
Moisture	11.12	0
Carbon	63.75	71.72
Hydrogen	4.50	5.06
Nitrogen	1.25	1.41
Chlorine	0.29	0.33
Sulfur	2.51	2.82
Ash	9.70	10.91
Oxygen (by difference)	6.88	7.75
	100.0	100.0
HHV (Btu/lb)	11,666	13,126

Design Basis: Assumptions

Economic

Startup	2010
Plant Life (Years)	20
Capital Charge Factor (%)	13.8
Dollars (Constant)	2006
Coal (\$/MM Btu)	1.34
Capacity Factor	85

Site


Greenfield, Midwestern USA, 0 ft Elevation
Rail and Highway Access
Municipal Water
300 Acres

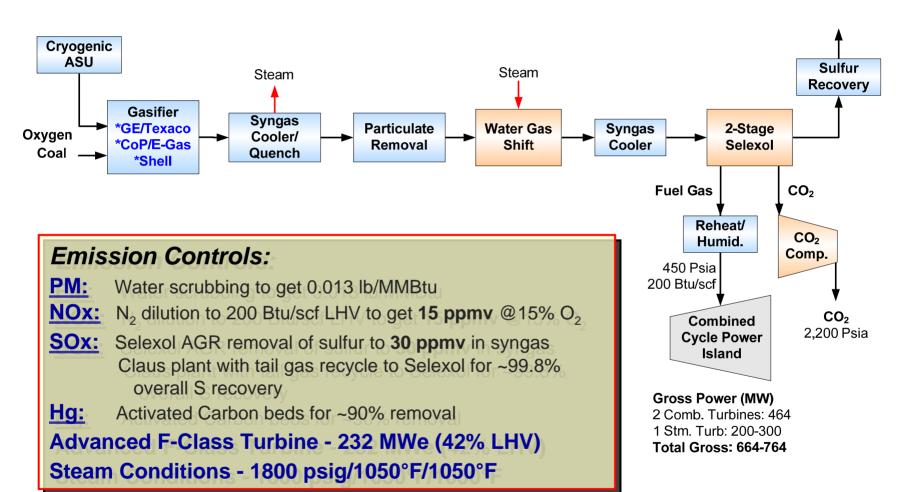
Technical Approach

1. Extensive Process Simulation (ASPEN)

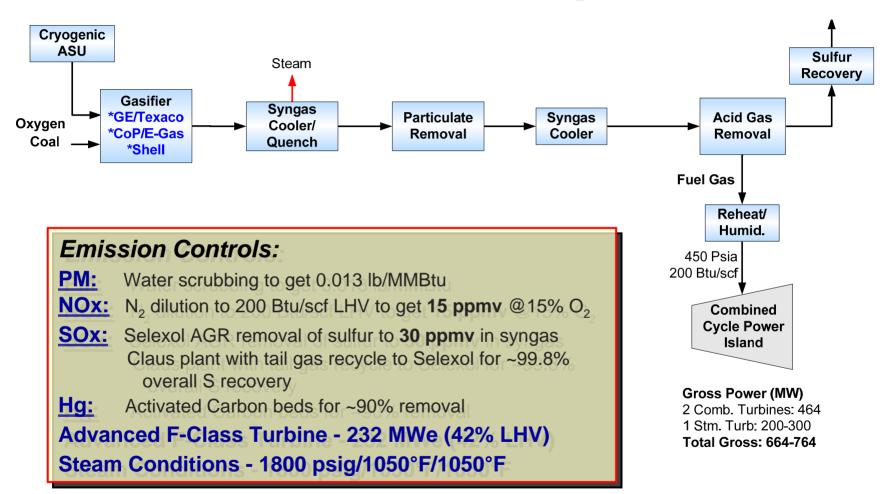
- All major chemical processes and equipment are simulated
- Detailed mass and energy balances
- Performance calculations (auxiliary power, gross/net power output)

2. Cost Estimation

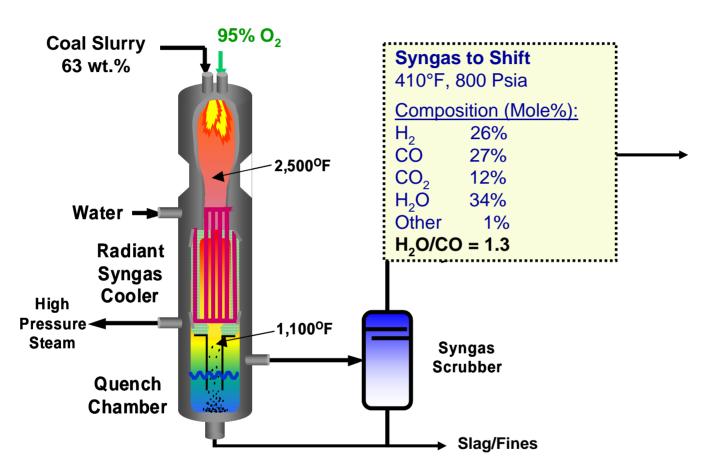
- Inputs from process simulation (Flow Rates/Gas Composition/Pressure Temp.)
- Sources for cost estimation
 Parsons
 - Vendor sources where available
- Follow DOE Analysis Guidelines


