Certifying Compilation with
Secure Virtual Architecture

Vikram Adve

Associate Professor
University of lllinois at Urbana-Champaign
vadve@illinois.edu
(217) 244-2016
http://llvm.org/~vadve



Secure Virtual Architecture

» Compiler-based VM below operating system
 Enforces safety properties via analysis and transformation

 Supports type-unsafe languages (e.g., C/C++)
 Supports application/kernel code (e.g., Linux)

————————————————————————————————————————————————————————————

Operat/ng System
irtual instruction set

External Compilers/Checkers ' Vi : :
Native instruction set

Processor

Criswell et al., [SOSP 2007]



Certifying Compilation

No need for source: software

Bootor
:>’:>@

_J

/ shipped as bytecode
Software /
SVA SVAto
ba‘:’ SVQ Zj> bytecode :> native
ytecode verifier codegen
SVA-0S
Library
\
Y
Offline or online

<

Trusted Computing Basy

I

Verifier is far simpler than the
safety checking compiler



I

Advantages of our Approach

Building blocks for a complete system solution

* Virtual instruction set
— Comprehensive software representation (source code unnecessary)
— Special instructions make OS, system calls easier to analyze
— Sophisticated analysis capabilities

* Single, unified certification strategy for all software
» Ready to go:
— Linux 2.4 ported; Linux 2.6 port underway

— Memory safety for applications and entire Linux kernel
[PLDI 2006, SOSP 2007, Usenix Sec. 2009]



I

Seeking Capabilities In...

 Formal Methods
— Formal framework for security certification

o Static analysis for security properties
— Can operate on SVA bytecode (no source needed)
— Orthogonal to run-time fault detection, isolation in SVA

 Browser Security
— Web apps an important class of application

— Many browser vulnerabilities orthogonal to system software bugs
— Browser is model of extensible, open platforms



