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Secure Virtual Architecture

» Compiler-based VM below operating system
 Enforces safety properties via analysis and transformation

 Supports type-unsafe languages (e.g., C/C++)
 Supports application/kernel code (e.g., Linux)
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Certifying Compilation

No need for source: software
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Verifier is far simpler than the
safety checking compiler
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Advantages of our Approach

Building blocks for a complete system solution

* Virtual instruction set
— Comprehensive software representation (source code unnecessary)
— Special instructions make OS, system calls easier to analyze
— Sophisticated analysis capabilities

* Single, unified certification strategy for all software
» Ready to go:
— Linux 2.4 ported; Linux 2.6 port underway

— Memory safety for applications and entire Linux kernel
[PLDI 2006, SOSP 2007, Usenix Sec. 2009]
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Seeking Capabilities In...

 Formal Methods
— Formal framework for security certification

o Static analysis for security properties
— Can operate on SVA bytecode (no source needed)
— Orthogonal to run-time fault detection, isolation in SVA

 Browser Security
— Web apps an important class of application

— Many browser vulnerabilities orthogonal to system software bugs
— Browser is model of extensible, open platforms