IGCC Power Plant

Current State CO₂ Capture Using Selexol™

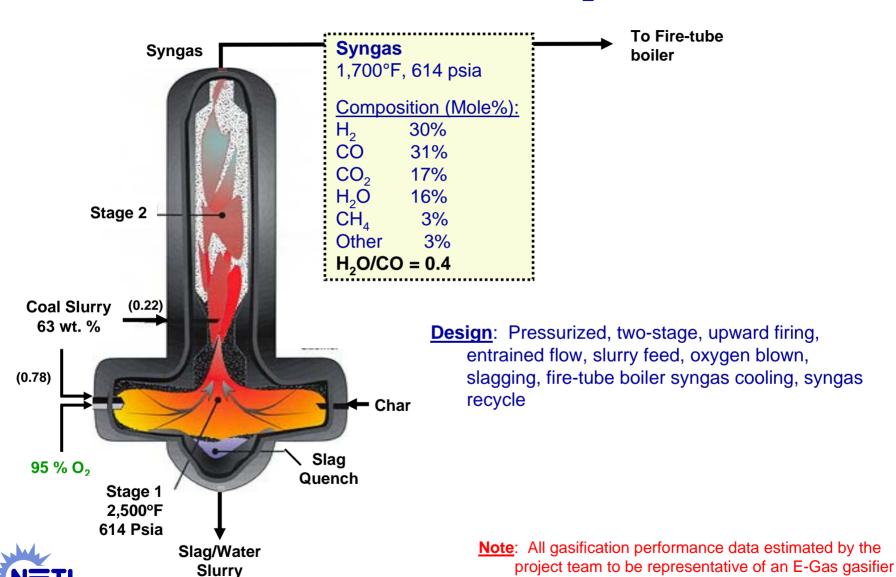

Pre-Combustion CO₂ Capture Baseline

Pre-Combustion Current Technology *IGCC Power Plant with CO₂ Scrubbing*

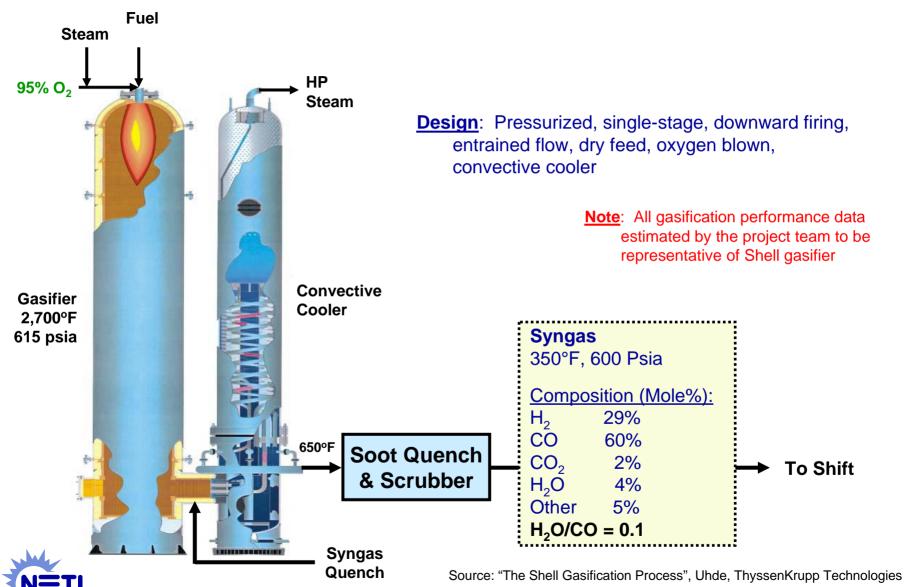


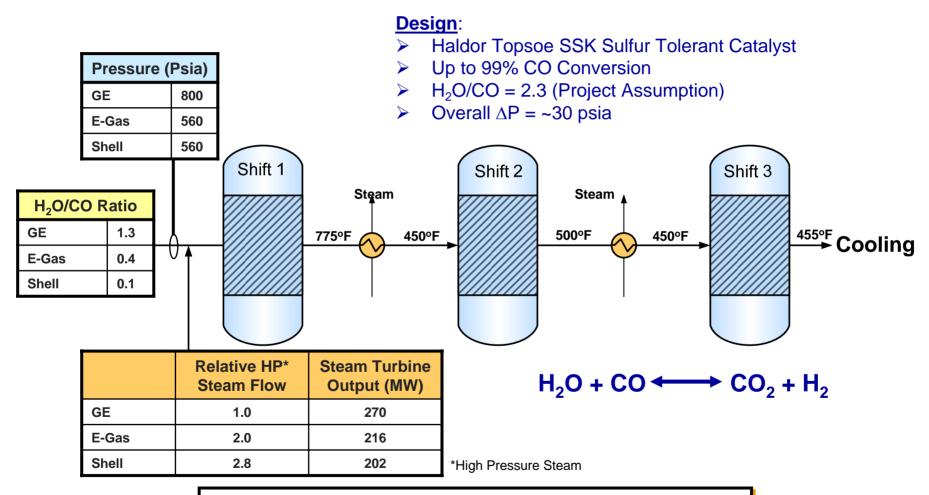
IGCC Current Technology IGCC Power Plant without CO₂ Capture

