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We adapted the trial-level meta-analysis of surrogate endpoints (Gail et al, 2000, Buyse
et al, 2000) to binary surrogate and true endpoints using a relatively simple method-of-
moments approach for estimation. Let Z denote randomization group, S denote a
surrogate endpoint with realizations of 0 or 1, and 7" denote a true endpoint with
realizations O or 1. Also let / = 0 denote the application or validation trial and [ = ¢

= 1, 2, k index previous trials. We define

¢o.r = pr(T' =1|Z = z, I = 0) = the probability the true endpoint equals 1 in arm
z of the application or validation trial,

¢o.s = pr(S =1/Z ==z, I =1i) = the probability the surrogate endpoints equals 1
in arm z of the application or validation trial,

0irs = pr(S =11Z = z, I = i), = the probability the true endpoint equals 1 in arm z
of previous trial 7,

¢i.r = pr(T =1|Z = z, I = i) = the probability the true endpoint equals 1 in arm

z of previous trial 4,



The parameter of interest is the treatment effect in the new trial Ay = ¢o117 — door. We
construct a joint random effects model for the estimate of ¢;.s and ¢;,7 based on data
from previous trials ¢ = 1, 2, k and use the model along with the estimates in new trial
of the probability of surrogate endpoint to estimate the treatment effect A in the new
trial. Let n;, denote the number of subjects in group z of trial ¢ who have surrogate
outcome s and true outcome ¢. The estimates under a binomial model are ¢, g =
Niz1+/MNiz4+ and %T = Njog1/Nizg+. Let gég = (A, dios, dins)’, where A; =
our — dior. We assume that @ ~ N( ?J s Viampling(i) )- Let O = pr(S = s, T = 1|1, 2).

Applying the delta method

2 2 2
Oian  Tias0  Tiast

Vaampting(s) = | Tiaso Tis0s0 0 = A - W; - A", where
Uz‘QASI 0 ‘7125131
Wioss  WiosT 0 0 0 -1 0 1
W, W, 0 0
Wi — 08T 07T , A= 1 0 0 0 , (1)
0 0 Wiiss  Wist 0 0 1 0
0 0 Wist Warr

Wi,58 = d)ZZS(l - ¢iZS) /niz++7
Wi rp = Qir(1 — Giar) [ izt

WizsT = coV(Pizs, Gizr) = coV(0iz10 + biz11, Giz01 + 0iz11)

0iz01(1 — 6iz01) — 0201 0iz10 — 0iz01 0iz11 0
=(1 0 1) — Biz01 0iz10 0i210(1 — 0i10) — 0i2100i:11 | /nizey |1
— Biz01 0i211 — 0iz100i211 Biz11 (1 — 0;211) 1

= {eizll (1 - ¢ZZS) - 02201 ¢z’zS} /niz++7

For estimation, 0iz11=ni211/niz++ and 9i201=niz01 /niz++.



Following the general approach of Gail et al (2000) and Buyse et al (2000), to allow

for extra variability, we superimpose a random effects models, ¢, ~ N( ¢ , Viandom)s

where
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Let wy = (Ao, @003, 501 g), where Ay = ¢o117 — ¢oor is the parameter of interest.
Based on (B1) and (B2), we assume a joint normal distribution for wy with mean

(E(A0), Eys), E(ns)) and variance
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Based on the formula for conditional joint normal distribution (e.g. Morrison, 1980, p.

97),

E(A | 50059 3015) = E(Ay) +
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The formula in Buyse et al (2000) is (4) with 02¢,sy = 0255, = 0, which ignores the
variability in the estimates from the application or validation trial, although, in
practice,we found this made little difference.

We plug the following estimates into (4). We estimate E(A,) by X; A; /k, and we
estimate E(¢g,q) by ¥ ¢, /k. We estimate the components of V angom using the

following method-of-moments approach. Let ¢ = i EEZ / k. Without imposing any



~

model the estimated variance ofé is Vi = (?ﬁ, - % )T @j — ¢ ) Ik (k—1)).
The sampling variance for % is \Afsampling = 3 ‘A/sampling(l-) /k?, where f/samphng(i) is
simply V ampling(i) With the estimates substituted for the parameters. The method of
moments estimate of f/random 1S f/random = T/mtal — f/samphng. However for f/random to be
a valid estimated covariance matrix, it must be positive definite. If V random 1S NOt

positive definite, we compute an adjusted covariance matrix as follows. We first

random
write V jandom = M Diagonal ( A ) M, where & =(A\1, A2, ....) are the eigenvalues,
Diagonal indicates a diagonal matrix, and M is the normalized eigenmatrix. We then
replace eigenvalues that are less than or equal to zero with a small positive value to
obtain a new vector of eigenvalues %\V* . We then computed the adjusted positive definite
covariance matrix V.5 i = M Diagonal (%\j ) M.
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