Cases 1 & 2: GE Energy Radiant



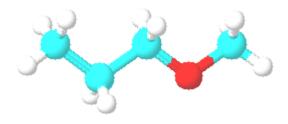
<u>Design</u>: Pressurized, single-stage, downward firing, entrained flow, slurry feed, oxygen blown, slagging, radiant and quench cooling


Note: All gasification performance data estimated by the project team to be representative of GE gasifier


Cases 3 & 4: ConocoPhillips E-Gas[™]

Cases 5 & 6: Shell Gasification

Water-Gas Shift Reactor System


CO₂ Capture via Selexol Scrubbing

Advantages

- Physical Liquid Sorbent → High loadings at high CO₂ partial pressure
- Highly selective for H₂S and CO₂ → No need for separate sulfur capture system
- No heat of reaction (ΔH_{rxn}), small heat of solution
- Chemically and thermally stable, low vapor pressure
- 30+ years of commercial operation (55 worldwide plants)

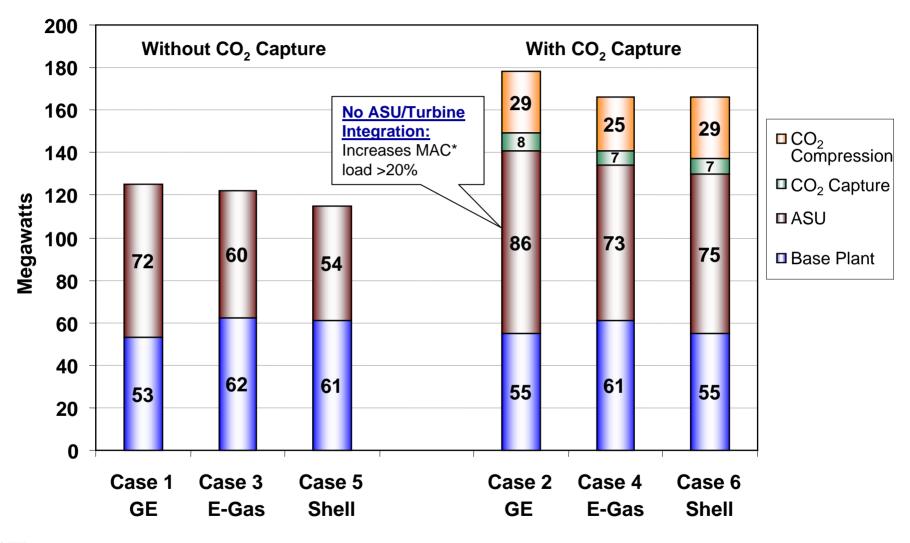
Disadvantages

- Requires Gas Cooling (to ~100°F)
- CO₂ regeneration by flashing

SelexolTM **Scrubbing**

IGCC Power Plant

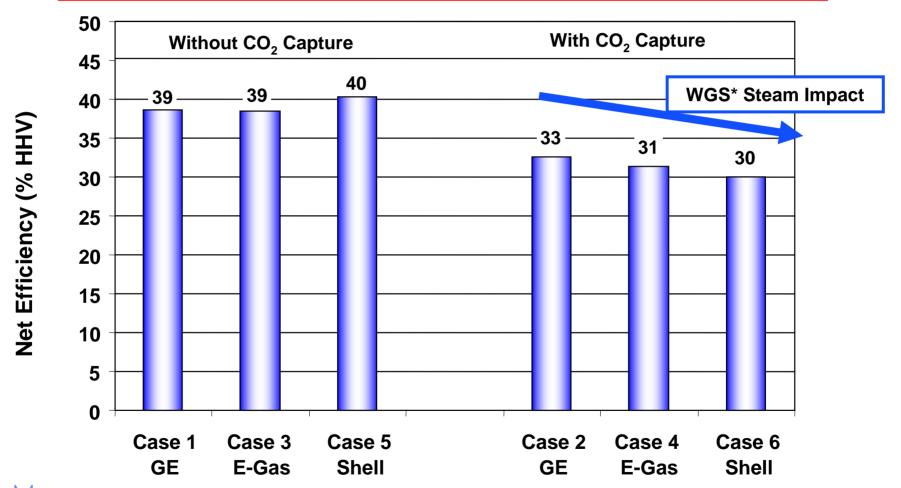
Results


Cases 1 & 2: GE Energy Radiant Performance

	Case 1	Case 2	
	No Capture	Capture	
Coal Flow Rate (Ton/day)	5,846	6,063	
CO ₂ Captured (Ton/day)	-	13,120	
Total Gross Power (MW)	769	741 ———	Steam for Capture
Auxiliary Power (MW)			
Base Plant Load	26	26	- Additional O ₂
Air Separation Unit	96	115 ———	↑ in ASU air comp load w/o CT integ.
Gas Cleanup/CO ₂ Capture	3	8	load w/o or micg.
CO ₂ Compression	-	29	Included II 0/000
Total Auxiliary Load (MW)	125	178	Includes H ₂ S/COS Removal in Selexol
Net Power (MW)	644	563	Solvent
Net Heat Rate (Btu/kWh)	8,832	10,463	
Efficiency (% HHV)	38.6	32.6	
Energy Penalty (%) ¹	-	16%	

 $\frac{^{1}\text{CO}_{2}}{\text{due to CO}_{2}}$ Capture Energy Penalty = Percent decrease in net power plant efficiency due to CO_{2} capture

IGCC Auxiliary Load Summary



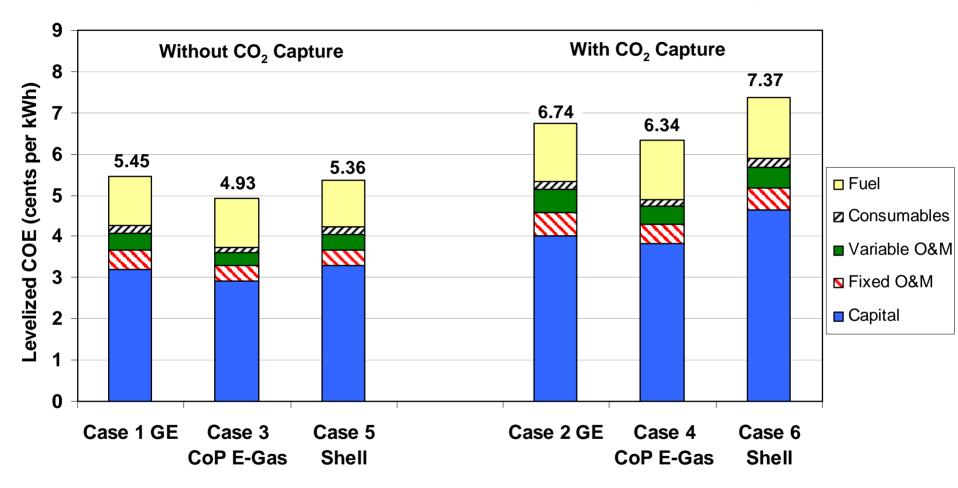
*main air compressor

IGCC Thermal Efficiency Summary

CO₂ Capture decreases net efficiency by 6-10 percentage points

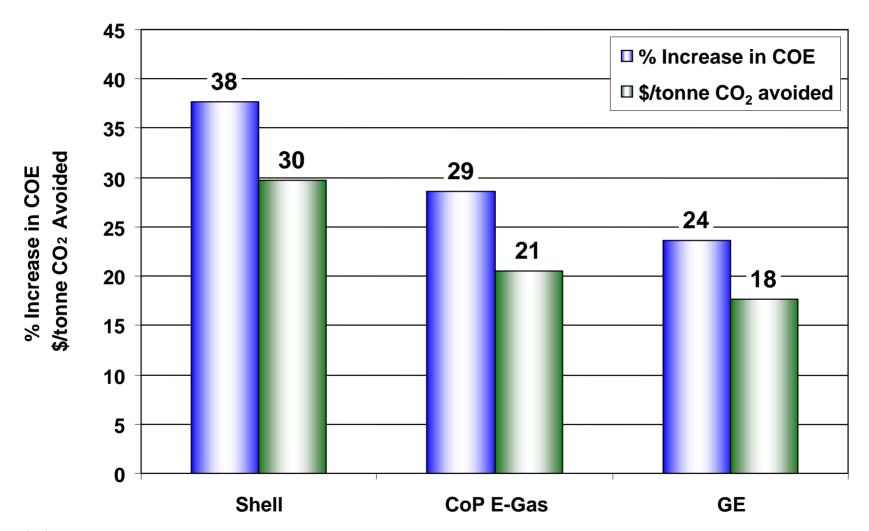
*Water Gas Shift

Cases 1 & 2: GE Energy Radiant Economics


	Case 1 No Capture	Case 2 Capture	Difference
Plant Cost (\$/kWe)1			
Base Plant	1,311	1,457	146
Air Separation Unit	100	165	65
Gas Cleanup/CO ₂ Capture	146	262	116
CO ₂ Compression	-	66	66
Total Plant Cost (\$/kWe)	1,557	1,950	393
Capital COE (Cents/kWh)	3.21	4.02	0.81
Variable COE (Cents/kWh)	2.24	2.72	0.48
Total COE (Cents/kWh) ²	5.45	6.74	1.29
Increase in COE (%)	-	24	
\$/tonne CO ₂ Avoided	-	18	

²January 2006 Dollars, 85% Capacity Factor, 13.8% Levelization Factor, Coal cost \$1.34/10⁶ Btu

¹Total Plant Capital Cost (Includes contingencies and engineering fees)

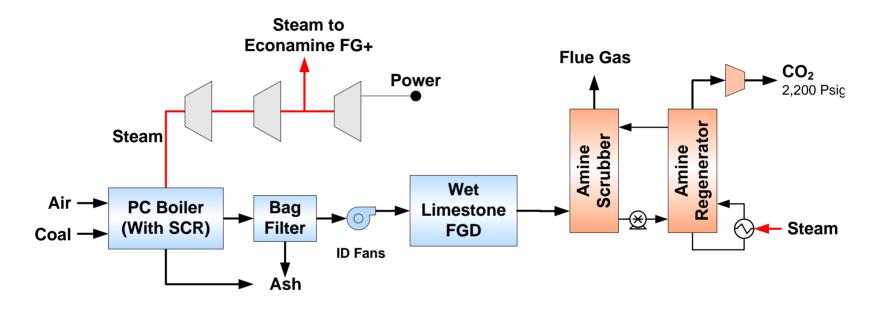

IGCC Economic Results Summary

Average COE (cents/kWh) = 5.3 and 6.8 (w/capture) Average increase in COE for CO₂ capture = 30%

IGCC CO₂ Capture Mitigation Cost Summary

IGCC CO₂ Capture Key Points

- 1. No ASU integration with CO₂ Capture cases, this increases ASU MAC* power load and overall ASU capital costs
- 2. Syngas H₂O/CO ratio has large influence on water-gas shift steam requirement, steam turbine output and net plant efficiency
- 3. CoP/E-Gas has high methane content, with Selexol at 95% capture, can only get 89% carbon capture


Pulverized Coal Power Plant

Current State CO₂ Capture Using Advanced Amines

Post-Combustion CO₂ Capture Baseline

Post-Combustion Current Technology *Pulverized Coal Power Plant with CO*₂ *Scrubbing*

PM Control: Bag House to get 0.015 lb/MMBtu (99.8% removal)

SOx Control: FGD to get 0.086 lb/MMBtu (98.5% removal)

NOx Control: LNB + OFA + SCR to maintain 0.7 lb/MMBtu

Mercury Control: Activated Carbon Injection

Steam Conditions (Subcritical) - 2400 psig/1050°F/1050°F

Steam Conditions (Supercritical) - 3500 psig/1100°F/1100°F

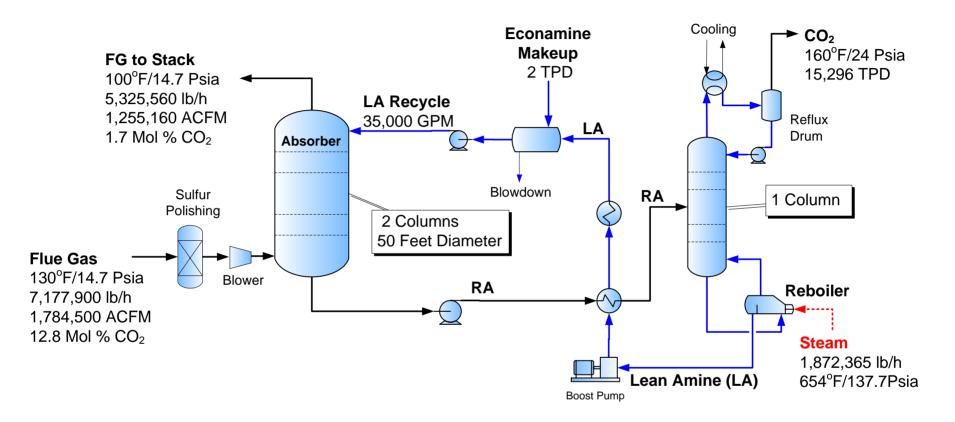
Amine Scrubbing Advantages/Disadvantages

Amine Advantages

- 1. Proven Technology → Remove CO₂ and H₂S from NG
- 2. Chemical solvent \rightarrow *High* loadings at *low* CO₂ partial pressure
- 3. Relatively Cheap

Amine Disadvantages

- 1. High heat of reaction → high regeneration energy required
 - 1,500 to 3,500 Btu/lb CO₂ removed
- 2. Degradation and Corrosion
 - Requires 10 ppm sulfur or less


Amine Scrubbing Improvements

Amine CO₂ scrubbing technology leaders are Fluor (Econamine FG PlusSM) and Mitsubishi (KS)

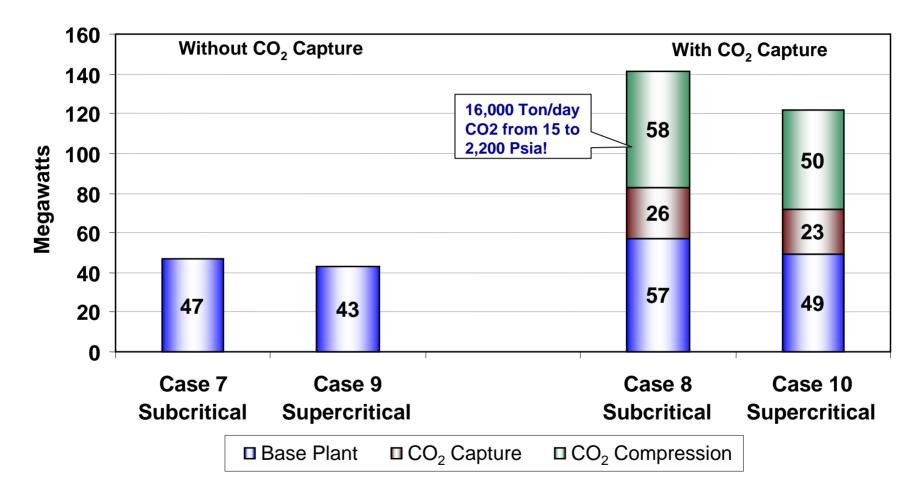
Improvements	Benefits	Outcome
1. New Solvent Formulation	↑ Reaction Rates	↓ Packing volume, ↓ Absorber size↓ Absorber cost
1. New Solvent i Ormalation	↑ CO₂ Capacity	↓ Solvent circulation, ↓ Reboiler Duty
2. Heat Integration	↑ Reaction Rates	↓ Packing volume, ↓ Absorber size↓ Absorber cost
2. Heat integration	↑ CO₂ Capacity	↓ Solvent circulation, ↓ Reboiler Duty
3. Split Flow	↓ Reboiler Duty	↑ Power plant efficiency
4. Condensate Flash Steam Stripping	↓ Semi-Lean Loading	↓ Reboiler Duty
5. Integrated Steam Generation	↓ Reboiler Duty	↑ Power plant efficiency
6. Larger Diameter Vessels	60 foot diameter	Accommodate power plants
7. Non-Thermal Reclaimer	↓ Solvent Losses	↓ Solvent make-up costs, eliminate any solid hazardous waste

Fluor Econamine FG PlusSM Scrubbing

Reboiler Heat Duty (Btu/lb CO ₂)	1,530	Regeneration (°F)	250's
MEA Circulation Rate (GPM)	35,000	Auxiliary Power (MW)	22-25
Absorption (°F)	100's	Induced Draft Fan (MW)	13-15

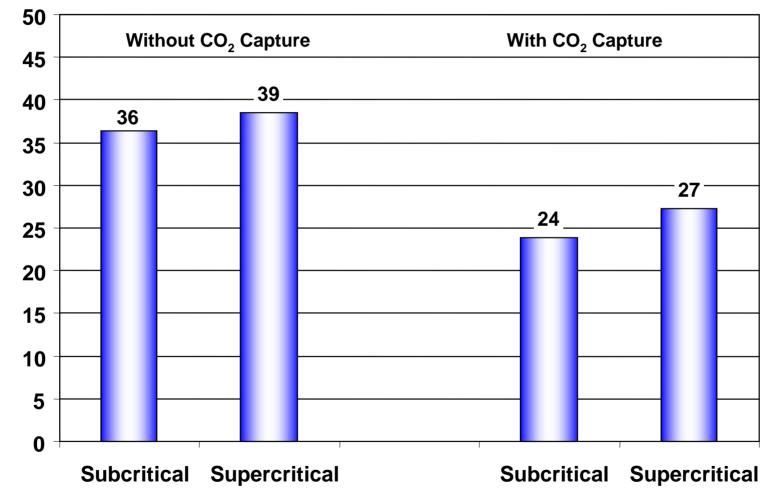
Pulverized Coal Power Plant

Results


Pulverized Coal Combustion Performance

	Subcritical		Superc	ritical
	No Capture	Capture	No Capture	Capture
Coal Flow Rate (Ton/day)	5,310	8,069	5,013	7,091
CO ₂ Captured (Ton/day)	-	15,880	-	14,620
Total Gross Power (MW)	597	690	593	672
Auxiliary Power (MW)				
Base Plant Load	27	31	24	27
Forced + Induced Draft Fans	13	19	12	17
CO ₂ Capture	-	25		22
CO ₂ Compression	-	58	-	49
Flue Gas Cleanup	7	7	7	7
Total Auxiliary Load (MW)	47	140	43	122
Net Power (MW)	550	550	550	550
Net Heat Rate (Btu/kWh)	9,389	14,274	8,857	12,517
Efficiency (% HHV)	36	24	39	27
CO ₂ Energy Penalty (%) ¹	-	33	-	31

 $\frac{^{1}\text{CO}_{2}}{^{2}}$ Capture Energy Penalty = Percent decrease in net power plant efficiency due to CO_{2} capture

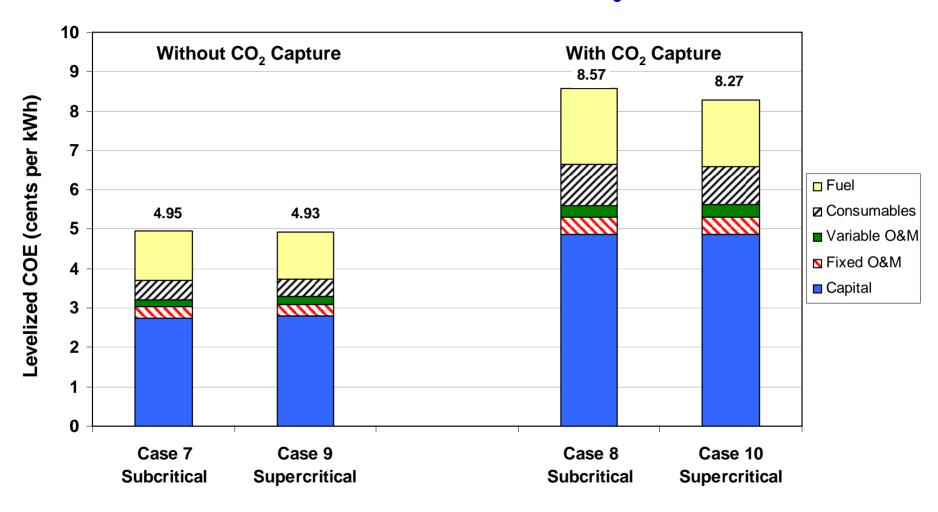

Pulverized Coal Auxiliary Load Summary

Pulverized Coal Thermal Efficiency Summary

CO₂ capture decreases net efficiency by 12 percentage points

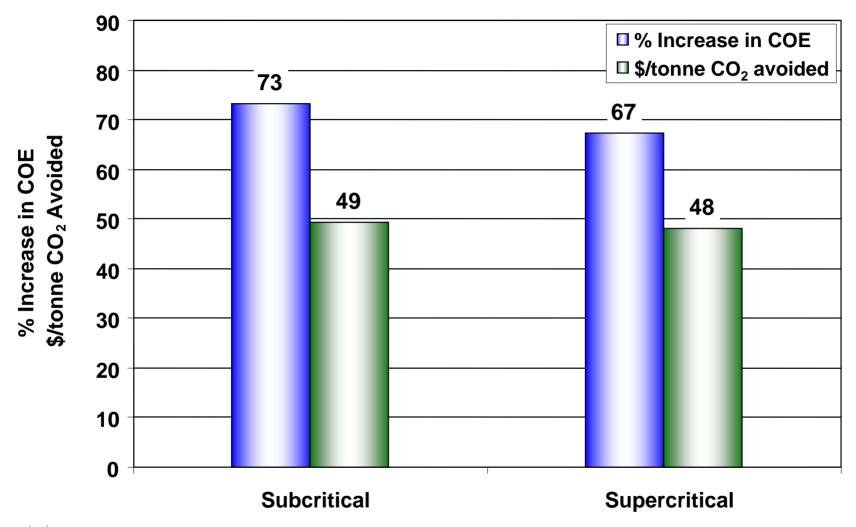
Net Efficiency (% HHV)

Pulverized Coal Combustion Economics


	Subcritical		Supercritical	
	No Capture	Capture	No Capture	Capture
Plant Cost (\$/kWe) ¹				
Base Plant	1,117	1,367	1,159	1,661
CO ₂ Capture	-	624	-	622
CO ₂ Compression	-	82	-	82
SOx and NOx Cleanup	206	285	196	257
Total Plant Cost (\$/kWe)	1,323	2,358	1,355	2,365
Capital COE (Cents/kWh)	2.73	4.87	2.79	4.87
Variable COE (Cents/kWh)	2.22	3.70	2.14	3.39
Total COE (Cents/kWh) ²	4.95	8.57	4.94	8.27
Increase in COE (%)	-	73	-	67
\$/tonne CO ₂ Avoided	-	49	-	48

¹Installed Plant Capital Cost (Includes contingencies and engineering fees)

²January 2006 Dollars, 85% Capacity Factor, 13.8% Levelization Factor, Coal cost \$1.34/10⁶ Btu


Pulverized Coal Summary Results

PC CO₂ capture average increase in COE = 70%

Pulverized Coal CO₂ Capture Mitigation Costs

Pulverized Coal CO₂ Capture Key Points

- 1. Advanced amine scrubbing technology for 90% CO₂ capture continues to be very energy intensive and costly
 - Definite need for performance and cost improvements
 - Good opportunity for R&D
- 2. "Post-combustion CO₂ capture processes can be regarded as *current technology*, but some demonstration of these technologies at large scale coal fired power plants is needed before they can be widely adopted with an acceptable level of commercial risk." (IEA 2004)

Acknowledgements

NETL Team

- Juli Klara Subtask Manager
- Jared Ciferno Technical Monitor
- Mike Reed Technical Monitor

RDS Team

- Ron Schoff (Parsons Corporation) Technical
- Pam Capicotto (Parsons Corporation) Performance
- Mike Rutkowski (Parsons Corporation) Technical
- Vlad Vaysman (WorleyParsons) Technical
- Tom Buchanan (WorleyParsons) Cost
- Massood Ramezan (SAIC) Subtask Manager

Thank You!

Cases 3 & 4: ConocoPhillips E-GasTM Performance

	Case 3	Case 4
	No Capture	Capture
Coal Flow Rate (Ton/day)	5,583	5,768
CO ₂ Captured (Ton/day)	-	11,870
Total Gross Power (MW)	734	680
Auxiliary Power (MW)		
Base Plant Load	29	29
Air Separation Unit	91	103
Gas Cleanup/CO ₂ Capture	2	7
CO ₂ Compression	-	27
Total Auxiliary Load (MW)	122	166
Net Power (MW)	612	515
Net Heat Rate (Btu/kWh)	8,870	10,895
Efficiency (% HHV)	38.5	31.3
CO ₂ Energy Penalty (%) ¹	-	19

 ${}^{1}CO_{2}$ Capture Energy Penalty = Percent decrease in net power plant efficiency due to CO_{2} capture

Cases 3 & 4: ConocoPhillips E-GasTM Economics

	Case 3 No Capture	Case 4 Capture	Difference
Plant Cost (\$/kWe) ¹			
Base Plant	1,173	1,399	226
Air Separation Unit	133	158	25
Gas Cleanup/CO ₂ Capture	111	237	126
CO ₂ Compression	-	67	67
Total Plant Cost (\$/kWe)	1,417	1,861	444
Capital COE (Cents/kWh)	2.92	3.83	0.91
Variable COE (Cents/kWh)	2.01	2.51	0.50
Total COE (Cents/kWh) ²	4.93	6.34	1.41
Increase in COE (%)	-	29	
\$/tonne CO ₂ Avoided		21	

¹Total Plant Capital Cost (Includes contingencies and engineering fees)

²January 2006 Dollars, 85% Capacity Factor, 13.8% Levelization Factor, Coal cost \$1.34/10⁶ Btu

Cases 5 & 6: Shell Gasification Performance

	Case 5 No Capture	Case 6 Capture
Coal Flow Rate (Ton/day)	5,401	5,743
CO ₂ Captured (Ton/day)	-	12,430
Total Gross Power (MW)	736	667
Auxiliary Power (MW)		
Base Plant Load	25	23
Air Separation Unit	90	107
Gas Cleanup/CO ₂ Capture	1	7
CO ₂ Compression	-	29
Total Auxiliary Load (MW)	115	166
Net Power (MW)	621	501
Net Heat Rate (Btu/kWh)	8,468	11,156
Efficiency (% HHV)	40.3	30.6
CO ₂ Energy Penalty (%) ¹	-	25

 ${}^{1}CO_{2}$ Capture Energy Penalty = Percent decrease in net power plant efficiency due to CO_{2} capture

Cases 5 & 6: Shell Gasification Economics

	Case 5 No Capture	Case 6 Capture	Difference
Plant Cost (\$/kWe) ¹			
Base Plant	1,354	1,726	372
Air Separation Unit	124	154	30
Gas Cleanup/CO ₂ Capture	115	302	187
CO ₂ Compression	-	70	70
Total Plant Cost (\$/kWe)	1,593	2,252	659
Capital COE (Cents/kWh)	3.28	4.63	1.35
Variable COE (Cents/kWh)	2.08	2.74	0.66
Total COE (Cents/kWh) ²	5.36	7.38	2.02
Increase in COE (%)	-	38	
\$/tonne CO ₂ Avoided		30	

¹Total Plant Capital Cost (Includes contingencies and engineering fees)

²January 2006 Dollars, 85% Capacity Factor, 13.8% Levelization Factor, Coal cost \$1.34/10⁶ Btu

